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Abstract 
Key finding is an integral step in content-based music indexing and 
retrieval. In this paper, we present an O(n) real-time algorithm for 
determining key from polyphonic audio.  We use the standard Fast 
Fourier Transform with a local maximum detection scheme to extract 
pitches and pitch strengths from polyphonic audio. Next, we use 
Chew’s Spiral Array Center of Effect Generator (CEG) algorithm to 
determine the key from pitch strength information. We test the 
proposed system using Mozart’s Symphonies.  The test data is audio 
generated from MIDI source.  The algorithm achieves a maximum 
correct key recognition rate of 96% within the first fifteen seconds, 
and exceeds 90% within the first three seconds.  Starting from the 
extracted pitch strength information, we compare the CEG 
algorithm’s performance to the classic Krumhansl-Schmuckler (K-S) 
probe tone profile method and Temperley’s modified version of the 
K-S method.  Correct key recognition rates for the K-S and modified 
K-S methods remain under 50% in the first three seconds, with 
maximum values of 80% and 87% respectively within the first fifteen 
seconds for the same test set.  The CEG method consistently scores 
higher throughout the fifteen-second selections. 
1. Introduction and Background 
    In tonal music, the relations among pitches that generate the 
key constitute one of the main features of a melody. Having 
the key information will be valuable for content-based music 
indexing and retrieval. In this paper we propose a method for 
extracting tonal features from polyphonic audio in real time. 
Using the pitch class and pitch strength information from the 
standard Fast Fourier Transform (FFT), the Spiral Array 
Center of Effect Generator (CEG) (see [2][3]) algorithm 
generates the key and returns the key name in a completely 
automatic fashion. Our choice of the CEG algorithm is distinct 
from existing approaches which typically use Krumhansl & 
Schmuckler’s (K-S’s) [10] probe tone profile method. We 
choose the CEG method for several reasons. The Spiral Array 
is a hierarchical model that represents pitches, intervals, 
chords, and keys within a single spatial framework, allowing 
for comparisons and analyses of tonal structures for multiple 
purposes. The CEG algorithm performs an efficient nearest-
neighbor search for the closet key in the 3-dimensional Spiral 
Array model. The Spiral Array model offers ways to solve the 
pitch-spelling problem efficiently (see[4][5][6]), which 
provides us with the capability to determine the key 
completely automatically. The CEG algorithm has also been 
shown to perform better in differentiating keys with similar 

pitch classes than other methods [3].  We extend the CEG 
algorithm from key finding using symbolic data to key finding 
from polyphonic audio.  With the pitch class and pitch 
strength information generated by the standard FFT, we show 
that the CEG algorithm provides a correct rate of over 90% 
within the first three seconds, and achieves a maximum 
correct rate of 96%, when tested on 61 audio samples of 
Mozart’s symphonies. For comparison, we also feed the same 
pitch class and strength information to the K-S method and 
Temperley’s modified version of the K-S method [18]. The K-
S and improved K-S methods provide results of less than 50% 
in the first three seconds and reach maxima of 80% and 87% 
respectively. 
    Related work in audio tonal description includes approaches 
proposed by Gómez & Herrera [9] and Pauws [14]. Both 
approaches use the standard FFT as the basis for their pitch 
detection methods and the K-S method for key finding. 
Gómez & Herrera used three times the traditional resolution of 
the pitch frequency spectrum of the FFT method for pitch 
detection. They used a Harmonic Pitch Class Profile as input 
to the K-S method to find the key. Pauws incorporated rules 
for avoiding noise and emphasizing pitch loudness, and 
applied the K-S method to generate the key. Gómez & Herrera 
reported an 84% correct key detection rate among 878 
excerpts of classical music. Pauws used 237 classical piano 
sonatas as the test set and his method returned a result of 
59.1% within 5 seconds, and reached the maximum of 72.2% 
within 30 seconds. Also a form of tonal description, but 
stopping short of determining key, Tzanetakis, Ermolinskyi, 
and Cook [7] generated pitch histograms in audio and 
symbolic music for information retrieval and genre 
classification.  
    Some pitch detection method must first be applied to extract 
pitches from polyphonic audio in order to find the key of any 
acoustic music excerpt, including a live performance, a CD or 
a tape recording. Most algorithms for pitch detection are 
designed to extract precisely every pitch present and none 
others. We hypothesize that such exact pitch detection may 
not be necessary for key finding using the CEG algorithm, and 
that pitch information from the harmonics may actually assist 
in determining key more quickly and accurately. Firstly, 
octave imprecision is not a relevant issue in key finding. 
Secondly, pitches that belong to the same key are close to each 
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other in the Spiral Array model. These pitches also tend to 
form the strongest harmonics of a tone. Since the CEG 
algorithm generates a center of effect (CE) from pitch 
information and determines the key by a nearest neighbor 
search, the key recognition procedure is not affected by octave 
displacement, nor is it strongly affected by the addition of 
harmonics.  
    In this paper, we propose a heuristic peak selection 
algorithm to determine pitch class and pitch strength 
information from a standard FFT. Approaches that use 
sophisticated signal processing methods to precisely identify 
each pitch in an excerpt have been proposed in the literature 
[12][13][14][15]. To reduce the computational complexity of 
exact pitch detection, Tolonen and Karjalainen built a two-
channel model [19]. Instead of using signal processing 
methods alone to improve the correctness of pitch estimation, 
Szczerba & Czyzewski [17] added a neural network module 
for pitch prediction. Another approach based on neural 
network proposed by Dziubinski & Kostek [8] reduced the 
octave and harmonic errors to build an octave immune pitch 
detection system. The approach which has the highest correct 
rate reported so far was proposed by Abdallah and Plumbley 
[1]. They used a probabilistic model to transcribe a live 
recording of Bach’s Fugue in G-minor No. 16, with only one 
note error for the first nine and a half bars. Research for 
extracting every single pitch in audio improves the correct 
pitch detection rate by eliminating the harmonic and octave 
errors. However, these information may benefit key 
determination either by emphasizing the root pitch or by 
constructing the stronger harmonics of a tone. 
    We use the CEG algorithm proposed by Chew [2][3] to 
determine key from pitch class and strength information. 
Other researchers have proposed solutions to the key finding 
problem. In 1971, Longuet-Higgins & Steedman [11] 
proposed an algorithm that used the Harmonic Network, a 
two-dimensional array representing salient pitch relations, to 
differentiate between major and minor keys by shape mapping. 
In 1986, Krumhansl & Schmuckler developed a widely 
accepted model called the probe tone profile method 
(henceforth referred to as the K-S method), which constructs 
pitch class profiles for major and minor keys by using user 
ratings from probe tone experiments. By calculating the 
correlations among the pitch information and the template key 
profiles, the key is determined as the one with the highest 
correlation value. In 1999, Temperley [18] improved upon the 
K-S method by modifying the key profiles to emphasize the 
differences between diatonic and chromatic scales. Temperley 
also adjusted the weights of the forth and seventh pitches so as 
to differentiate the keys which have highly similar pitch class 
signatures. These approaches have been used in numerous 
key-findings projects. 
    The rest of the paper is organized as follows. Section 2 
explains the pitch detection method and the CEG algorithm 
using the Spiral Array model. Section 3 describes the 
evaluation experiments and presents the key finding results for 
the CEG algorithm, K-S method, and Temperley’s improved 
K-S method. Discussions and conclusions follow in Section 4. 
 

2. The CEG Algorithm for Audio Key Finding 
In this section, we present an O(n) algorithm to determine 

the key from polyphonic audio based on the CEG algorithm. 
The sequence of actions is depicted graphically in Figure 1. 
The method consists of two stages – pitch detection and key 
finding. The pitch detection part is responsible for recognizing 
and transforming polyphonic audio into pitch class and pitch 
strength information. The key finding part uses the Spiral 
Array CEG algorithm to generate the key. Both stages are 
described in Sections 2.1 and 2.2 respectively. 

2.1 Pitch Detection 
We use the standard FFT to generate the frequency 

spectrum that gives pitch class and strength information (see 
Figure 2). Relations between pitches are reflected on the 
logarithmic scale in frequency, and a range of frequencies 
maps to each pitch. The midpoints between adjacent reference 
frequencies [21] act as the boundaries for the frequency bands 
of each pitch. We limit the frequency range to be from 32 Hz 
(C1) to 1975 Hz (B6). We select 0.37 seconds as our sampling 
interval because harmonics produce negligible effects at this 
sampling size. The information we obtained after performing 
an FFT is a collection of frequency peaks as shown in the 
example in Figure 2(b). Due to the limited resolution of FFT, 
numerous local maxima may be found within a pitch 
frequency band. We employ a heuristic peak selection 
algorithm to determine the pitch classes present and their 
relative strength.  

Our Local Maximum Selection method for peak selection is 
based on the following assumptions: (1) a peak value is 
defined as one that is larger than the average value to its left in 
the frequency band and that to its right; and (2) within each 
pitch frequency band, at most one peak value (the highest one) 
can exist.   

We map the peak values into 12 pitch classes with the 
distance of one semitone between adjacent pitches. This 
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Figure 2. A polyphonic audio sample (a chord with 6 pitches played
simultaneously) is shown in wave format (a) in the time domain and (b) in
the frequency domain after an FFT. 

(a) Wave
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mapping procedure results in pitch strength quantities for each 
pitch class. The mapping is designed for key finding purposes 
and octave relationships are ignored as they do not affect the 
key. Hence, we sum the peak values for all frequency bands 
related by octaves to obtain the pitch strength value for a pitch 
class. The pitch strength values are normalized by first 
dividing by the largest value, then by the sum of all values. A 
visual representation of pitch class and strength is shown in 
Figure 3(a). The pitch with larger strength is shown in darker 
color. Details of the procedure are outlined in Table 1. 

2.2 The Spiral Array Model and Pitch Strength Weighted 
CEG Key Finding Algorithm 

The Spiral Array Model, proposed by Chew in 2000, is a 3-
dimensional model that represents pitches, intervals, chords 
and keys in the same three-dimensional space for easy 
comparison. On the Spiral Array, pitches are represented as 
points on a helix, and adjacent pitches are related by intervals 
of perfect fifths, while vertical neighbors are related by major 
thirds as shown in Figure 3(b). Central to the Spiral Array is 
the idea of the center of effect (CE), the representing of tonal 
objects as the weighted sum of their lower level components. 
The details for constructing the nested spirals in the model are 
given in [2] and [3].  

In the Center of Effect Generator (CEG) algorithm, key 
selection is performed by a nearest neighbor search in the 
Spiral Array space as shown in Figure 4.  Instead of using the 
relative pitch durations as the CE weights, we use the 
normalized pitch strengths to generate the CE. For example, 
Figure 3(c) shows the CE of three pitches {F, A, and E}, 

weighted by their pitch strengths. In order to map numeric 
pitch classes to their appropriate pitch names in the Spiral 
Array, we use the pitch spelling method described in [4] and 
[5]. The key finding process is described in Table 2.  
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For each frequency spectrum obtained from a 0.37 second segment: 
1. For each frequency band:  

(1) scan from low-to-high frequencies to find the peak value s.t. 
this value is larger than the average value to its left and the 
average value to its right; and, 

(2) if more than one peak is found, choose the highest peak value.
2. For each pitch class, k, its strength at time j, Fjk, is the sum of all 

peak values for that frequency band and others related by octaves.
3. Normalize step 1: divide all pitch strength values by the largest one

. 

4. Normalize step 2: divide all pitch strength values by their sum 

. 

Figure 4. The Center of Effect Generator (CEG) algorithm performs a
nearest-neighbor search in the Spiral Array model. 

Table 2. Method for Determining Key  

For pitch class and strength information from each 0.37 second segment:
1. Assign pitch names to pitch classes (pitch spelling): 

(1) generate CE for previous 5 seconds (or part thereof); and, 
(2) assign pitch names to current pitch classes by nearest neighbor

search in Spiral Array space . 
2. Determine key:  

(1) generate the cumulative CE from beginning to current point 

 , 

 where Pk is the position of pitch class k; then, 
(2) perform nearest-neighbor search to find closest key. 

CEG algorithm has been implemented successfully in a 
real-time application, MuSA.RT [6], which presents 
opportunities for an alternate input modality (audio rather than 
MIDI) and pre-processing method (approximate pitch 
detection). 
2.3 Comparisons with Other Methods 

We also implement the K-S method and Temperley’s 
modified K-S method to examine the performance of CEG 
algorithm. In the K-S and modified K-S methods, each key is 
represented by a unique numerical key profile. Key finding is 
done by correlating the duration profile of the pitch classes 
with the key templates. The template with the highest 
correlation is chosen as the key. The key profiles for K-S 
method and Temperley’s (T) method are shown in Figure 5, 
where the x-axis shows the number of half steps from the 
tonal center and the y-axis shows the average ratings. 
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3. Evaluation Results 
To evaluate the key finding system, we choose Mozart’s 

symphonies. The test set consists of a total of 61 files 

Figure 5. Key profiles for K-S and Temperley’s methods. 
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Figure 3. (a) and (b) illustrate the procedure of mapping pitch strengths
onto Spiral Array model and (c) calculates the Center of Effect (CE) by
pitch strength weighted formula in (1). 



representing renditions of 28 symphonies by Mozart. Details 
of the symphonies represented are listed in Table 3. The 
symphonies were obtained from www.classicalarchives.com. 
The key of each symphony is stated explicitly in its title. 
Furthermore, the symphony is a composition for orchestra, 
containing sounds from a wide variety of acoustic instruments. 
A typical symphony contains multiple movements in different 
tempi and keys. The first movement is often cast in sonata 
form, in which the music departs from and returns to the main 
key. The second and third movements are frequently in related 
keys while the last movement would return to the home key. 
For these reasons, we use only the first fifteen seconds of the 
first movements so that the test samples are likely to remain in 
the stated key for the entire duration of the sample. 

Table 3. The Mozart Symphonies  
* Uppercase letter names represent major keys and lowercase minor keys. 

Symphony # 1 4 5 6 7 9 11 14 16 17 20 22 25 27
Key Eb D Bb F D C D A C G D C g G

Versions 1 1 1 1 1 1 1 1 1 1 1 2 3 1

Symphony # 28 29 30 31 32 33 34 35 36 37 38 39 40 41
Key C A D D G Bb C D C G D Eb g C

Versions 1 3 3 2 1 1 2 4 3 1 5 3 7 8

First, we transform the MIDI files into wave format and run 
the pitch detection method every 0.37 seconds to obtain the 
cumulative pitch class and strength information. We use this 
same pitch information as the input to the CEG algorithm, the 
K-S method, and Temperley’s improved K-S method. The 
results at each 0.37 second time chunk are shown in Figure 6. 
An answer is considered to be wrong if the algorithm’s choice 
of key is different from the stated one. 

Compared to the K-S and modified K-S methods, the pitch 
strength weighted CEG algorithm consistently achieves the 
best results for the Mozart test set throughout the fifteen 
second segments. As shown in Figure 6, the correct rate 
exceeds 90% within the first three seconds and maintains a 
rate of over 90% from 7.5 to 12 seconds. The best overall 
result, 96% correct, is achieved 8 seconds into the pieces. In 
contrast, the correct rates for the K-S model and Temperley’s 
improved K-S method are under 50% within the first three 
seconds; the results improve over time to reach optima of 80% 
and 87% at 11 seconds and 14 seconds respectively. 
4. Discussion and Conclusions 

We have presented an O(n) real-time algorithm for 
determining key from polyphonic audio.  The algorithm uses a 

local maxima selection method to determine pitch class and 
strength from FFT results coupled with key finding using the 
Spiral Array CEG method. The FFT and local maxima 
selection method produced pitch class information reinforced 
by natural harmonics of the tones present. The system shows 
promising results when tested on Mozart’s Symphonies, with 
the CEG algorithm performing better than the K-S and 
modified K-S methods. Future work includes testing the 
system on a larger and more varied corpus of music, 
conducting further experiments to determine the effect of pitch 
class information reinforced by harmonics, and exploring 
ways to bias the pitch detection process to benefit key finding. 
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