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ABSTRACT

This paper introduces a novel image-based rendering
method which uses inputs from unstructured cameras and
synthesizes free-viewpoint images of high quality. Our
method uses a set of depth layers in order to deal with
scenes with large depth ranges. To each pixel on the synthe-
sized image, the optimal depth layer is assigned automati-
cally based on the on-the-fly focus measurement algorithm
that we propose. We implemented this method efficiently
on a PC and achieved nearly interactive frame-rates.

1. INTRODUCTION

Image-based rendering (IBR) means a group of techniques
for synthesizing free-viewpoint images from a set of pre-
acquired images. Compared with conventional graphics
techniques based on geometric primitives, IBR methods can
produce highly photo-realistic images with less computa-
tion cost. Due to this advantage, IBR is used for live 3D
video systems [5, 10, 11, 12], and expected as a key tech-
nology in telecommunication and virtual reality systems.

In practical cases, we have to use a structure model as
well as images in order to keep the needed number of im-
ages at a reasonable level (the theoretical analysis is given in
[1]). This paper introduces an IBR method which uses a set
of depth layers. When rendering an image using depth lay-
ers, we should assign the optimal layer to each pixel on the
image. In contrast to some prior works which use depth lay-
ers [2, 7, 9], our method does not need any pre-processing
step for shape/depth estimation. In our method, depth as-
signment is completed by an on-the-fly process which we
call the focus measurement.

In [8], we have already proposed a focus measurement
method which is used for light field rendering. But the ap-
plication scope was limited to structured inputs, where input
cameras should be aligned in parallel at constant intervals.
This paper extends the application scope of the prior method
to more generalized inputs by redefining the focus measure-
ment algorithm in the spatial domain. Since the proposed
method can deal with unstructured inputs, we call it “un-
structured light field rendering using on-the-fly focus mea-
surement”. We also report an efficient implementation of

our method on a PC, which enables rendering at nearly in-
teractive frame-rates.

2. ALGORITHM

Suppose that input images are captured by multiple cameras
which are located roughly on a plane. We consider a prac-
tical scenario where input cameras are not exactly aligned,
but calibrated in advance. Our goal is to synthesize free-
viewpoint images from images by those cameras.

We use a set of depth layers for synthesizing images. Let
N be the number of layers, and zn be the depth of the n-th
layer. Our algorithm consists of the following 3 steps, all of
which are on-the-fly operations for each frame.

1. N images, in which the n-th image corresponds to the
n-th plane of the layers, are synthesized.

2. We detect in-focus parts on those synthesized images
by the focus measurement.

3. Those detected parts are integrated into the final image.
The remainder of this section describes these steps in detail.

2.1. Rendering for Each Plane

Figure 1 shows the configuration. Though the sysmtem is
configured in the 3-D space in practice, we reduce the di-
mension to 2-D for simplicity of explanation. Suppose that
we synthesize an image at the rendering camera. Ci denotes
the i-th input camera, and Pi denotes the projected posi-
tion of its center on the plane model. In order to synthesize
an image at the rendering camera, all light-rays which pass
through the projection center of the rendering camera need
to be gathered.

Suppose a case where we obtain the color of the light-ray
represented by r in Fig. 1. Let P be the intersection point of
r and the plane model. We read out the light rays (ri(P) and
ri+1(P)) from the two nearest cameras (Ci and Ci+1) which
pass through P. The color of r is obtained as follows:

color(r) = (1 − t) · color(ri(P)) + t · color(ri+1(P)). (1)

where the point P divides the segment PiPi+1 internally in
the ratio of t : 1 − t.

Note that this method itself is not a new one, since it is
one of the simplest cases described in [3, 4]. The important
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Fig. 1. The basic configuration.

point is that in the synthesized images by this plane model,
objects near the model are clear and sharp (in-focus), but
objects apart from it are blurred and ghosted (out-of-focus)
(See Fig. 3(a)–(c)). That is why we need multiple depth
layers (step 2 and 3 operations) in order to make the whole
scene in-focus in the final synthetic image.

2.2. Focus Measure

The next step is to calculate focus measure values for de-
tecting in-focus parts. In our prior work [8], we constructed
a focus measurement algorithm in the frequency domain
based on the sampling theorem [1]. But due to the nature
of the sampling theorem, the scope of discussion was lim-
ited to regularly structured inputs, i.e. cameras should be
aligned in parallel at constant intervals. In this paper, we
reconstruct the focus measurement algorithm in the spatial
domain in order to apply it to unstructured inputs directly.

Suppose that two images are synthesized by the two
modes shown in Fig. 2 for an identical viewpoint. The
base mode shown on the left uses all of the input cameras
for rendering (it is the normal case), while the reference
mode shown on the right uses a subset of it, in which input
cameras are skipped alternately. Both modes uses Equation
(1) for synthesizing each light-ray. The dotted lines show
the light-rays used for synthesizing r(1) and r(2). In both
modes, the plane model is situated at the depth of Object 1.
Therefore, Object 1 is in-focus, but Object 2 is out-of-focus.

Assume that non-diffusive reflections and occlusions are
negligible. The light-ray r(1), which is emitted from an
in-focus point, is synthesized to have one identical color in
both modes. This is because both modes use such light-
rays that are emitted from one identical point on the object
surface for synthesizing r(1). On the other hand, the light-
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Fig. 2. Two synthesis mode for the focus measurement.

ray r(2) (emited from an out-of-focus point) could have dif-
ferent colors according to the mode. Consequently, in the
synthesized images by the two modes, in-focus parts are to
be synthesized identically, while out-of-focus parts would
show some differences. This nature can be used for detect-
ing in-focus parts.

According to the above discussion, we propose a fo-
cus measure for detecting in-focus parts. Let In(x, y) and
Rn(x, y) be the synthesized images with the plane model at
zn by the base mode and the reference mode, respectively.
The focus measure value fn at a pixel (x, y) is defined as
follows:

subn(x, y) = |In(x, y) − Rn(x, y)| (2)

fn(x, y) =
∑

−M≤k≤M

∑

−M≤l≤M

subn(x + k, y + l)

(2M + 1)2
. (3)

where M denotes a positive integer. When fn(x, y) is small
enough for a pixel (x, y), the pixel is regarded to be in-
focus in In(x, y). Equation (3) is a smoothing operation for
reducing the uncertainty of detecting out-of-focus parts as
in-focus parts.

A more popular way for evaluating the depth-correctness
is to compare the color of coresponding pixels on the input
images [6]. Zhang and Chen [12] incorporated this scheme
into their real-time IBR system by limiting the evaluation to
the selected points (vertices of the mesh model) on the syn-
thesized image. In contrast, our method evaluates the syn-
thesized light-rays (pixels on the synthesized image), and
achieves per-pixel depth evaluation in real-time.

2.3. Final Image Synthesis

When focus measure values fn(x, y) have been calculated
for all zn, the remaining process is straightforward. The
index of the optimal depth no for a pixel (x, y) is given by



minimum search of fn as follows:

no(x, y) = arg min
n

(fn(x, y)) . (4)

Then, In(x, y) (n = 1, .., N ) are selectively integrated into
a final image I(x, y) based on no(x, y).

I(x, y) = Ino(x,y)(x, y). (5)

3. IMPLEMENTATION

We implemented our algorithm on a Pentium 4 3.2 GHz
PC with 2.0 GB main memory. The graphics card has a
NVIDIA GeForce 5800 processor and 128 MB video mem-
ory built in. We developed software with C and OpenGL.

In order to stabilize the focus measurement, we use 4
reference modes which correspond to the combination of
the skipped lines (odd/even rows and odd/even columns) on
the input camera array. We use the following equation for
calculating subn instead of Equation (2).

subn(x, y) =
∑

j

|In(x, y) − Rj
n(x, y)|. (2′)

where Rj
n(x, y) denotes the synthetic image by the j-th ref-

erence mode with a plane model at zn. Therefore, the pseu-
docode is as follows:

for (novel viewpoint){
/* Stage A: synthesize N images by each mode */
for (n := 1 → N ){

Synthesize In(x, y);
for (j :=1 → 4) Synthesize Rj

n(x, y);
}
/* Stage B: calculate focus measure values */
for (n := 1 → N ){

Calculate subn(x, y); /* by Equation (2′) */
Calculate fn(x, y); /* by Equation (3) */

}
/* Stage C: synthesize the final image */
Calculate z(x, y); /* by Equation (4) */
Calculate I(x, y); /* by Equation (5) */

}

At the first stage (stage A), we synthesize multiple im-
ages (N images by each mode) with plane models. We
conduct this process on the graphics hardware using multi-
texturing technology similarly to [3]. In this process, each
input image is modulated by the aperture texture and pro-
jected onto the plane model using the projective texture co-
ordinate. The aperture texture corresponds to the pattern of
contribution of each image on the plane model. The projec-
tive texture coordinate is derived from the calibration data
of each camera, and ensures perspective-correct mapping
of the texture. Accelerated by the graphics hardware func-
tions, this process runs at more than 1000 times/second in

our environment. Then, synthesized images are transferred
to the main memory for the following operations.

The next stage (stage B) is to calculate focus measure
values for all n. In order to reduce the computation cost,
we reorganize Equation (3), whose computation order is
O(M2), into the recurrence equation as follows (O(M)):

fn(x, y) = fn(x − 1, y) +
∑

−M≤l≤M

subn(x + M,y + l)

(2M + 1)2

−
∑

−M≤l≤M

subn(x − M − 1, y + l)

(2M + 1)2
. (3′)

In our implementation, the stages A and B would occupy
the most part of the total processing time. However, these
stages can be partially parallelized: for example, calcula-
tion of sub1 and f1 can be started at the point where I1 and
R

j
1 have been synthesized and reached to the main memory.

Thanks to Hyper-Threading Technogy which is available on
the Pentium CPU, we could reduce the total compuation
time by implementing these stages in multi-threads.

4. EXPERIMENTS

As the input, we use multi-view image data provided by
Advanced Multimedia Processing Laboratory of Carnegie
Mellon University 1. These images are captured by 48 (6
rows by 8 columns) calibrated cameras with 320 × 240 pix-
els. Though these cameras are located roughly on a plane,
they are not evenly spaced, nor facing the same direction.
Therefore, it is a good example of unstructured inputs. We
set the size of synthetic images to 320 × 240 pixels, the
number of layers (N) to 7, and M = 5 in Equation (3).

Shown in Fig. 3 is the synthesis process at a certain
viewpoint. Figure 3 (a), (b), and (c) are synthesized with
a single-plane model at z2, z5, and z7, respectively (the
depth indexes are assigned in far-to-near order). In these
images, strong focusing effects are observed: out-of-focus
parts are severely damaged. One of the reference images at
z7 is shown in Fig. 3 (d). As discussed in 2.2, in-focus parts
are identical in Fig. 3 (c) and (d), while out-of-focus parts
are different. Therefore, as shown in Fig. 3 (e), the subtrac-
tion between the base image and the references is used for
detecting in-focus parts. Note that textureless regions (for
example, the background) could be detected as in-focus re-
gions at any depth, but it does not affect the quality of the
final synthetic images. Shown in Fig. 3 (f) is the final all-
in-focus image. We can synthesize all-in-focus images for
arbitrary viewpoints as shown in Fig. 4.

Figure 5 shows the processing time for each stage. By
parallelizing the stages A and B, we have reduced the total
processing time about 24 %. Though much more speeding
up is desired, we have achieved nearly interactive frame-
rates (7.4 fps) at present.

1http://amp.ece.cmu.edu/projects/MobileCamArray/



(a) I2(x, y) (b) I5(x, y) (c) I7(x, y)

(d) R7(x, y) (e) sub7(x, y) (f) I(x, y) (final image)

Fig. 3. Synthesis process at a certain viewpoint: (a)–(c) synthesized images with a single-plane model at
different depths, (d) a reference image at z7, (e) the subtraction image at z7, (f) the all-in-focus image.

5. CONCLUSIONS

In this paper, we proposed a novel IBR method that uses
inputs from unstructured cameras and synthesizes free-
viewpoint images using a set of depth layers. Without any
pre-processing for shape/depth reconstruction, our method
conducts pixel-by-pixel depth assignment using the on-the-
fly focus measurement. We also reported an implementation
and some experimental results for showing the effectiveness
of our method. Our future work will be focused on speeding
up of our method and its application to dynamic scenes and
live 3D video systems like [5, 10, 11, 12].
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