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ABSTRACT

This paper presents an information-driven online video
composition system. The composition work handled by the
system includes dynamically setting multiple pan/tilt/zoom (PTZ)
cameras to proper poses and selecting the best close-up view for
passive viewers. The main idea of the composition system is to
maximize captured video information with limited cameras.
Unlike video composition based on heuristic rules, our video
composition is formulated as a process of minimizing distortions
between ideal signals (i.e. signals with infinite spatial-temporal
resolution) and displayed signals. The formulation is consistent
with many well-known empirical approaches widely used in
previous systems and may provide analytical explanations to
those approaches. Moreover, it provides a novel approach for
studying video composition tasks systematically. The
composition system allows each user to select a personal close-
up view. It manages PTZ cameras and a video switcher based on
both signal characteristics and users’ view selections.
Additionally, it can automate the video composition process
based on past users’ view-selections when immediate selections
are not available. We demonstrate the performance of this
system with real meetings.

1. INTRODUCTION

Many existing video capture systems are professional-operator-
controlled systems. To increase video capture flexibility and
reduce labor cost, researchers proposed fully automatic video
capture systems, including Bell Core’s Auto-Auditorium [2],
Cornell’s lecture capturing system [9], Microsoft’s ICAM
system [8], and AT&T’s Automated Cameramen [4]. However,
these systems typically rely on state-of-the-art audio and vision
techniques that may not be robust enough for real world use.

Our system overcomes problems of these systems by
encouraging video viewers to compose video online and
seamlessly merging manual composition and automatic
composition.  Similar to professional-operated systems, our
system can be operated by human. Unlike professional-operated
systems, our system hands the view selection task to regular
viewers who are interested in the topic. Similar to a fully
automatic system, our system can automatically compose video
when no users want to control the system. Unlike a fully
automatic system, our system allows convenient manual
correction of imperfect automatic composition.

The system uses a hybrid camera, FlySPEC, [6,7] that
combines the high resolution of a PTZ video camera with the
wide field of view always available from a panoramic camera
(Figure 1). By constructing a high-fidelity video canvas using
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video from the PTZ camera and the panoramic camera, our
system enables each user to check details of a selected region
using gestures over the canvas. Based on users’ requests
distributed on the canvas, we also design an algorithm for
maximizing the overall video fidelity with one FlySPEC[7].

In this paper, we extended our approach for single FIlySPEC
control to online video composition using multiple FlySPEC
cameras located at different view points and a video switcher.
The online video composition system is named MSPEC which
stands for multiple FlySPECs. Figure 1 shows the control
interface of an MSPEC and a FlySPEC camera. In this interface,
the three panoramic views come from panoramic cameras of
three FlySPECs, and the close-up view comes from one selected
FlySPEC camera. Similar to the single FlySPEC control, the
MSPEC system also needs to move every PTZ camera to the
right pose. Unlike the single FlySPEC control, the MSPEC can
select the best output video stream from multiple FlySPEC
streams. This design gives the system more chances to output
better streams when one FlySPEC is not enough to handle the
capturing task well.
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Figure 1. The control interface of a MSPEC and one of
FlySPEC cameras.

With the MSPEC system, a user can compose a close-up
view video stream by selecting a rectangular region in one of the
panoramic views from time to time. When our video server
receives the selection information, the server will send the user a
close-up video stream according to the request. This close-up
video may come from a PTZ camera, a panoramic camera, an
image cache, or a mixture of all these sources depending on our
video composition strategy and all users’ requests. When users
don’t, won’t, or can’t provide their region selections, our
algorithm can automate the best video stream selection based on
users’ past selection patterns. The automatic composition and
users” manual composition are seamlessly integrated into the
system to support a range of options from untended automatic to
full manual composition. In the following paper, we present our



online video composition framework and some video
composition experiments.

2. ONLINE VIDEO COMPOSITION

The goal of video composition is to acquire as much required
information as possible for viewers with limited video channels.
This goal can be formulated as a video quality maximization
problem. In this formulation, we use the video reaching each
FlySPEC camera as the best quality video which has infinite
spatial and temporal resolution. Let f(x,y,t) be the ideal video,
where x and y are panoramic image canvas coordinates and ¢
denotes time. Due to limited resolution of imaging sensors, a

FIySPEC camera may only obtain an approximation f (x,y,t)of

the ideal signal f(x,y,t). Various regions of f(x,y,t) are
transmitted to viewers according to their requests. To improve
the video quality for each viewer, we have to improve f(x,y,?)

estimation to reduce the difference between the displayed videos
and the ideal video.

With the current MSPEC system, there are two ways to
improve video quality for viewers. First, the system can change

the PTZ camera pose to improve f (x,y,t) estimation. Second,

the system can use a buffered high quality image, f o, to

t

substitute for f(x,y,) when some image regions do not change
over a short time period 7 between consecutive video frames.
Denote {R,} as a set of non-overlapping small regions, N as

the total number of requests, and p(R,,7|O) as the probability

of viewing region-R; details conditioned on environmental
observation O at time # (e.g. the probability of viewing region-R;
when skin-color, body shape etc. appear in that region.) The

total weighted distortion D[ f,_,, f,] between users’ requested
images and the real image can be estimated with:
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Since all cameras have limited resolutions, fA (x,y,t) is typically
modeled as a band limited representation of f(x,y,t) with
cutoff frequency determined by the resolution of a camera. Let

F(o,,.t) and F (@,,,t) be the spectrum representation of

f(x,y,t)and f (x,y,t) respectively, where @, is the rotational

spatial-frequency. The band limited model
assumes F (@,,,1)=F(®,,,1) below certain spatial-frequency
a) and F (@,,,1)=0  above the frequency.
Let F,, be F(o,t)-F(®,t-T) ad F;, be
F(o,,0)- F (@,,,1) , the above integration may be estimated
with:
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This integration reflects the distortion between the real
image and the cached image, where the first term on the right
side reflects the distortion caused by environmental changes, and
the second term reflects the distortion caused by environmental
details missed because of the limited resolution of the cached
image. By sampling region R; at frequency «,(¢) and updating
the cached image, the expected distortion reduction is:
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In our system, the sampling frequency of a region is directly
related to the camera zoom level at that region. Therefore, the
above distortion can be adjusted by changing the camera zoom
level associated with region R;. With equation 1-3, the total
distortion reduction (information gain) over all requested images
is proportional to:

AD =Y p(R,.1|0)-AD,, . @

To improve video quality, the control strategy of our system
is to maximize the distortion reduction AD by using proper
cameras (i.e. the PTZ camera, the panoramic camera, or no-
updating) to update the cached image. Denote (P,7,Z2),
corresponding to pan/tilt/zoom, as the best pose for the PTZ
camera. (P,T,Z) can be obtained with

(P, T, Z)=argmax(AD), %)
(p:t,2)
where (P,T) decides the location of the updated regions and Z
decides the sampling frequency of those updated regions.

With above control equations, the system can move each
PTZ camera to form a very high-resolution image for future
requests when the environment is static. In a dynamic
environment, the algorithm will guide the PTZ camera to follow
moving objects that interest most viewers.

Denote g as a PTZ camera id number, Q as the best PTZ
camera for the zoom view in the above interface, and

ADMAX , as the maximum distortion reduction of camera g. O

can be obtained with

O=arg max(ADMAX . ) 6)
q

Our system sends Q to the video switcher for selecting the
best output video stream.

2.1 Estimating the Distortion Reduction from an Image
Cache Update

Since the system cannot try all PTZ camera poses in practice, it
has to seek the optimal camera pose via simulation before
moving each PTZ camera. More specifically, the system has to
try the distortion reduction equations (3) and (4) with sampling
regions and cutoff frequencies corresponding to various camera
poses, and select the optimal camera pose based on equation (5).
During computer simulation, accurate estimation of
equation (3) is difficult without sufficient camera resolution. To
compensate for this problem, we use Dong and Atick’s
image/video power spectrum models [3] to assist the evaluation



of dstortion reduction corresponding to various poses.
According to these models, if a system captures object

movements from distance zero to infinity, | F; , [ and | F,, , |’

statistically fall with spatial frequency, @, according to 1/ @),
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Based on these simple models and available images, the
estimation of each distortion term may vary. Due to space limit,
we only give the estimation procedure of a typical case. More
specifically, we assume that only the panoramic videos are
available for the estimation. Let b be the spatial cutoff frequency
of a panoramic video. Since the panoramic video is available for
cache update at any time, b cannot be larger than the spatial
cutoff frequencies of cached images. In other words, we have
b<a,t), and b<a,(t—-T). Let E;;, be the R-region AC-
power between spatial frequency / and b, E,,;, be the R-region
frame-difference AC-power between spatial frequency / and b,
Jmis be the Rr-region frame-difference power up to spatial

respectively, where m is around 2.3.

frequency b, and ‘fb (x,y,t) acquired by the panoramic camera

be a band-limited representation of f(x,y,t). J,;, can be
estimated with:
Z ) 2 (1)
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E i1 Eni. can be estimated in a similar way. With these values,
terms for AD, , may be obtained with:
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2.2 Weighting Distortions According to Users’

Requests

To compute the distortion of all requests, users’ requests to
different portions of an image are modeled with a probability
function p,(R,|O0) . This gives rise to the form of a Bayes

estimator. p,(R, | O) may be estimated directly based on users’

requests. Assume N is the total number of requests and #»; users
request the view of region R; during the time period from ¢ to t+7'
when the observation O is presented, and p and O do not change
much during this short period, p,(R, |O) may be estimated with:

n

R|0)="0. 9
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2.3 Automate Video Composition without Users’
Requests

When users’ requests are not available, the estimation of
p,(R, | O) may become a problem. This problem may be tackled

by using the system’s history of users’ requests. More

specifically, if we assume that the probability of selecting a
region does not depend on time ¢, the probability may be
estimated with

Pr(Ri|0)=p(Ri|0):M’

p(0)

In a tele-conferencing environment, it is reasonable to
assume that signals from different sources (i.e. objects), such as
a presenter or an audience member, are independent. It is also
reasonable to assume that a human’s view selection separates
various sources well into two categories (i.e. proper
segmentation). Based on these assumptions, the feature vector O
may be separated into independent feature vectors O; and O,
where O; is the feature vector based on the data in R; and O, is
the feature vector based on the data outside of R;, Moreover, we
can further assume that R; and O, are independent. With these
assumptions, p(R, | O) may be estimated with

p(R1 | 0) = p(Rl | Oiﬂ 00rher)
— p(Oz |Ri’00rher)'p(Ri’Oother) (11)
p(Oz > Oother )
_ p(Oi | Ri)'p(Ri)
p0))
The observation O; may be further separated into
‘independent’ features O, = {ol ,0y5e ..,0”} as [1, 10] suggested.

(10)

With these independent features, p(R,|O) may be estimated
with
P(R; |0)
=p(01|Ri)'p(02|Ri)"'p(0n|Ri)'p(Ri), (12)
p(o,)-p(0,)- p(o,)
where p(R)) is the prior probability of selecting region R;, and

p(o; | R,) is the probability of observing o; in R; when R; is

selected. Probabilities on the right side of this equation may be
‘learned’” online. With the p(R,|O) estimate available, it is

straightforward to compute equation (5) for the optimal PTZ
camera pose. This enables the system to automate video
composition based on users’ past selection patterns.

3. VIDEO COMPOSITION EXPERIMENTS

In our corporate conference room, we captured 56 meeting
segments with three synchronized panoramic video cameras
during 14 presentations. Then we asked 19 subjects to mark
each meeting segment, which includes 3 synchronized video
segments captured by different panoramic video cameras, with a
rectangular region that s’he wants to watch in a close-up view.
After getting inputs from these subjects, we used data
corresponding to 30 meeting segments as training data to

estimate p(O|R,) and p(R,) .
shown in Figure 2, where whiter points correspond to higher
p(R,) values.

The estimate of p(R,) is

We tested our camera control algorithm with 26 other
meeting segments. Figure 3 (a) shows a snapshot of a meeting
segment using three panoramic views. If remote viewers can
only watch one close-up stream and they do not send their
requests for this meeting segment, our system will automatically
choose the dotted black box shown in Figure 3 (a) as the PTZ



camera view. The optimal PTZ camera view selection is
illustrated in Figure 3 (b), which shows the maximum distortion
reductions corresponding to various PTZ cameras at various
zoom levels. It also shows the maximum distortion reduction of
using all three cameras. The horizontal axis of Figure 3 (b)

reflects the spatial frequency associated with various zoom levels.

The unit of this axis is based on the spatial frequency of a
panoramic image. Since we cut the image canvas into small
regions for fast optimization, the zoom level corresponds to a set
of discrete values, and the best camera pose for that zoom level
is computed. The optimal PTZ camera view, which is marked
with the dotted black box in Figure 3 (a), corresponds to the
highest distortion reduction point in Figure 3 (b).

(b)
Figure 2. Estimation of p(R,) (a) A typical meeting shot

that reveals the conference room arrangements. (b)
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Figure 3.

Figure 4 shows the distortion statistics based on different
PTZ camera control strategies. Figure 4 (a) reflects the visual
distortion distribution when PTZ cameras are used for smallest
field-of-view requests. Figure 4 (b) reflects the visual distortion
distribution when PTZ cameras are controlled using our
algorithm. Compared with Figure 4 (a), the peak shift in Figure
4 (b) reveals obvious user’s view improvement come from using
our control strategy. In this experiment, a system using our
control strategy have 38% less distortion than a system using
PTZ cameras for smallest field-of-view requests, and 51% less
distortion than a system using no PTZ camera.
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Visual Distortion Visual Distortion
(a) (b)
Figure 4. The distortion statistics based on different PTZ

camera usages. (a) Use PTZ cameras for smallest field-of-
view requests. (b) Control using our algorithm.

4. CONCLUSIONS

We investigated the video composition problem within a signal
distortion optimization framework. The composition strategy
developed in this paper aligns well with many well-known
composition rules. It also helped us to understand some
problems overlooked by empirical approaches. Online video
composition experiments based on our formulation further
convinced us of the usefulness of this framework. Our
experiments also challenged us with the problems of better
probability estimation and user satisfaction evaluation.
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