
 

  
Abstract—Current micro-architecture blindly uses the address 

in the program counter to fetch and execute instructions without 
validating its legitimacy. Whenever this blind-folded instruction 
sequencing is not properly addressed at a higher level by system, 
it becomes a vulnerability of control data attacks, today's 
dominant and most critical security threats. To remedy it, this 
paper proposes a micro-architectural mechanism to validate 
control flow transfer at run-time at machine instruction level. It is 
proposed to have a hardware table consisting of legitimate 
indirect branches and their target pairs (IBPs) to aid the 
validation. The IBP table is implemented in the form of a 
cascading Bloom filter to store the security information as well as 
to enable fast validating. Based on a key observation that branch 
prediction unit existing in most speculative-execution processors 
already provides a portion of the control flow validation, our 
scheme activates the validation only on indirect branch 
mis-predictions. Because of the Bloom filter and the rarity of 
mis-predictions of indirect branches, the validation incurs 
moderate storage overhead and little performance penalty. 
 

I. INTRODUCTION 
xploiting program vulnerabilities becomes great threats to 
modern information infrastructure. Under the current 

software and hardware interface, most malicious attacks try to 
take over the control of a victim computer system by changing 
the program control flow. This can be done only by 
compromising the control data to re-point the processor's 
program counter (PC) to the attacker's way. Control data are the 
data that could be loaded into the PC and can be dynamically 
generated and changed at run-time. It includes the return 
addresses in the stack, the function pointer variables, and 
special data structures for non-local jumps (e.g. 
setjump/longjmp buffer), etc. Attackers exploit the 
vulnerabilities such as buffer overflow[18], format string 
vulnerability[19], heap corruption, and double free bugs [17], 
integer overflow[3] to change the control data. With the control 
data altered to the attacker's way, the attacker can perform any 
operations that the victim program has permission to do. 
Reports from CERT[6] show that control data attacks are 
dominant and the most critical security threats today. 

Control data attacks typically break "normal" control flow 

 
 

but still follow the instructions' semantics without explicitly 
violating any security polices. This makes traditional measures 
such as access control or data/code encryption alone hard to 
prevent the control data attacks. Recently, hardware-based 
schemes that track and protect the control data directly are 
proposed[7][9][15][22][23]. However, identifying and tracking 
control data are generally difficult to implement correctly due 
to their dynamic nature and aliasing. Many model-based 
anomaly detection approaches[10][11] are suggested also. 
These methods use some specific run-time information, e.g. 
system call sequence, to approximate the program behavior 
indirectly. Their effectiveness, however, often suffers from the 
inaccurate information being monitored and large performance 
and/or memory overhead. 

This paper introduces a novel idea of protecting program 
control flow at micro-architecture. We propose to validate 
every control flow transfer in the instructional level at the 
moment a taken branch is about to update the program counter. 
We focus the validation range down into each indirect branch 
because only the targets of indirect branches can be 
dynamically changed and can be potentially overwritten 
through exploitations from an attacker. A set of legitimate 
indirect branches and their targets stored in a hardware table is 
employed to validate each control flow transfer. To overcome 
the overflow problem caused by the limited capacity of a 
hardware table as well as enable fast validation, a Bloom filter 
storing the security information is proposed to be incorporated 
into the processor's pipeline. We further detail a validation unit 
that cascades several small Bloom filters to minimize the 
inherent false positive rate. Finally, we find that the validation 
can safely be activated only on a branch mis-prediction in 
architecture, resulting in lower performance degradation than 
otherwise possible 

The next section describes the motivation and our validation 
method on control flow transfer. Section 3 shows how to design 
a Bloom filter in a cascading fashion to facilitate the protection. 
Section 4 illustrates the way to reduce validation times and 
depicts the architectural modifications. Section 5 evaluates the 
performance impact. Section 6 presents related works and a 
comparison of our scheme to existing security solutions and we 
conclude the paper in section 7. 
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II. PROTECTING CONTROL FLOW TRANSFER 
To successfully launch a control data attack, an attacker has 

to 1) inject malicious inputs, 2) overwrite the control data by 
exploiting buffer overflow bugs or format string vulnerabilities 
or through other means, and 3) execute the tampered control 
flow transfer instructions and eventually run the malicious code. 
Many measures have been proposed to intercept the attack in 
each of the steps above. To stop the attacks in step 1 or 2, one 
has to identify, protect, and track every control datum perfectly, 
which is very difficult, if not impossible. Instead, we propose to 
insert a checking and validation mechanism at 
micro-architectural level in step 3 for every control flow 
transfer instruction. 

A. Control Flow Graph and Control Data Attack Scenarios 
 An example program that is vulnerable to control data attacks 
and its control flow graph (CFG) are shown in Fig-1. The nodes 
representing in ◎ are indirect branches, which could be a return 
(e.g. I1 and I2) or a non-return indirect jump (e.g. I3).  Assume 
that f1() contains a buffer overflow vulnerability and f4() has a 
format string vulnerability while the function pointer variable, 
fp, is also subject to be overwritten maliciously. The control 
data attacks exploit these vulnerabilities to overwrite the return 
address or function pointer variables. It is the ultimate 
executions of the compromised indirect branches that deviate 
program execution from the normal behavior. As a result, a new 
node will be inserted and/or a completely new execution path is 
created in CFG (e.g. I1->X->Y, I2->Y after overwriting return 
address of f1 or f4). Or a new execution path is generated to 
bridge two nodes which previously do not have any control 
flow between them (e.g. I3->Z after compromising the function 
pointer fp). 

B. Validating Indirect Branches 
A natural solution to prevent the control data attack is to 

monitor program execution to ensure that it conforms to a 
pre-defined specification of its intended behavior[14] or use a 
model-based solution to monitor other indirect events such as 
system call sequence[10][11][24]. However, extracting the 

exact static control flow information is very hard and incurs 
tremendous space or run-time overhead to be practical. Rather 
than finding a solution from a high level of application source 
code or even behavior specification, our architectural solution 
focuses on each individual instruction at run-time. In the 
current processors, control flow tracking at machine instruction 
level is blindfolded without validity check. Processors blindly 
follow the program counter to fetch and execute instructions. 
We believe this a fundamental flaw in hardware that causes the 
endless chase of software vulnerability, its exploitation, and its 
patch. To rectify this, control flow validation should be done at 
the machine instruction level. 

At instruction level, high-level descriptions of control flow 
transfers are ultimately translated into direct branches and 
indirect branches in binary code. The target of a direct branch is 
typically determined by the compiler and it points to one single 
location wired in the instruction bits. In practice, there exist, but 
very rare, cases that an attacker can compromise the decision of 
a direct branch and perform intended malicious operations in 
the pre-determined execution path in order to hijack the system. 
Instead, most existing control data attacks[6] seek to 
compromise the target of an indirect branch. We observed that 
the target of an indirect branch is often allocated dynamically in 
the data area of the program’s address space, and an attacker 
can manage to overwrite it by exploiting memory corruptions 
techniques mentioned in the introduction part. Later execution 
of the compromised indirect branch gives the attacker great 
flexibility to re-point the control flow to any appropriate 
location he desires (e.g. the entry address of exec() or system() 
in Fig-1). Hence, any control flow transfer by an indirect jump 
should be validated before the architecture actually uses it.  

To define a control flow transfer by an indirect branch in 
CFG, we are concerned with two pieces of information. One is 
the location of the indirect branch or the branch site (BPC) and 
the other is the target address (TPC). A validation of both the 
branch site and the target ensures that any indirect branch is 
always from a legitimate branch site and to a legitimate 
destination. This is necessary because such a validation not 
only prevents control flow from transferring to an unintended 

int main(argc, argv) 
{ 
  int (*fp)();      
char buf[]; 

  if (…) { f1(); fp = f4;} 
  else 
    {f2();f3(); f1(); fp= f5;} 
  strcpy(buf,…);    

(*fp)(argv); 
if () else(); 
system(); 

} 
 
f1() { 
char buf[]; 
strcpy(buf,argv..); 
} 
 
f4() { 
printf(argv); 
}; 
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Fig-1. A vulnerable program with possible attacking scenarios.



 

destination but also enables intercepting jumps heading to a 
legitimate target but from an illegal source site (e.g. 
return-to-libc attacks). We pair BPC and TPC together, denoted 
as BPC||TPC (branch's PC and target PC), and call it an Indirect 
Branch Pair (IBP). Each indirect branch can have multiple 
targets thereby may have more than one IBP. By introducing 
the IBPs, we effectively apply a new constraint on the targets of 
each indirect branch such that it can only use a limited number 
of validated values. This greatly reduces the chance that an 
attacker can redirect the control flow to a new execution path 
that originally does not exist in the program. 

The control flow validation is performed by checking against 
an IBP table, proposed as a hardware component for a 
collection of all the legitimate IBPs in a program, at each 
indirect branch. It represents “normal” behavior and provides a 
reference to check if software starts to behave abnormally. At 
run-time, any encountered IBP that fails to match any of the 
target addresses in the IBP table will cause the processor to 
raise a hardware exception. The exception is captured by the 
operating system (OS) and the OS may simply halt the 
execution and issue an alert to the administrator to take further 
actions. For example, the CFG in Fig-1 has a legitimate IBP 
table of {I1||A, I1||B, I2||G, I6||G, I3||C, I3||D, I4||E, I5||F}. 
Suppose due to a control data attack, a control flow transfer 
from I1 to X is invoked. A validation on the corresponding IBP 
(I1||X) will produce a mis-match and this transfer can be 
intercepted. 

C. Training IBP table 
There are basically two ways to fill up the IBP table with 

legitimate IBPs. One is through static or run-time analysis. We 
may extract the legitimate IBPs from the existing execution 
trace of legacy code offline. Or, the linker and loader can help 
find legitimate targets of branches when they patch the program 
with absolute addresses. Also, during the software testing and 
development phase, the test cases being used should cover most, 
if not all, possible execution paths for each branch; therefore an 
IBP table can be generated as a side product.  
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Fig-2. The number of unique IBPs against indirect branches that 

have been executed. Each data point is an additional workload. 
 

The second way to initialize the IBP table is to perform 
"training" as many model-based solutions have done 
[10][11][25]. By running the application either in a particular 
time interval or until the unique IBPs converges in a secure 
environment, the processor can regard all seen IBPs as 
legitimate ones. We test IBP convergence of an Apache server 

on Red Hat Linux 7.3 over Simics[16], an IA-32 emulator. We 
generate both static and dynamic loads from a remote machines 
while colleting the addresses of the indirect branches and 
targets on the simulated machine. Fig-2 shows that the number 
of IBPs does converge quickly. 

III. THE IBP TABLE DESIGN USING BLOOM FILTERS 

A. Analysis of Indirect Branch Characteristics 
To study the indirect branch characteristics in applications, 

we have profiled indirect branches and their targets or IBPs of 
SPEC2000 benchmarks. The Alpha binaries of the benchmarks 
with reference inputs are simulated completely in sim-profile, a 
simulator in Simplescalar[1]. We also studied two real 
applications, Apache 1.3.27-8, and sshd, running over Simics. 
Table-1 shows that the number of IBPs ranges from a several 
hundred to 10,000. No excessive number of IBPs is observed 
and most programs have a modest number of IBPs around 
1,000 except the programs that include many recursive 
functions calls. 
TABLE-1:  UNIQUE INDIRECT BRANCH AND TARGET PAIR (IBP) IN SPEC2000 

BENCHMARKS AS WELL AS TWO OTHER APPLICATIONS.  

SPEC2000 benchmarks/applications with IBP #  

gcc 9624 twolf 1289 mgrid 455 Apache init 4844 
perlbmk 4295 vpr 1262 applu 422  main 7325 
vortex 3735 apsi 1039 lucas 385 sshd  3656 
eon 2416 galgel 964 equake 373    
sixtrack 2289 facerec 747 gzip 288    
fma3d 1891 wupwise 585 mcf 287    
crafty 1675 mesa 547 bzip2 286    
gap 1599 ammp 518 art 245    
parser 1434 swim 469      

 
We have also measured the maximum number of targets one 

indirect branch can have for all benchmarks in SPEC2000. This 
metric reflects how many values one single indirect branch may 
take as its target.   
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Fig-3. The maximum number of possible targets per indirect branch of 
SPEC2000 benchmarks.  

Fig-3 shows they vary drastically from one benchmark to 
another. For example, the maximum number of targets per 
branch in lucas is only 10, while some indirect branches in 
other benchmarks like gcc, sixtrack, eon, and apsi can have 
more than 200 possible targets.  

B.  Observations 
Based on the data shown above, we conclude that the IBP 



 

table should have the following properties:  1) The number of 
IBPs ranges significantly between programs, thereby an 
adaptive scheme is desirable to minimize the search time and 
power consumption. 2) As the maximum IBPs are wildly 
varying from program to program, a PC-index table or a flat 
IBP table are not preferred. 3) The fixed-sized hardware table 
must be able to handle the overflow problem properly. 
Discarding legitimate IBPs on overflow is undesirable because 
re-collecting the IBPs at run-time is difficult and expensive. 
Based on these observations, we propose to utilize a Bloom 
filter to accommodate and validate the IBPs. 

C.  Bloom Filter Basics 
A Bloom filter[2] is a space-efficient data structure that is 

used to test whether an element is a member of a set. It tries to 
answer a query whether in a set S = {x1, x2, …,xn} a given 
element x is included or not without actually storing the 
elements into the set. The filter is described by a vector of m 
bits (initially set to 0) with k independent hash functions with a 
range of 0 to m-1.  

During the initialization phase, k hash functions are applied 
to the input element. Each return value from the hash function 
is used as an index to the m-bit vector and that bit position is set 
to 1. During the query, the k locations returned by the hash 
functions are checked to see if they are already set to ‘1’. If the 
bit values in all locations from the hash functions are 1, then the 
Bloom filter is said to contain the pattern. 

There is a certain chance that x may not be in the set but all its 
corresponding bits in the vector happen to have been set to 1 by 
other elements inserted before. This “false positive” is 
determined by three parameters, namely, the number of hashes 
k, the size of bit vector m, and the size of the set represented n. 
The probability of a false positive or false positive rate (FPR) 
for a Bloom filter is 

(1 – (1 – 1/m)kn)k  ≈ ( 1 – e -kn/m)k         (1) 

For a given m/n, equation (1) is minimized when 

k =  ln2 × m/n      .          (2) 

D. Storing IBPs into a Bloom filter 
Three features of the Bloom filter make it an ideal hardware 

implementation to store the security information. First, while 
risking false positives, Bloom filter has a strong space 
advantage over other data structures for representing sets due to 
its compactness from arrays, and its randomizing nature. 
Another unusual property is that the time needed to either add 
elements or to check whether an element is in the set is a 
constant, independent of the number of elements already in the 
set. Lastly, the k hash functions are independent and can be 
performed in parallel. 

We propose to store legitimate IBPs into a Bloom filter and 
perform a validation by a membership query. We observe that 
unless the Bloom filter is not fully trained with a complete set 
of legitimate IBPs, it never gives any false alarms caused by the 
limited capacity of the physical structure of the IBP table. This 
is because we can always add more IBPs into the Bloom filter 
by setting more bits in the bit vector without discarding any 

existing information, thus effectively solving the overflow 
problem. This advantage, however, comes at the cost of 
incurring false positives. Notice that a false positive in this 
context means the Bloom filter might report a non-existing IBP 
as a legitimate IBP, allowing a possible attack to pass the 
checking without being detected. A false positive of a Bloom 
filter is translated into a false negative of the system. Therefore 
we need carefully devise the filter parameters, i.e. m, k, n, and 
the hash functions, to minimize FPR within hardware budget 
while not hampering performance too much. 
1) Security Analysis of the Bloom filter 

To exploit the inherent false positives in the Bloom filter to 
launch a successful attack, the attacker has to construct two 
proper values that conform to the false positive pattern, one for 
the PC that the attacker can succeed to change (maybe through 
buffer overflow), and the other for the target address where the 
attacker can succeed to put or utilize malicious code. For one 
program, the number of the useful IBPs to the attacker that 
might lead to a successful exploitation normally is limited. 
Given a sufficiently low false positive rate, it is impractical for 
an attacker to try many IBPs in order to find one that is useful 
and happens to be able to skip the check through a bloom filter. 
In this work, we have empirically set a design goal of the FPR 
in the order of 1e-6. Considering the fact that the attacker needs 
to match a desired PC value with such a false positive case, the 
success of an attack seems practically impossible. 

2) Hash functions 
For our hardware implementation, we choose a simple hash 

scheme, named simplehash, which does hashing by shuffling 
and xor-ing the bits in the 32-bit PC and the 32-bit target 
address as shown in Fig-4. The simulation shows under our 
configuration (detailed later), the FPR of this simplified hash 
scheme is within the same magnitude order as that of the ideal 
case. 

Fig-4. One of the Simplehash functions that shuffles PC and xors TPC 
to generate a hash result as well as other 4 hashing functions with 
different permutation. 
 

Notice that unlike a software implementation, introducing 
more hashing functions/logic in hardware does not degrade the 
performance because hashing can always be performed in 
parallel. However, the bit vector must have more ports to 
support simultaneous reads/writes by more hash functions, 
which slows the access latency. In addition, hashing and bit 
vector accessing are performed independently therefore a 
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bloom filter query can be naturally pipelined into 2 stages in a 
fast-clocked processor (see Fig-5). 

3) Hardware organization 
From Fig-1, we can see that gcc has the most IBPs (~10,000) 

in SPEC2000. Assume in the worst case an application has 16K 
IBPs (or n = 16K). Also assume a reasonable port number of a 
basic Bloom filer is four (k = 4), i.e. one Bloom filter is 
associated with four hash functions. According to eq. (2), FPR 
is minimized when m is 92K bits. So let us use 128Kbit as the 
size of a basic unit and eq. (1) gives a FPR of 0.024, which may 
be too high. Our design to reduce the FPR is cascading four 
128K Bloom filters with independent hash functions shown in 
Fig-5. When enabling all four 128K-bit Bloom filters, one IBP 
must be validated by all four independent Bloom filters, 
resulting in an overall FPR of roughly the products of each 
basic unit’s FPRs. Table-2 presents the both FPRs of an ideal 
design that consists of a big multi-ported Bloom filter with 
perfect hash functions and of a cascading style design that 
includes several small basic Bloom filters with Simplehash 
functions. The former, which can achieve a 1.2 to 5.3 times 
lowerer FPR in theory, has to be heavily multi-ported. This is 
not a scalable solution in implementation because both the 
access speed and the power consumption of this memory-like 
structure (bit vector) increase dramatically as more ports are 
introduced. The latter has a higher FPR due to the less perfect 
hash functions and smaller size of bit vectors but still satisfies 
the design goal and is more scalable. 
TABLE-2: THE FPRS FOR THE IDEAL CASE (ONE HEAVILY MULTI-PORTED BIG 
BLOOM FILTER WITH PERFECT HASH FUNCTIONS) AND SIMPLEHASH CASE (FOUR 
SMALL BLOOM FILTERS CASCADED USING SIMPLEHASH). 

n m k Overall FPR in 10-8 
 (ideal/ Simplehash) ideal Simplehash
1000 128K / 128K×1 4/ 4×1 90 110 
4000 256K /  128K×2 8/ 4×2 3.6 19 
8000 384K /  128K×4 12/ 4×3 1.37 8.9 
16000 512K /  128K×4 16/ 4×4 33 178 

 
 Another benefit of the cascading design is that a processor 

can adaptively enable only a subset of the Bloom filters 
depending on the IBPs a program contains and the false 

positive rate desired, thus reducing power consumption further. 
Fig-1 shows the IBP number varies significantly. For example, 
the programs that generate less than 1000 IBPs (e.g. galgel, 
bzip2) can use only one basic unit, i.e. EnA is asserted and the 
MUX selects input A. With m =128K, n=1000, and k=4, the 
ideal and simulated FPR is 9.0e-7 and 1.1e-6, respectively, 
which satisfies the design goal.  The programs having less than 
4000 IBPs (most cases in SPEC2000) will use two 128K-bit 
Bloom filters, i.e. both EnA and EnB are enabled and the MUX 
selects input B. Similarly, three or four basic Bloom filters are 
enabled for the program that contains more IBPs.  

Generally, by using Bloom filters, we provide a mechanism 
that users can customize (i.e. changing the effective Bloom 
filter parameters) according to the security requirements, 
performance degradation tolerance, and hardware budget. 
Similar to encryption algorithms, the chance to break our 
protection is determined by the filter's parameters and 
mathematically predictable. 

IV.  ACCOMMODATING THE IBP TABLE INTO PIPELINE 

A. Validating IBPs only on mis-prediction 
We find that many processors are already doing a portion of 

validation in the form of indirect branch prediction. Modern 
processors typically incorporate hardware components, e.g. 
branch target buffer (BTB) and return address stack (RAS), to 
do branch prediction. These components are initialized to zero 
and gradually filled up with targets that have been used at 
run-time. Since the validation unit checks every target before it 
is loaded into the program counter, the targets presented in 
BTB and RAS must have passed the validation in the first place. 
This implies a control flow transfer from a correct branch 
prediction is guaranteed to be safe. On the other hand, during 
an attack, the target address in memory is corrupted and will not 
match the validated one in the RAS or BTB, resulting in a 
mis-prediction. Notice that while an attacker is able to 
overwrite a value in memory due to all kinds of vulnerabilities, 
it cannot directly compromise the content in the 
software-transparent prediction units at the same time. 

Fig-5. The validation unit cascading four 128K-bit Bloom filters as well as some glue logics. By properly setting enable and select signals, 
the hardware allows one IBP to pass one or multiple validations depending on the number of IBP a program contains and desired FPR. 



 

Consequently, a mis-prediction event of an indirect branch 
becomes a symptom of an attack and the validation can be 
activated only on that event, rather than every instance of 
indirect branches. As a result, the existing prediction units 
effectively function as a "cache" for the IBP table. 

Our simulation shows on average, for every 1000 committed 
instructions, there are about 1.02 mis-predictions for indirect 
branches in SPEC2000 benchmarks, resulting in a validation 
frequency of once every 1000 instructions. In contrast, a naive 
validation on every control flow transfer will occur roughly 
once every 10 instructions. This 100-fold reduction of the 
validation frequency makes our run-time control flow 
validation attractive in practice.  

A worthwhile point is that we validate not just the target but 
also the IBP, i.e. the PC of the indirect branch as well as the 
target address. Indeed, a set-associative BTB found in many 
processors has a PC as the tag and compares it in prediction. 
The RAS only contains targets without PC information. 
However, processors must follow a restrictive way to read and 
update RAS because of the FILO feature of a stack. This fact 
suggests that it is possible, but very unlikely, for an attacker to 
find such a call and return sequence that he can corrupt the 
stack meanwhile still achieving an RAS hit, i.e. no 
mis-prediction.  

B. Fit into the pipeline 
As the validation against the IBP table (or the Bloom filter) is 

activated only on a mis-prediction, it is located in the branch 
verification stage when the computed target PC is available. 
Fig-6 illustrates how the Bloom filter is accommodated into the 
branch verification pipeline stage.  

Fig-6. The Bloom filter is accommodated into the branch verification 
stage. The mis-prediction signal, generated by target address 
comparator, activates the Bloom filter. 

On a branch mis-prediction, a mis-prediction signal is fed 
back to the fetch unit to redirect the fetch point. Meanwhile, the 
mis-prediction signal activates a validation or query in the 
Bloom filter for the encountered IBP generated by the program. 
If no such IBP is found in the Bloom filter, the Exception signal 
will be set to indicate that a suspicious branch is under 
execution. An exception reason may be written into the 
exception cause registers. The extra time to check the Bloom 
filter in our scheme appears as an added mis-penalty in the 

context of performance. As we shall see later, since the case of 
the mis-prediction is rare, the performance impact is nearly 
negligible. 

V. PERFORMANCE EVALUATION 

A. Access Delay of the Validation Unit 
This section investigates the performance impact of our 

control flow validation mechanism using a cascaded Bloom 
filter with the Simplehash functions. The delay for accessing a 
128K-bit vector is measured by a simulation based on CACTI 
3.2[5] with .09µm technology. The storage structure is assumed 
to have four read ports and one to four write ports (Note that 
simultaneous writes are not necessary in training phase). Since 
CACTI can only simulate a minimum output size of 64 bits, we 
also add a 6-64 MUX in the data path. The delay of this MUX, 
as well as other components such as hashing logics and select 
logics, is estimated by a Verilog HDL implementation and a 
synthesis with TSMC's .09µm library. The simulation results 
are presented in Table-3. 

TABLE-3: ACCESS DELAY OF A VALIDATION UNIT 
Simplehash 
logic 

128K-bit vector with 
1/4 write port(s). 

6-64MUX  
Select logics 

Total delay 

0.49 ns 1.023 / 1.774 ns 0.79 ns 2.30/3.05 ns

Assuming a processor runs at a clock rate of 2.0 GHz, the 
access latency of the bit vector in the Bloom filter ranges from 5 
cycles to 7 cycles. Considering possible circuitry-level 
optimizations and other extra overhead, we assign 4 to 8 cycles 
for accessing the validation unit to evaluate the performance 
impact. 

B. 5.2 Performance Impact 
We tested SPEC2000 benchmarks running in Simplescalar 

that models an out-of-order 4-issue superscalar processor. No 
special design for indirect branch prediction is assumed and a 
conservative configuration of BTB and RAS is employed in the 
simulation (see Table-4). The reference input is used and the 
number of instructions specified by SimPoint[21] is skipped. 
To measure the performance impact, we impose extra delays (4 
to 8 cycles as estimated earlier) for indirect branch 
mis-prediction penalty when the validation unit is incorporated. 

TABLE-4: ARCHITECTURE PARAMETERS.  

Parameter Value 
BTB  512 set, 4-way set associative 
RAS 8 entries 
Branch miss penalty 7 cycles 
Pipeline stage 9 
Branch Predictor g-share, 12 bits history, 2048 entries 
Fetch/dispatch/issue width 4 
Instruction window 128 entries 
Load/Store Queue 64 entries 
I-cache 64K, 2 way set-asso., 2-cycle hit time 
D-cache 64K, 4 way set-asso., 2-cycle hit time 
L2 cache Unified, 512KB, 4 way set-associative, 
L2 access time 10 cycles 
Memory  100 cycles access time, 2 memory ports 
Function unit  4 Int ALUs, 1 Int MUL/DIV, 4 FP 

Adder, 1 FP MUL/DIV 
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Fig-7 shows the resulting performance degradation with 
different validation unit access time. The increased 
mis-prediction penalty for indirect branches due to adding a 
Bloom filter has, on average, a negligible impact for most 
benchmarks. 12 out of 26 SPEC2000 benchmarks have a 
performance degradation that is less than 0.1%. Only six 
benchmarks, namely eon, gap, perl, crafty, mesa, and vortex, 
have an observable IPC decrease of more than 1%. The average 
IPC degradation is 1.2% while the worst performance drop is 
7.7% for eon. 

Our assumption of the validation delay as an extra part of a 
mis-predicted penalty is actually fairly conservative. 
Depending on the implementation, we may overlap the 
validation operation with other mis-prediction recovery 
procedures such as renaming table restoring. Thus, validation 
delays can be hidden partially even completely! Our scheme 
also does not assume any special design for the indirect branch 
predictor. In literature, many works have been done about 
improving prediction accuracy for indirect branches[8]. 
Employing a more aggressive predictor can certainly reduce 
mis-predictions further, resulting in even less performance 
impact when our Bloom filter validation is employed.  

VI. RELATED WORKS AND COMPARISONS 
Forrest[10] first characterizes normal program control flow 

transfer in terms of sequences of system calls. Wagner[24]  
(refined later by[11]) proposes to statically generate a 
non-deterministic finite automaton (NDFA) from the global 
control-flow graph of the program. Sekar[20] et al. proposed to 
generate a compact deterministic FSA coupled with PC value 
and system call to monitor the program execution at runtime. 
Because system call sequence itself has only a limited amount 
of information, it is subjected to mimicry attack and impossible 
path exploration. Note that none of the above validates control 
flow transfers directly due to huge run-time overheads. Our 
design explicitly validates control flow transfers invoked by 
indirect branches and monitors more precise execution 
information, i.e. indirect branch and its targets, in 
micro-architectural level. Thus, it is expected to be more 
efficient and have a shorter training time. 

The earliest architecture proposal for control flow validation 
comes from the Data Mark Machine by Fenton[12], in which 
every memory word is enhanced with a tag. Based on the 
underlying security policy, the tag can be set and checked for 
potential security violation such as unauthorized "hidden" 

information flow. As a simple variation of the Data Mark 
Machine, there have been proposals to have a single bit tag 
attached to each datum to tell if it is from a trusted channel or an 
un-trusted channel[9][10]. With a sophisticated tracking and/or 
marking mechanism, if ultimately a datum marked with an 
un-trusted tag is used as control data, the system will capture 
the event and intercept the execution. Recently, the schemes 
that attempt to protect the control data directly were proposed 
by encrypting the control data value[15][23]. The control data 
value is hidden under encoding with a secret key until the last 
minute of its use for control flow change in program execution. 
An attacker, without the knowledge of the key, cannot read or 
write the control data correctly. Many other efforts[7] were also 
proposed to intercept some specific subset of control data 
attacks. However, our scheme can protect a much broader 
range of control data attacks, regardless of exploitations on a 
return address or a GOT entry or a general function pointer. It is 
also independent of the attack method in that it can intercept the 
attacks no matter whether it is through stack smashing, format 
string error, or directly pinpointing the control data and 
overwriting it.  

Program shepherding[13] is an interpreter-based solution 
that collects legitimate branch targets when a runtime optimizer 
constructs traces. Any unauthorized branch target is detected at 
the loading of the traces. Besides the distinctions of their 
software vs. our hardware approaches, program shepherding 
uses a set of general capability rules to detect the attack while 
ours is more like a model-based solution. Program shepherding 
stores the validated execution path in the program address 
space. This, together with its sophisticated cache management 
algorithm, causes considerable memory overhead (3.02MByte 
vs 512Kbit hardware memory) and performance degradation 
(up to 170% vs 7.7%) comparing to our solution. Another 
similar work[25] also validates control flow transfer in 
hardware. But it mainly focuses on direct jumps and uses a 
sophisticated co-processor. This perhaps makes it less favored 
than our Bloom filter design in practice. 

VII. CONCLUSIONS AND FUTURE WORK 
Current processor architecture is vulnerable for control flow 

altering attacks because control flow tracking is blindfolded 
without a validity check. This paper has proposed a practical 
solution to validate the control flow transfers via indirect 
branch instruction, which is the most likely target in control 
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data attacks. We suggest protecting both the location of the 
indirect branches and their target addresses (IBPs) by 
validating their legitimacy. All legitimate IBPs allowed under a 
given security policy will be collected and stored in a table first, 
and then the table is used to validate any control flow transfer at 
run-time. To our best knowledge, this work is the first effort 
that utilizes Bloom filter to represent the legitimate IBPs in the 
context of validating control flow transfer. A cascading-style 
Bloom filter design allows us to achieve a desired false positive 
rate at a small timing penalty. Moreover, our scheme safely 
activates the validation only on mis-prediction of the indirect 
branches, resulting in little performance degradation. A 
processor core with secure control flow creates a basis for 
designing and building more trusted devices and cyber 
infrastructure. 

Having more context information beyond the IBP such as 
branch (path) history or the current frame pointer (FP) value 
will be useful to prevent more sophisticated attacks like the 
"impossible path" attack. The Bloom filter we have proposed 
eases this enhancement because the control data is hashed into a 
bit vector for its existence and we only need to adjust the 
Bloom filter configuration to keep the context information 
accurate. Exploring more context information beyond the IBP 
in full-scale web/Internet applications will be a part of our 
future work. 

ACKNOWLEDGMENT 
This work is supported by NSF Grants (ITR-0242222 and 

CT-0627341). 

REFERENCES 
[1] T. Austin and D. Burger, “The SimpleScalar Tool Set”. Univ. of 

Wisconsin CS  Dept. Technical Report, No. 1342, June 1997. 
[2] B. Bloom, “Space/Time Tradeoffs in Hash Coding with Allowable 

Errors”, In Communications of the ACM 13:7, 1970 
[3] blexim, “Basic Integer Overflows”, Phrack, Volume 0x0b, Issue 0x3c, 

2002 
[4] A. Broder, M. Mitzenmatcher, “Network applications of Bloom filters: A 

survey”. Annual Allerton Conference on Communication, Control, and 
Computing, Oct. 2002. 

[5] Cacti3.2. http://research.compaq.com/wrl/people/jouppi/CACTI.html. 
[6] CERT Security Advisories. http://www.cert.org/advisories/ 
[7] C. Cowan, C. Pu, D Maier, J. Walphole, P Bakke, S. Beattie, A. Grier, P 

Wagle, Q. Zhang, and H. Hinton, “StackGuard: Automatic adaptive 
detection and prevention of buffer-overflow attacks”, In Proc. 7th 
USENIX Security Symposium, Jan 1998. 

[8] P. Chang, E Hao, Y. Patt, “Target prediction for indirect branches”. Proc. 
of the 24th ISCA, 1997. 

[9] J. Crandall and F. Chong, “Minos: Control Data Attack Prevention 
Orthogonal To Memory Model”, Proc. of the 37th Int’l Symp. on 
Microarchitecture,  Dec. 2004. 

[10] S. Forrest, S. Hofmeyr, A. Somayajo and T Longstaff, “A Sense of Self 
for Unix Processes”, in Proc. of the 2000 IEEE Symp.on Security and 
Privacy, 1996. 

[11] J. Giffin, S. Jha, B. Miller, “Efficient Context-Sensitive Intrusion 
Detection”, In 11th Annual Network and Distributed Systems Security 
Symposium, February 2004.  

[12] J. Fenton, “Memoryless Subsystems”. Computer Journal, Vol. 17, no. 2, 
pp. 143-147 Feb. 1974. 

[13] V. Kiriansky, D Bruening, S. Amarasinghe, “Secure Execution via 
Program Shepherding”, In Proc. of the 11th Usenix Security Symp, 2002. 

[14] C. Ko. C. Fink, K. Levitt, “Automated detection of vulnerabilities in 
privileged program s by execution monitoring”, in Proc. of the 10th 
Computer Security Applications Conference, 1994. 

[15] G. Lee and A. Tyagi, “Encoded Program Counter: Self-Protection from 
Buffer Overflow Attacks”, Proc. of the First Int’l Conference on Internet 
Computing, June, 2000 

[16] P.S. Magnusson, M. Christensson, J. Ekilson, D. Forsgren,, G. Hallberg, 
J. Hogberg, F. Larsson, A. Moestedt, B. Werner, “Simics: a full system 
simulation platform”, IEEE Computer (February), 2002  

[17] Anonymous, “Once upon a free()”. Phrack, 9(57), Aug., 2001 
[18] A. One. “Smashing the stack for fun and profit”. Phrack, 7(49), Nov. 

1996. 
[19] scut / team teso, “Format Exploiting Format String Vulnerabilities”, Sept, 

2001.  
[20] R. Sekar, M. Bendre, P. Bollineni, D. Dhurjati, “A fast 

Automaton-Based Method for Detecting Anomalous Program 
Behaviors”, in Proc. of the IEEE Symp.on Security and Privacy, 2001. 

[21] T. Sherwood, E. Perelman, G. Hamerly and B. Calder, “Automatically 
Characterizing Large Scale Program Behavior”, In Proc. of the 10th Int’l 
Conf. on Architectural Support for Programming Languages and 
Operating Systems, Oct. 2002.  

[22] G. Suh, J. Lee, S Devadas, D. Zhang, “Secure program execution via 
dynamic information flow tracking”. In Proc. of the 12th Int’l Conf. on 
Architectural Support for Programming Languages and Operating 
Systems, 2004. 

[23] N. Tuck, B. Calder, G. Varghese, “Hardware and Binary Modification 
Support for Code Pointer Protection from Buffer Overflow”, Proc. of the 
37th Int’l Symp. on Microarchitecture,  2004. 

[24] D. Wagner and D. Dean, “intrusion detection via Static Analysis”, in 
Proc. of the IEEE Symp.on Security and Privacy, 2001. 

[25] T. Zhang, X. Zhuang, W. Lee, S. Pande, "Anomalous Path Detection 
with Hardware Support," in Proc. of CASES, 2005. 




