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Abstract

Key finding is an integral step in content-based music indexing and
retrieval. In this paper, we present an O(n) real-time algorithm for
determining key from polyphonic audio. We use the standard Fast
Fourier Transform with a local maximum detection scheme to extract
pitches and pitch strengths from polyphonic audio. Next, we use
Chew’s Spiral Array Center of Effect Generator (CEG) algorithm to
determine the key from pitch strength information. We test the
proposed system using Mozart’s Symphonies. The test data is audio
generated from MIDI source. The algorithm achieves a maximum
correct key recognition rate of 96% within the first fifteen seconds,
and exceeds 90% within the first three seconds. Starting from the
extracted pitch strength information, we compare the CEG
algorithm’s performance to the classic Krumhansl-Schmuckler (K-S)
probe tone profile method and Temperley’s modified version of the
K-S method. Correct key recognition rates for the K-S and modified
K-S methods remain under 50% in the first three seconds, with
maximum values of 80% and 87% respectively within the first fifteen
seconds for the same test set. The CEG method consistently scores
higher throughout the fifteen-second selections.

1. Introduction and Background

In tonal music, the relations among pitches that generate the
key constitute one of the main features of a melody. Having
the key information will be valuable for content-based music
indexing and retrieval. In this paper we propose a method for
extracting tonal features from polyphonic audio in real time.
Using the pitch class and pitch strength information from the
standard Fast Fourier Transform (FFT), the Spiral Array
Center of Effect Generator (CEG) (see [2][3]) algorithm
generates the key and returns the key name in a completely
automatic fashion. Our choice of the CEG algorithm is distinct
from existing approaches which typically use Krumhansl &
Schmuckler’s (K-S’s) [10] probe tone profile method. We
choose the CEG method for several reasons. The Spiral Array
is a hierarchical model that represents pitches, intervals,
chords, and keys within a single spatial framework, allowing
for comparisons and analyses of tonal structures for multiple
purposes. The CEG algorithm performs an efficient nearest-
neighbor search for the closet key in the 3-dimensional Spiral
Array model. The Spiral Array model offers ways to solve the
pitch-spelling problem efficiently (see[4][5][6]), which
provides us with the capability to determine the key
completely automatically. The CEG algorithm has also been
shown to perform better in differentiating keys with similar
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pitch classes than other methods [3]. We extend the CEG
algorithm from key finding using symbolic data to key finding
from polyphonic audio. With the pitch class and pitch
strength information generated by the standard FFT, we show
that the CEG algorithm provides a correct rate of over 90%
within the first three seconds, and achieves a maximum
correct rate of 96%, when tested on 61 audio samples of
Mozart’s symphonies. For comparison, we also feed the same
pitch class and strength information to the K-S method and
Temperley’s modified version of the K-S method [18]. The K-
S and improved K-S methods provide results of less than 50%
in the first three seconds and reach maxima of 80% and 87%
respectively.

Related work in audio tonal description includes approaches
proposed by Gomez & Herrera [9] and Pauws [14]. Both
approaches use the standard FFT as the basis for their pitch
detection methods and the K-S method for key finding.
Gomez & Herrera used three times the traditional resolution of
the pitch frequency spectrum of the FFT method for pitch
detection. They used a Harmonic Pitch Class Profile as input
to the K-S method to find the key. Pauws incorporated rules
for avoiding noise and emphasizing pitch loudness, and
applied the K-S method to generate the key. Gomez & Herrera
reported an 84% correct key detection rate among 878
excerpts of classical music. Pauws used 237 classical piano
sonatas as the test set and his method returned a result of
59.1% within 5 seconds, and reached the maximum of 72.2%
within 30 seconds. Also a form of tonal description, but
stopping short of determining key, Tzanetakis, Ermolinskyi,
and Cook [7] generated pitch histograms in audio and
symbolic music for information retrieval and genre
classification.

Some pitch detection method must first be applied to extract
pitches from polyphonic audio in order to find the key of any
acoustic music excerpt, including a live performance, a CD or
a tape recording. Most algorithms for pitch detection are
designed to extract precisely every pitch present and none
others. We hypothesize that such exact pitch detection may
not be necessary for key finding using the CEG algorithm, and
that pitch information from the harmonics may actually assist
in determining key more quickly and accurately. Firstly,
octave imprecision is not a relevant issue in key finding.
Secondly, pitches that belong to the same key are close to each



other in the Spiral Array model. These pitches also tend to
form the strongest harmonics of a tone. Since the CEG
algorithm generates a center of effect (CE) from pitch
information and determines the key by a nearest neighbor
search, the key recognition procedure is not affected by octave
displacement, nor is it strongly affected by the addition of
harmonics.

In this paper, we propose a heuristic peak selection
algorithm to determine pitch class and pitch strength
information from a standard FFT. Approaches that use
sophisticated signal processing methods to precisely identify
each pitch in an excerpt have been proposed in the literature
[12][13][14][15]. To reduce the computational complexity of
exact pitch detection, Tolonen and Karjalainen built a two-
channel model [19]. Instead of using signal processing
methods alone to improve the correctness of pitch estimation,
Szczerba & Czyzewski [17] added a neural network module
for pitch prediction. Another approach based on neural
network proposed by Dziubinski & Kostek [8] reduced the
octave and harmonic errors to build an octave immune pitch
detection system. The approach which has the highest correct
rate reported so far was proposed by Abdallah and Plumbley
[1]. They used a probabilistic model to transcribe a live
recording of Bach’s Fugue in G-minor No. 16, with only one
note error for the first nine and a half bars. Research for
extracting every single pitch in audio improves the correct
pitch detection rate by eliminating the harmonic and octave
errors. However, these information may benefit key
determination either by emphasizing the root pitch or by
constructing the stronger harmonics of a tone.

We use the CEG algorithm proposed by Chew [2][3] to
determine key from pitch class and strength information.
Other researchers have proposed solutions to the key finding
problem. In 1971, Longuet-Higgins & Steedman [11]
proposed an algorithm that used the Harmonic Network, a
two-dimensional array representing salient pitch relations, to

differentiate between major and minor keys by shape mapping.

In 1986, Krumhansl & Schmuckler developed a widely
accepted model called the probe tone profile method
(henceforth referred to as the K-S method), which constructs
pitch class profiles for major and minor keys by using user
ratings from probe tone experiments. By calculating the
correlations among the pitch information and the template key
profiles, the key is determined as the one with the highest
correlation value. In 1999, Temperley [18] improved upon the
K-S method by modifying the key profiles to emphasize the
differences between diatonic and chromatic scales. Temperley
also adjusted the weights of the forth and seventh pitches so as
to differentiate the keys which have highly similar pitch class
signatures. These approaches have been used in numerous
key-findings projects.

The rest of the paper is organized as follows. Section 2
explains the pitch detection method and the CEG algorithm
using the Spiral Array model. Section 3 describes the
evaluation experiments and presents the key finding results for
the CEG algorithm, K-S method, and Temperley’s improved
K-S method. Discussions and conclusions follow in Section 4.

2. The CEG Algorithm for Audio Key Finding

In this section, we present an O(n) algorithm to determine
the key from polyphonic audio based on the CEG algorithm.
The sequence of actions is depicted graphically in Figure 1.
The method consists of two stages — pitch detection and key
finding. The pitch detection part is responsible for recognizing
and transforming polyphonic audio into pitch class and pitch
strength information. The key finding part uses the Spiral
Array CEG algorithm to generate the key. Both stages are
described in Sections 2.1 and 2.2 respectively.
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Figure 1. The system contains two main parts: Pitch Detection and Spiral
Array Model with CEG key finding algorithm.

2.1 Pitch Detection

We use the standard FFT to generate the frequency
spectrum that gives pitch class and strength information (see
Figure 2). Relations between pitches are reflected on the
logarithmic scale in frequency, and a range of frequencies
maps to each pitch. The midpoints between adjacent reference
frequencies [21] act as the boundaries for the frequency bands
of each pitch. We limit the frequency range to be from 32 Hz
(C1) to 1975 Hz (B6). We select 0.37 seconds as our sampling
interval because harmonics produce negligible effects at this
sampling size. The information we obtained after performing
an FFT is a collection of frequency peaks as shown in the
example in Figure 2(b). Due to the limited resolution of FFT,
numerous local maxima may be found within a pitch
frequency band. We employ a heuristic peak selection
algorithm to determine the pitch classes present and their
relative strength.

Our Local Maximum Selection method for peak selection is
based on the following assumptions: (1) a peak value is
defined as one that is larger than the average value to its left in
the frequency band and that to its right; and (2) within each
pitch frequency band, at most one peak value (the highest one)
can exist.

We map the peak values into 12 pitch classes with the
distance of one semitone between adjacent pitches. This
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Figure 2. A polyphonic audio sample (a chord with 6 pitches played
simultaneously) is shown in wave format (a) in the time domain and (b) in
the frequency domain after an FFT.



mapping procedure results in pitch strength quantities for each
pitch class. The mapping is designed for key finding purposes
and octave relationships are ignored as they do not affect the
key. Hence, we sum the peak values for all frequency bands
related by octaves to obtain the pitch strength value for a pitch
class. The pitch strength values are normalized by first
dividing by the largest value, then by the sum of all values. A
visual representation of pitch class and strength is shown in
Figure 3(a). The pitch with larger strength is shown in darker
color. Details of the procedure are outlined in Table 1.

Table 1. Algorithm for extracting Pitch Class and Strength

For each frequency spectrum obtained from a 0.37 second segment:
1. For each frequency band:

(1) scan from low-to-high frequencies to find the peak value s.t.
this value is larger than the average value to its left and the
average value to its right; and,

(2) if more than one peak is found, choose the highest peak value.

2. For each pitch class, k, its strength at time j, Fj, is the sum of all
peak values for that frequency band and others related by octaves.
3. Normalize step 1: divide all pitch strength values by the largest one
Fjk
Fjk = ———,
max j { Fjk }
4. Normalize step 2: divide all pitch strength values by their sum
11
2 Fjk
j=0

where k£ =0,...,11.

Fjk = Fjk where k£ = 0,...,11.

2.2 The Spiral Array Model and Pitch Strength Weighted
CEG Key Finding Algorithm

The Spiral Array Model, proposed by Chew in 2000, is a 3-
dimensional model that represents pitches, intervals, chords
and keys in the same three-dimensional space for easy
comparison. On the Spiral Array, pitches are represented as
points on a helix, and adjacent pitches are related by intervals
of perfect fifths, while vertical neighbors are related by major
thirds as shown in Figure 3(b). Central to the Spiral Array is
the idea of the center of effect (CE), the representing of tonal
objects as the weighted sum of their lower level components.
The details for constructing the nested spirals in the model are
given in [2] and [3].

In the Center of Effect Generator (CEG) algorithm, key
selection is performed by a nearest neighbor search in the
Spiral Array space as shown in Figure 4. Instead of using the
relative pitch durations as the CE weights, we use the
normalized pitch strengths to generate the CE. For example,
Figure 3(c) shows the CE of three pitches {F, A, and E},
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Figure 3. (a) and (b) illustrate the procedure of mapping pitch strengths
onto Spiral Array model and (c) calculates the Center of Effect (CE) by
pitch strength weighted formula in (1).

weighted by their pitch strengths. In order to map numeric
pitch classes to their appropriate pitch names in the Spiral
Array, we use the pitch spelling method described in [4] and
[5]. The key finding process is described in Table 2.
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Figure 4. The Center of Effect Generator (CEG) algorithm performs a
nearest-neighbor search in the Spiral Array model.

Table 2. Method for Determining Key

For pitch class and strength information from each 0.37 second segment:
1. Assign pitch names to pitch classes (pitch spelling):
(1) generate CE for previous 5 seconds (or part thereof); and,
(2) assign pitch names to current pitch classes by nearest neighbor
search in Spiral Array space .
2. Determine key:
(1) generate the cumulative CE from beginning to current point
i 12 Fjk * Pk
z X —,
Jj=lk=l1 i
where Pk is the position of pitch class k; then,
(2) perform nearest-neighbor search to find closest key.

CE(1,i) =

CEG algorithm has been implemented successfully in a
real-time application, MuSA.RT [6], which presents
opportunities for an alternate input modality (audio rather than
MIDI) and pre-processing method (approximate pitch
detection).

2.3 Comparisons with Other Methods

We also implement the K-S method and Temperley’s
modified K-S method to examine the performance of CEG
algorithm. In the K-S and modified K-S methods, each key is
represented by a unique numerical key profile. Key finding is
done by correlating the duration profile of the pitch classes
with the key templates. The template with the highest
correlation is chosen as the key. The key profiles for K-S
method and Temperley’s (T) method are shown in Figure 5,
where the x-axis shows the number of half steps from the
tonal center and the y-axis shows the average ratings.
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Figure 5. Key profiles for K-S and Temperley’s methods.

3. Evaluation Results
To evaluate the key finding system, we choose Mozart’s
symphonies. The test set consists of a total of 61 files



representing renditions of 28 symphonies by Mozart. Details
of the symphonies represented are listed in Table 3. The
symphonies were obtained from www.classicalarchives.com.
The key of each symphony is stated explicitly in its title.
Furthermore, the symphony is a composition for orchestra,
containing sounds from a wide variety of acoustic instruments.
A typical symphony contains multiple movements in different
tempi and keys. The first movement is often cast in sonata
form, in which the music departs from and returns to the main
key. The second and third movements are frequently in related
keys while the last movement would return to the home key.
For these reasons, we use only the first fifteen seconds of the
first movements so that the test samples are likely to remain in
the stated key for the entire duration of the sample.
Table 3. The Mozart Symphonies

* Uppercase letter names represent major keys and lowercase minor keys.
Symphony #{ 1 [4| 5 |6|7|9[11|14|16]| 17 [20]22(25]|27

Key Eb|D|Bb|F|ID|IC{D|A|C|G|D|C|g|G
Versions | 1 [1| 1 [1|1|1|1]1]|1]|1 |1|2]|3]]1
Symphony #|28(29(30{31(32|33|34|35(36|37|38|39|40|41
Key C|A|D|D|G|Bb|C|D|C|G|D|Eb|g
Versions | 1|3 |3 |21 |1 ]|2(4|3|1|5]|3|7]8

First, we transform the MIDI files into wave format and run
the pitch detection method every 0.37 seconds to obtain the
cumulative pitch class and strength information. We use this
same pitch information as the input to the CEG algorithm, the
K-S method, and Temperley’s improved K-S method. The
results at each 0.37 second time chunk are shown in Figure 6.
An answer is considered to be wrong if the algorithm’s choice
of key is different from the stated one.
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Figure 6. The comparison results of CEG algorithm, K-S method, and
Temperlev’s impnroved K-S methods with Mozart svmnhonies.

Compared to the K-S and modified K-S methods, the pitch
strength weighted CEG algorithm consistently achieves the
best results for the Mozart test set throughout the fifteen
second segments. As shown in Figure 6, the correct rate
exceeds 90% within the first three seconds and maintains a
rate of over 90% from 7.5 to 12 seconds. The best overall
result, 96% correct, is achieved 8 seconds into the pieces. In
contrast, the correct rates for the K-S model and Temperley’s
improved K-S method are under 50% within the first three
seconds; the results improve over time to reach optima of 80%
and 87% at 11 seconds and 14 seconds respectively.

4. Discussion and Conclusions

We have presented an O(n) real-time algorithm for
determining key from polyphonic audio. The algorithm uses a

local maxima selection method to determine pitch class and
strength from FFT results coupled with key finding using the
Spiral Array CEG method. The FFT and local maxima
selection method produced pitch class information reinforced
by natural harmonics of the tones present. The system shows
promising results when tested on Mozart’s Symphonies, with
the CEG algorithm performing better than the K-S and
modified K-S methods. Future work includes testing the
system on a larger and more varied corpus of music,
conducting further experiments to determine the effect of pitch
class information reinforced by harmonics, and exploring
ways to bias the pitch detection process to benefit key finding.
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