

Abstract—Current micro-architecture blindly uses the address

in the program counter to fetch and execute instructions without
validating its legitimacy. Whenever this blind-folded instruction
sequencing is not properly addressed at a higher level by system,
it becomes a vulnerability of control data attacks, today's
dominant and most critical security threats. To remedy it, this
paper proposes a micro-architectural mechanism to validate
control flow transfer at run-time at machine instruction level. It is
proposed to have a hardware table consisting of legitimate
indirect branches and their target pairs (IBPs) to aid the
validation. The IBP table is implemented in the form of a
cascading Bloom filter to store the security information as well as
to enable fast validating. Based on a key observation that branch
prediction unit existing in most speculative-execution processors
already provides a portion of the control flow validation, our
scheme activates the validation only on indirect branch
mis-predictions. Because of the Bloom filter and the rarity of
mis-predictions of indirect branches, the validation incurs
moderate storage overhead and little performance penalty.

I. INTRODUCTION
xploiting program vulnerabilities becomes great threats to
modern information infrastructure. Under the current

software and hardware interface, most malicious attacks try to
take over the control of a victim computer system by changing
the program control flow. This can be done only by
compromising the control data to re-point the processor's
program counter (PC) to the attacker's way. Control data are the
data that could be loaded into the PC and can be dynamically
generated and changed at run-time. It includes the return
addresses in the stack, the function pointer variables, and
special data structures for non-local jumps (e.g.
setjump/longjmp buffer), etc. Attackers exploit the
vulnerabilities such as buffer overflow[18], format string
vulnerability[19], heap corruption, and double free bugs [17],
integer overflow[3] to change the control data. With the control
data altered to the attacker's way, the attacker can perform any
operations that the victim program has permission to do.
Reports from CERT[6] show that control data attacks are
dominant and the most critical security threats today.

Control data attacks typically break "normal" control flow

but still follow the instructions' semantics without explicitly
violating any security polices. This makes traditional measures
such as access control or data/code encryption alone hard to
prevent the control data attacks. Recently, hardware-based
schemes that track and protect the control data directly are
proposed[7][9][15][22][23]. However, identifying and tracking
control data are generally difficult to implement correctly due
to their dynamic nature and aliasing. Many model-based
anomaly detection approaches[10][11] are suggested also.
These methods use some specific run-time information, e.g.
system call sequence, to approximate the program behavior
indirectly. Their effectiveness, however, often suffers from the
inaccurate information being monitored and large performance
and/or memory overhead.

This paper introduces a novel idea of protecting program
control flow at micro-architecture. We propose to validate
every control flow transfer in the instructional level at the
moment a taken branch is about to update the program counter.
We focus the validation range down into each indirect branch
because only the targets of indirect branches can be
dynamically changed and can be potentially overwritten
through exploitations from an attacker. A set of legitimate
indirect branches and their targets stored in a hardware table is
employed to validate each control flow transfer. To overcome
the overflow problem caused by the limited capacity of a
hardware table as well as enable fast validation, a Bloom filter
storing the security information is proposed to be incorporated
into the processor's pipeline. We further detail a validation unit
that cascades several small Bloom filters to minimize the
inherent false positive rate. Finally, we find that the validation
can safely be activated only on a branch mis-prediction in
architecture, resulting in lower performance degradation than
otherwise possible

The next section describes the motivation and our validation
method on control flow transfer. Section 3 shows how to design
a Bloom filter in a cascading fashion to facilitate the protection.
Section 4 illustrates the way to reduce validation times and
depicts the architectural modifications. Section 5 evaluates the
performance impact. Section 6 presents related works and a
comparison of our scheme to existing security solutions and we
conclude the paper in section 7.

Architectural Support for Run-Time Validation
of Control Flow Transfer

Yixin Shi, Sean Dempsey, Gyungho Lee

Department of Electrical and Computer Engineering
University of Illinois at Chicago, Chicago, IL 60607

{yshi7, sdemp1}@uic.edu, ghlee@ece.uic.edu

E

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

II. PROTECTING CONTROL FLOW TRANSFER
To successfully launch a control data attack, an attacker has

to 1) inject malicious inputs, 2) overwrite the control data by
exploiting buffer overflow bugs or format string vulnerabilities
or through other means, and 3) execute the tampered control
flow transfer instructions and eventually run the malicious code.
Many measures have been proposed to intercept the attack in
each of the steps above. To stop the attacks in step 1 or 2, one
has to identify, protect, and track every control datum perfectly,
which is very difficult, if not impossible. Instead, we propose to
insert a checking and validation mechanism at
micro-architectural level in step 3 for every control flow
transfer instruction.

A. Control Flow Graph and Control Data Attack Scenarios
 An example program that is vulnerable to control data attacks
and its control flow graph (CFG) are shown in Fig-1. The nodes
representing in ◎ are indirect branches, which could be a return
(e.g. I1 and I2) or a non-return indirect jump (e.g. I3). Assume
that f1() contains a buffer overflow vulnerability and f4() has a
format string vulnerability while the function pointer variable,
fp, is also subject to be overwritten maliciously. The control
data attacks exploit these vulnerabilities to overwrite the return
address or function pointer variables. It is the ultimate
executions of the compromised indirect branches that deviate
program execution from the normal behavior. As a result, a new
node will be inserted and/or a completely new execution path is
created in CFG (e.g. I1->X->Y, I2->Y after overwriting return
address of f1 or f4). Or a new execution path is generated to
bridge two nodes which previously do not have any control
flow between them (e.g. I3->Z after compromising the function
pointer fp).

B. Validating Indirect Branches
A natural solution to prevent the control data attack is to

monitor program execution to ensure that it conforms to a
pre-defined specification of its intended behavior[14] or use a
model-based solution to monitor other indirect events such as
system call sequence[10][11][24]. However, extracting the

exact static control flow information is very hard and incurs
tremendous space or run-time overhead to be practical. Rather
than finding a solution from a high level of application source
code or even behavior specification, our architectural solution
focuses on each individual instruction at run-time. In the
current processors, control flow tracking at machine instruction
level is blindfolded without validity check. Processors blindly
follow the program counter to fetch and execute instructions.
We believe this a fundamental flaw in hardware that causes the
endless chase of software vulnerability, its exploitation, and its
patch. To rectify this, control flow validation should be done at
the machine instruction level.

At instruction level, high-level descriptions of control flow
transfers are ultimately translated into direct branches and
indirect branches in binary code. The target of a direct branch is
typically determined by the compiler and it points to one single
location wired in the instruction bits. In practice, there exist, but
very rare, cases that an attacker can compromise the decision of
a direct branch and perform intended malicious operations in
the pre-determined execution path in order to hijack the system.
Instead, most existing control data attacks[6] seek to
compromise the target of an indirect branch. We observed that
the target of an indirect branch is often allocated dynamically in
the data area of the program’s address space, and an attacker
can manage to overwrite it by exploiting memory corruptions
techniques mentioned in the introduction part. Later execution
of the compromised indirect branch gives the attacker great
flexibility to re-point the control flow to any appropriate
location he desires (e.g. the entry address of exec() or system()
in Fig-1). Hence, any control flow transfer by an indirect jump
should be validated before the architecture actually uses it.

To define a control flow transfer by an indirect branch in
CFG, we are concerned with two pieces of information. One is
the location of the indirect branch or the branch site (BPC) and
the other is the target address (TPC). A validation of both the
branch site and the target ensures that any indirect branch is
always from a legitimate branch site and to a legitimate
destination. This is necessary because such a validation not
only prevents control flow from transferring to an unintended

int main(argc, argv)
{
 int (*fp)();
char buf[];

 if (…) { f1(); fp = f4;}
 else
 {f2();f3(); f1(); fp= f5;}
 strcpy(buf,…);

(*fp)(argv);
if () else();
system();

}

f1() {
char buf[];
strcpy(buf,argv..);
}

f4() {
printf(argv);
};

f2()

f3 ()

f4 ()

f5 ()

f1 ()

◎
I2

X

 Y

Z

system ()
exec (/bin/sh)

◎

B

A

C

D

◎I6

E

I3

◎
I1

◎
I4

◎

◎
I5

Normal control flow

Possible execution path
under control data attack
◎ : Indirect branches

Normal control flow
transfer by indirect
branch

Fig-1. A vulnerable program with possible attacking scenarios.

destination but also enables intercepting jumps heading to a
legitimate target but from an illegal source site (e.g.
return-to-libc attacks). We pair BPC and TPC together, denoted
as BPC||TPC (branch's PC and target PC), and call it an Indirect
Branch Pair (IBP). Each indirect branch can have multiple
targets thereby may have more than one IBP. By introducing
the IBPs, we effectively apply a new constraint on the targets of
each indirect branch such that it can only use a limited number
of validated values. This greatly reduces the chance that an
attacker can redirect the control flow to a new execution path
that originally does not exist in the program.

The control flow validation is performed by checking against
an IBP table, proposed as a hardware component for a
collection of all the legitimate IBPs in a program, at each
indirect branch. It represents “normal” behavior and provides a
reference to check if software starts to behave abnormally. At
run-time, any encountered IBP that fails to match any of the
target addresses in the IBP table will cause the processor to
raise a hardware exception. The exception is captured by the
operating system (OS) and the OS may simply halt the
execution and issue an alert to the administrator to take further
actions. For example, the CFG in Fig-1 has a legitimate IBP
table of {I1||A, I1||B, I2||G, I6||G, I3||C, I3||D, I4||E, I5||F}.
Suppose due to a control data attack, a control flow transfer
from I1 to X is invoked. A validation on the corresponding IBP
(I1||X) will produce a mis-match and this transfer can be
intercepted.

C. Training IBP table
There are basically two ways to fill up the IBP table with

legitimate IBPs. One is through static or run-time analysis. We
may extract the legitimate IBPs from the existing execution
trace of legacy code offline. Or, the linker and loader can help
find legitimate targets of branches when they patch the program
with absolute addresses. Also, during the software testing and
development phase, the test cases being used should cover most,
if not all, possible execution paths for each branch; therefore an
IBP table can be generated as a side product.

0
1000
2000
3000
4000
5000
6000
7000
8000

18
9

37
3

55
4

73
8

91
9

11
03

12
84

14
68

16
50

18
34

20
15

Num of indirect Branchs executed (in thousands)

IBP number

Fig-2. The number of unique IBPs against indirect branches that

have been executed. Each data point is an additional workload.

The second way to initialize the IBP table is to perform
"training" as many model-based solutions have done
[10][11][25]. By running the application either in a particular
time interval or until the unique IBPs converges in a secure
environment, the processor can regard all seen IBPs as
legitimate ones. We test IBP convergence of an Apache server

on Red Hat Linux 7.3 over Simics[16], an IA-32 emulator. We
generate both static and dynamic loads from a remote machines
while colleting the addresses of the indirect branches and
targets on the simulated machine. Fig-2 shows that the number
of IBPs does converge quickly.

III. THE IBP TABLE DESIGN USING BLOOM FILTERS

A. Analysis of Indirect Branch Characteristics
To study the indirect branch characteristics in applications,

we have profiled indirect branches and their targets or IBPs of
SPEC2000 benchmarks. The Alpha binaries of the benchmarks
with reference inputs are simulated completely in sim-profile, a
simulator in Simplescalar[1]. We also studied two real
applications, Apache 1.3.27-8, and sshd, running over Simics.
Table-1 shows that the number of IBPs ranges from a several
hundred to 10,000. No excessive number of IBPs is observed
and most programs have a modest number of IBPs around
1,000 except the programs that include many recursive
functions calls.
TABLE-1: UNIQUE INDIRECT BRANCH AND TARGET PAIR (IBP) IN SPEC2000

BENCHMARKS AS WELL AS TWO OTHER APPLICATIONS.

SPEC2000 benchmarks/applications with IBP #

gcc 9624 twolf 1289 mgrid 455 Apache init 4844
perlbmk 4295 vpr 1262 applu 422 main 7325
vortex 3735 apsi 1039 lucas 385 sshd 3656
eon 2416 galgel 964 equake 373
sixtrack 2289 facerec 747 gzip 288
fma3d 1891 wupwise 585 mcf 287
crafty 1675 mesa 547 bzip2 286
gap 1599 ammp 518 art 245
parser 1434 swim 469

We have also measured the maximum number of targets one

indirect branch can have for all benchmarks in SPEC2000. This
metric reflects how many values one single indirect branch may
take as its target.

Maximum number of possible targets

0

100

200

300

400

500

600

gc
c

ap
si ga

p
vo

rte
x

pa
rse

r
cra

fty vp
r

fac
ere

c
bz

ip
ap

plu
sw

im
mgri

d
mcf

Fig-3. The maximum number of possible targets per indirect branch of
SPEC2000 benchmarks.

Fig-3 shows they vary drastically from one benchmark to
another. For example, the maximum number of targets per
branch in lucas is only 10, while some indirect branches in
other benchmarks like gcc, sixtrack, eon, and apsi can have
more than 200 possible targets.

B. Observations
Based on the data shown above, we conclude that the IBP

table should have the following properties: 1) The number of
IBPs ranges significantly between programs, thereby an
adaptive scheme is desirable to minimize the search time and
power consumption. 2) As the maximum IBPs are wildly
varying from program to program, a PC-index table or a flat
IBP table are not preferred. 3) The fixed-sized hardware table
must be able to handle the overflow problem properly.
Discarding legitimate IBPs on overflow is undesirable because
re-collecting the IBPs at run-time is difficult and expensive.
Based on these observations, we propose to utilize a Bloom
filter to accommodate and validate the IBPs.

C. Bloom Filter Basics
A Bloom filter[2] is a space-efficient data structure that is

used to test whether an element is a member of a set. It tries to
answer a query whether in a set S = {x1, x2, …,xn} a given
element x is included or not without actually storing the
elements into the set. The filter is described by a vector of m
bits (initially set to 0) with k independent hash functions with a
range of 0 to m-1.

During the initialization phase, k hash functions are applied
to the input element. Each return value from the hash function
is used as an index to the m-bit vector and that bit position is set
to 1. During the query, the k locations returned by the hash
functions are checked to see if they are already set to ‘1’. If the
bit values in all locations from the hash functions are 1, then the
Bloom filter is said to contain the pattern.

There is a certain chance that x may not be in the set but all its
corresponding bits in the vector happen to have been set to 1 by
other elements inserted before. This “false positive” is
determined by three parameters, namely, the number of hashes
k, the size of bit vector m, and the size of the set represented n.
The probability of a false positive or false positive rate (FPR)
for a Bloom filter is

(1 – (1 – 1/m)kn)k ≈ (1 – e -kn/m)k (1)

For a given m/n, equation (1) is minimized when

k = ln2 × m/n . (2)

D. Storing IBPs into a Bloom filter
Three features of the Bloom filter make it an ideal hardware

implementation to store the security information. First, while
risking false positives, Bloom filter has a strong space
advantage over other data structures for representing sets due to
its compactness from arrays, and its randomizing nature.
Another unusual property is that the time needed to either add
elements or to check whether an element is in the set is a
constant, independent of the number of elements already in the
set. Lastly, the k hash functions are independent and can be
performed in parallel.

We propose to store legitimate IBPs into a Bloom filter and
perform a validation by a membership query. We observe that
unless the Bloom filter is not fully trained with a complete set
of legitimate IBPs, it never gives any false alarms caused by the
limited capacity of the physical structure of the IBP table. This
is because we can always add more IBPs into the Bloom filter
by setting more bits in the bit vector without discarding any

existing information, thus effectively solving the overflow
problem. This advantage, however, comes at the cost of
incurring false positives. Notice that a false positive in this
context means the Bloom filter might report a non-existing IBP
as a legitimate IBP, allowing a possible attack to pass the
checking without being detected. A false positive of a Bloom
filter is translated into a false negative of the system. Therefore
we need carefully devise the filter parameters, i.e. m, k, n, and
the hash functions, to minimize FPR within hardware budget
while not hampering performance too much.
1) Security Analysis of the Bloom filter

To exploit the inherent false positives in the Bloom filter to
launch a successful attack, the attacker has to construct two
proper values that conform to the false positive pattern, one for
the PC that the attacker can succeed to change (maybe through
buffer overflow), and the other for the target address where the
attacker can succeed to put or utilize malicious code. For one
program, the number of the useful IBPs to the attacker that
might lead to a successful exploitation normally is limited.
Given a sufficiently low false positive rate, it is impractical for
an attacker to try many IBPs in order to find one that is useful
and happens to be able to skip the check through a bloom filter.
In this work, we have empirically set a design goal of the FPR
in the order of 1e-6. Considering the fact that the attacker needs
to match a desired PC value with such a false positive case, the
success of an attack seems practically impossible.

2) Hash functions
For our hardware implementation, we choose a simple hash

scheme, named simplehash, which does hashing by shuffling
and xor-ing the bits in the 32-bit PC and the 32-bit target
address as shown in Fig-4. The simulation shows under our
configuration (detailed later), the FPR of this simplified hash
scheme is within the same magnitude order as that of the ideal
case.

Fig-4. One of the Simplehash functions that shuffles PC and xors TPC
to generate a hash result as well as other 4 hashing functions with
different permutation.

Notice that unlike a software implementation, introducing
more hashing functions/logic in hardware does not degrade the
performance because hashing can always be performed in
parallel. However, the bit vector must have more ports to
support simultaneous reads/writes by more hash functions,
which slows the access latency. In addition, hashing and bit
vector accessing are performed independently therefore a

Byte3 Byte2 Byte1 Byte0

Byte3 Byte2 Byte1 Byte0

PC
⊕

TPC

||

Hash result

32-bit Result

Log2(m) bits

bloom filter query can be naturally pipelined into 2 stages in a
fast-clocked processor (see Fig-5).

3) Hardware organization
From Fig-1, we can see that gcc has the most IBPs (~10,000)

in SPEC2000. Assume in the worst case an application has 16K
IBPs (or n = 16K). Also assume a reasonable port number of a
basic Bloom filer is four (k = 4), i.e. one Bloom filter is
associated with four hash functions. According to eq. (2), FPR
is minimized when m is 92K bits. So let us use 128Kbit as the
size of a basic unit and eq. (1) gives a FPR of 0.024, which may
be too high. Our design to reduce the FPR is cascading four
128K Bloom filters with independent hash functions shown in
Fig-5. When enabling all four 128K-bit Bloom filters, one IBP
must be validated by all four independent Bloom filters,
resulting in an overall FPR of roughly the products of each
basic unit’s FPRs. Table-2 presents the both FPRs of an ideal
design that consists of a big multi-ported Bloom filter with
perfect hash functions and of a cascading style design that
includes several small basic Bloom filters with Simplehash
functions. The former, which can achieve a 1.2 to 5.3 times
lowerer FPR in theory, has to be heavily multi-ported. This is
not a scalable solution in implementation because both the
access speed and the power consumption of this memory-like
structure (bit vector) increase dramatically as more ports are
introduced. The latter has a higher FPR due to the less perfect
hash functions and smaller size of bit vectors but still satisfies
the design goal and is more scalable.
TABLE-2: THE FPRS FOR THE IDEAL CASE (ONE HEAVILY MULTI-PORTED BIG
BLOOM FILTER WITH PERFECT HASH FUNCTIONS) AND SIMPLEHASH CASE (FOUR
SMALL BLOOM FILTERS CASCADED USING SIMPLEHASH).

n m k Overall FPR in 10-8
 (ideal/ Simplehash) ideal Simplehash
1000 128K / 128K×1 4/ 4×1 90 110
4000 256K / 128K×2 8/ 4×2 3.6 19
8000 384K / 128K×4 12/ 4×3 1.37 8.9
16000 512K / 128K×4 16/ 4×4 33 178

 Another benefit of the cascading design is that a processor

can adaptively enable only a subset of the Bloom filters
depending on the IBPs a program contains and the false

positive rate desired, thus reducing power consumption further.
Fig-1 shows the IBP number varies significantly. For example,
the programs that generate less than 1000 IBPs (e.g. galgel,
bzip2) can use only one basic unit, i.e. EnA is asserted and the
MUX selects input A. With m =128K, n=1000, and k=4, the
ideal and simulated FPR is 9.0e-7 and 1.1e-6, respectively,
which satisfies the design goal. The programs having less than
4000 IBPs (most cases in SPEC2000) will use two 128K-bit
Bloom filters, i.e. both EnA and EnB are enabled and the MUX
selects input B. Similarly, three or four basic Bloom filters are
enabled for the program that contains more IBPs.

Generally, by using Bloom filters, we provide a mechanism
that users can customize (i.e. changing the effective Bloom
filter parameters) according to the security requirements,
performance degradation tolerance, and hardware budget.
Similar to encryption algorithms, the chance to break our
protection is determined by the filter's parameters and
mathematically predictable.

IV. ACCOMMODATING THE IBP TABLE INTO PIPELINE

A. Validating IBPs only on mis-prediction
We find that many processors are already doing a portion of

validation in the form of indirect branch prediction. Modern
processors typically incorporate hardware components, e.g.
branch target buffer (BTB) and return address stack (RAS), to
do branch prediction. These components are initialized to zero
and gradually filled up with targets that have been used at
run-time. Since the validation unit checks every target before it
is loaded into the program counter, the targets presented in
BTB and RAS must have passed the validation in the first place.
This implies a control flow transfer from a correct branch
prediction is guaranteed to be safe. On the other hand, during
an attack, the target address in memory is corrupted and will not
match the validated one in the RAS or BTB, resulting in a
mis-prediction. Notice that while an attacker is able to
overwrite a value in memory due to all kinds of vulnerabilities,
it cannot directly compromise the content in the
software-transparent prediction units at the same time.

Fig-5. The validation unit cascading four 128K-bit Bloom filters as well as some glue logics. By properly setting enable and select signals,
the hardware allows one IBP to pass one or multiple validations depending on the number of IBP a program contains and desired FPR.

Consequently, a mis-prediction event of an indirect branch
becomes a symptom of an attack and the validation can be
activated only on that event, rather than every instance of
indirect branches. As a result, the existing prediction units
effectively function as a "cache" for the IBP table.

Our simulation shows on average, for every 1000 committed
instructions, there are about 1.02 mis-predictions for indirect
branches in SPEC2000 benchmarks, resulting in a validation
frequency of once every 1000 instructions. In contrast, a naive
validation on every control flow transfer will occur roughly
once every 10 instructions. This 100-fold reduction of the
validation frequency makes our run-time control flow
validation attractive in practice.

A worthwhile point is that we validate not just the target but
also the IBP, i.e. the PC of the indirect branch as well as the
target address. Indeed, a set-associative BTB found in many
processors has a PC as the tag and compares it in prediction.
The RAS only contains targets without PC information.
However, processors must follow a restrictive way to read and
update RAS because of the FILO feature of a stack. This fact
suggests that it is possible, but very unlikely, for an attacker to
find such a call and return sequence that he can corrupt the
stack meanwhile still achieving an RAS hit, i.e. no
mis-prediction.

B. Fit into the pipeline
As the validation against the IBP table (or the Bloom filter) is

activated only on a mis-prediction, it is located in the branch
verification stage when the computed target PC is available.
Fig-6 illustrates how the Bloom filter is accommodated into the
branch verification pipeline stage.

Fig-6. The Bloom filter is accommodated into the branch verification
stage. The mis-prediction signal, generated by target address
comparator, activates the Bloom filter.

On a branch mis-prediction, a mis-prediction signal is fed
back to the fetch unit to redirect the fetch point. Meanwhile, the
mis-prediction signal activates a validation or query in the
Bloom filter for the encountered IBP generated by the program.
If no such IBP is found in the Bloom filter, the Exception signal
will be set to indicate that a suspicious branch is under
execution. An exception reason may be written into the
exception cause registers. The extra time to check the Bloom
filter in our scheme appears as an added mis-penalty in the

context of performance. As we shall see later, since the case of
the mis-prediction is rare, the performance impact is nearly
negligible.

V. PERFORMANCE EVALUATION

A. Access Delay of the Validation Unit
This section investigates the performance impact of our

control flow validation mechanism using a cascaded Bloom
filter with the Simplehash functions. The delay for accessing a
128K-bit vector is measured by a simulation based on CACTI
3.2[5] with .09µm technology. The storage structure is assumed
to have four read ports and one to four write ports (Note that
simultaneous writes are not necessary in training phase). Since
CACTI can only simulate a minimum output size of 64 bits, we
also add a 6-64 MUX in the data path. The delay of this MUX,
as well as other components such as hashing logics and select
logics, is estimated by a Verilog HDL implementation and a
synthesis with TSMC's .09µm library. The simulation results
are presented in Table-3.

TABLE-3: ACCESS DELAY OF A VALIDATION UNIT
Simplehash
logic

128K-bit vector with
1/4 write port(s).

6-64MUX
Select logics

Total delay

0.49 ns 1.023 / 1.774 ns 0.79 ns 2.30/3.05 ns

Assuming a processor runs at a clock rate of 2.0 GHz, the
access latency of the bit vector in the Bloom filter ranges from 5
cycles to 7 cycles. Considering possible circuitry-level
optimizations and other extra overhead, we assign 4 to 8 cycles
for accessing the validation unit to evaluate the performance
impact.

B. 5.2 Performance Impact
We tested SPEC2000 benchmarks running in Simplescalar

that models an out-of-order 4-issue superscalar processor. No
special design for indirect branch prediction is assumed and a
conservative configuration of BTB and RAS is employed in the
simulation (see Table-4). The reference input is used and the
number of instructions specified by SimPoint[21] is skipped.
To measure the performance impact, we impose extra delays (4
to 8 cycles as estimated earlier) for indirect branch
mis-prediction penalty when the validation unit is incorporated.

TABLE-4: ARCHITECTURE PARAMETERS.

Parameter Value
BTB 512 set, 4-way set associative
RAS 8 entries
Branch miss penalty 7 cycles
Pipeline stage 9
Branch Predictor g-share, 12 bits history, 2048 entries
Fetch/dispatch/issue width 4
Instruction window 128 entries
Load/Store Queue 64 entries
I-cache 64K, 2 way set-asso., 2-cycle hit time
D-cache 64K, 4 way set-asso., 2-cycle hit time
L2 cache Unified, 512KB, 4 way set-associative,
L2 access time 10 cycles
Memory 100 cycles access time, 2 memory ports
Function unit 4 Int ALUs, 1 Int MUL/DIV, 4 FP

Adder, 1 FP MUL/DIV

Predicted target PC
Pipeline register

The PC of the
indirect branch

Computed Target PC

=

Bloom
Filter

Comparator

Indirect Branch
 OP

Activate signal Exception Cause
Register

Mis-prediction
signal to redirect
fetch point

Exception Signal

TPC PC

Pipeline register

Fig-7 shows the resulting performance degradation with
different validation unit access time. The increased
mis-prediction penalty for indirect branches due to adding a
Bloom filter has, on average, a negligible impact for most
benchmarks. 12 out of 26 SPEC2000 benchmarks have a
performance degradation that is less than 0.1%. Only six
benchmarks, namely eon, gap, perl, crafty, mesa, and vortex,
have an observable IPC decrease of more than 1%. The average
IPC degradation is 1.2% while the worst performance drop is
7.7% for eon.

Our assumption of the validation delay as an extra part of a
mis-predicted penalty is actually fairly conservative.
Depending on the implementation, we may overlap the
validation operation with other mis-prediction recovery
procedures such as renaming table restoring. Thus, validation
delays can be hidden partially even completely! Our scheme
also does not assume any special design for the indirect branch
predictor. In literature, many works have been done about
improving prediction accuracy for indirect branches[8].
Employing a more aggressive predictor can certainly reduce
mis-predictions further, resulting in even less performance
impact when our Bloom filter validation is employed.

VI. RELATED WORKS AND COMPARISONS
Forrest[10] first characterizes normal program control flow

transfer in terms of sequences of system calls. Wagner[24]
(refined later by[11]) proposes to statically generate a
non-deterministic finite automaton (NDFA) from the global
control-flow graph of the program. Sekar[20] et al. proposed to
generate a compact deterministic FSA coupled with PC value
and system call to monitor the program execution at runtime.
Because system call sequence itself has only a limited amount
of information, it is subjected to mimicry attack and impossible
path exploration. Note that none of the above validates control
flow transfers directly due to huge run-time overheads. Our
design explicitly validates control flow transfers invoked by
indirect branches and monitors more precise execution
information, i.e. indirect branch and its targets, in
micro-architectural level. Thus, it is expected to be more
efficient and have a shorter training time.

The earliest architecture proposal for control flow validation
comes from the Data Mark Machine by Fenton[12], in which
every memory word is enhanced with a tag. Based on the
underlying security policy, the tag can be set and checked for
potential security violation such as unauthorized "hidden"

information flow. As a simple variation of the Data Mark
Machine, there have been proposals to have a single bit tag
attached to each datum to tell if it is from a trusted channel or an
un-trusted channel[9][10]. With a sophisticated tracking and/or
marking mechanism, if ultimately a datum marked with an
un-trusted tag is used as control data, the system will capture
the event and intercept the execution. Recently, the schemes
that attempt to protect the control data directly were proposed
by encrypting the control data value[15][23]. The control data
value is hidden under encoding with a secret key until the last
minute of its use for control flow change in program execution.
An attacker, without the knowledge of the key, cannot read or
write the control data correctly. Many other efforts[7] were also
proposed to intercept some specific subset of control data
attacks. However, our scheme can protect a much broader
range of control data attacks, regardless of exploitations on a
return address or a GOT entry or a general function pointer. It is
also independent of the attack method in that it can intercept the
attacks no matter whether it is through stack smashing, format
string error, or directly pinpointing the control data and
overwriting it.

Program shepherding[13] is an interpreter-based solution
that collects legitimate branch targets when a runtime optimizer
constructs traces. Any unauthorized branch target is detected at
the loading of the traces. Besides the distinctions of their
software vs. our hardware approaches, program shepherding
uses a set of general capability rules to detect the attack while
ours is more like a model-based solution. Program shepherding
stores the validated execution path in the program address
space. This, together with its sophisticated cache management
algorithm, causes considerable memory overhead (3.02MByte
vs 512Kbit hardware memory) and performance degradation
(up to 170% vs 7.7%) comparing to our solution. Another
similar work[25] also validates control flow transfer in
hardware. But it mainly focuses on direct jumps and uses a
sophisticated co-processor. This perhaps makes it less favored
than our Bloom filter design in practice.

VII. CONCLUSIONS AND FUTURE WORK
Current processor architecture is vulnerable for control flow

altering attacks because control flow tracking is blindfolded
without a validity check. This paper has proposed a practical
solution to validate the control flow transfers via indirect
branch instruction, which is the most likely target in control

Extra delays in cycles

90%

92%

94%

96%

98%

100%

eo
n

ga
p

pe
rlb

mk

cra
fty

vo
rte

x

me
sa

pa
rse

r

six
tra

ck tw
olf gz
ip vp

r

gc
c

bz
ip2 AV
G

4 cycles
5 cycles
6 cycles
7 cycles
8 cycles

Fig-7. Normalized IPC (to the baseline case without any extra delays for validation). Only the
benchmarks that have IPC degradation more than 0.1% are shown.

data attacks. We suggest protecting both the location of the
indirect branches and their target addresses (IBPs) by
validating their legitimacy. All legitimate IBPs allowed under a
given security policy will be collected and stored in a table first,
and then the table is used to validate any control flow transfer at
run-time. To our best knowledge, this work is the first effort
that utilizes Bloom filter to represent the legitimate IBPs in the
context of validating control flow transfer. A cascading-style
Bloom filter design allows us to achieve a desired false positive
rate at a small timing penalty. Moreover, our scheme safely
activates the validation only on mis-prediction of the indirect
branches, resulting in little performance degradation. A
processor core with secure control flow creates a basis for
designing and building more trusted devices and cyber
infrastructure.

Having more context information beyond the IBP such as
branch (path) history or the current frame pointer (FP) value
will be useful to prevent more sophisticated attacks like the
"impossible path" attack. The Bloom filter we have proposed
eases this enhancement because the control data is hashed into a
bit vector for its existence and we only need to adjust the
Bloom filter configuration to keep the context information
accurate. Exploring more context information beyond the IBP
in full-scale web/Internet applications will be a part of our
future work.

ACKNOWLEDGMENT
This work is supported by NSF Grants (ITR-0242222 and

CT-0627341).

REFERENCES
[1] T. Austin and D. Burger, “The SimpleScalar Tool Set”. Univ. of

Wisconsin CS Dept. Technical Report, No. 1342, June 1997.
[2] B. Bloom, “Space/Time Tradeoffs in Hash Coding with Allowable

Errors”, In Communications of the ACM 13:7, 1970
[3] blexim, “Basic Integer Overflows”, Phrack, Volume 0x0b, Issue 0x3c,

2002
[4] A. Broder, M. Mitzenmatcher, “Network applications of Bloom filters: A

survey”. Annual Allerton Conference on Communication, Control, and
Computing, Oct. 2002.

[5] Cacti3.2. http://research.compaq.com/wrl/people/jouppi/CACTI.html.
[6] CERT Security Advisories. http://www.cert.org/advisories/
[7] C. Cowan, C. Pu, D Maier, J. Walphole, P Bakke, S. Beattie, A. Grier, P

Wagle, Q. Zhang, and H. Hinton, “StackGuard: Automatic adaptive
detection and prevention of buffer-overflow attacks”, In Proc. 7th
USENIX Security Symposium, Jan 1998.

[8] P. Chang, E Hao, Y. Patt, “Target prediction for indirect branches”. Proc.
of the 24th ISCA, 1997.

[9] J. Crandall and F. Chong, “Minos: Control Data Attack Prevention
Orthogonal To Memory Model”, Proc. of the 37th Int’l Symp. on
Microarchitecture, Dec. 2004.

[10] S. Forrest, S. Hofmeyr, A. Somayajo and T Longstaff, “A Sense of Self
for Unix Processes”, in Proc. of the 2000 IEEE Symp.on Security and
Privacy, 1996.

[11] J. Giffin, S. Jha, B. Miller, “Efficient Context-Sensitive Intrusion
Detection”, In 11th Annual Network and Distributed Systems Security
Symposium, February 2004.

[12] J. Fenton, “Memoryless Subsystems”. Computer Journal, Vol. 17, no. 2,
pp. 143-147 Feb. 1974.

[13] V. Kiriansky, D Bruening, S. Amarasinghe, “Secure Execution via
Program Shepherding”, In Proc. of the 11th Usenix Security Symp, 2002.

[14] C. Ko. C. Fink, K. Levitt, “Automated detection of vulnerabilities in
privileged program s by execution monitoring”, in Proc. of the 10th
Computer Security Applications Conference, 1994.

[15] G. Lee and A. Tyagi, “Encoded Program Counter: Self-Protection from
Buffer Overflow Attacks”, Proc. of the First Int’l Conference on Internet
Computing, June, 2000

[16] P.S. Magnusson, M. Christensson, J. Ekilson, D. Forsgren,, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, B. Werner, “Simics: a full system
simulation platform”, IEEE Computer (February), 2002

[17] Anonymous, “Once upon a free()”. Phrack, 9(57), Aug., 2001
[18] A. One. “Smashing the stack for fun and profit”. Phrack, 7(49), Nov.

1996.
[19] scut / team teso, “Format Exploiting Format String Vulnerabilities”, Sept,

2001.
[20] R. Sekar, M. Bendre, P. Bollineni, D. Dhurjati, “A fast

Automaton-Based Method for Detecting Anomalous Program
Behaviors”, in Proc. of the IEEE Symp.on Security and Privacy, 2001.

[21] T. Sherwood, E. Perelman, G. Hamerly and B. Calder, “Automatically
Characterizing Large Scale Program Behavior”, In Proc. of the 10th Int’l
Conf. on Architectural Support for Programming Languages and
Operating Systems, Oct. 2002.

[22] G. Suh, J. Lee, S Devadas, D. Zhang, “Secure program execution via
dynamic information flow tracking”. In Proc. of the 12th Int’l Conf. on
Architectural Support for Programming Languages and Operating
Systems, 2004.

[23] N. Tuck, B. Calder, G. Varghese, “Hardware and Binary Modification
Support for Code Pointer Protection from Buffer Overflow”, Proc. of the
37th Int’l Symp. on Microarchitecture, 2004.

[24] D. Wagner and D. Dean, “intrusion detection via Static Analysis”, in
Proc. of the IEEE Symp.on Security and Privacy, 2001.

[25] T. Zhang, X. Zhuang, W. Lee, S. Pande, "Anomalous Path Detection
with Hardware Support," in Proc. of CASES, 2005.

