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Abstract— Memory design is facing the dual challenges of per-
formance improvement and error tolerance due to a combination
of technology scaling and higher levels of integration. To address
these challenges, we propose a new memory microarchitecture
referred to as the soft indexing. The proposed technique allocates
memory resources in a self-adaptive manner in accordance with
runtime program variations, thereby achieving efficient memory
access and effective error protection in a coherent manner.
Statistical analysis shows 10X improvement in error detection
capability over the existing error-control techniques. The benefits
of the proposed technique are also experimentally demonstrated
using the SPEC CPU2000 benchmarks. Simulation results show
94.9% average error-control coverage on the 23 benchmarks,
with average of 23.2% reduction in memory miss rates as
compared to the conventional techniques.

I. INTRODUCTION

The advances in semiconductor technology allow inte-
grated circuits to maintain an incredible pace of performance
improvement. The state-of-the-art processor design benefits
greatly from higher levels of integration enabled by the re-
lentless scaling of semiconductor process. With semiconductor
process being scaled into sub-65nm nodes, processor design
has entered the multibillion-transistor architecture era. At the
same time, nanometer devices are approaching their physical
limits. Reliable implementation of integrated systems is be-
coming increasingly difficult. Consequently, processor design
is experiencing a wide range of unmanageable performance
spread caused by the non-idealities in design, fabrication and
operation environment [1]— [5]. These problems not only
make it difficult to achieve affordable scaling but also induce
severe reliability issues.

These emerging issues are most pronounced in on-chip
memory systems, where minimum-geometry devices are uti-
lized to build bulk of memory for high-density integration.
Memory circuits are subject to a larger percentage of process
variations and their performance is very sensitive to varia-
tions in process, supply voltage and temperature. Furthermore,
memory circuits are vulnerable to soft errors caused by particle
strikes and timing-related transient errors introduced by clock
skew coupled with signal delay variations. As memory perfor-
mance has become a limiting factor in high-performance pro-
cessors, the composite effect makes memory design exposed
to the dual challenges of performance improvement and error
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tolerance.

Existing  reliability = enhancing techniques include
radiation/upset-hardened memory structures [6], [7], double
or triple memory redundancy [8], [9], and code checking
algorithms [10], [11]. Integrating these techniques into high-
performance on-chip memory presents a significant challenge
due to the severe constraints on area and timing margins.
On the other hand, research in memory microarchitecture
focuses primarily on reducing misses and memory traffic.
Sub-blocked caches [12], [13] reduce memory traffic by
transferring only a single sub-block on a cache miss instead
of fetching the whole cache line. Alternatives to sub-blocked
caches use adaptive techniques [14]— [16] to further improve
cache utilization. Some works also focus on statically
distributing cache accesses on the granularity of cache block.
Skewed associative caches [18]— [20] use skew functions
for mapping the desired address to the cache line address in
order to achieve balanced cache access distribution. Further
improvement is achieved in [21]— [23] by employing new
hash functions to obtain uniform cache accesses without
performance slowdown.

However, none of the above techniques target both memory
robustness and access performance, which are now closely
connected due to a combination of technology scaling and
higher levels of integration. In this paper, we propose a new
approach referred to as the soft indexing that achieves high-
performance memory utilization and effective error control in
a coherent manner. Our idea is based on the observation that
memory accesses are non-uniform, which results in many idle
memory spaces and high conflict misses. The idle memory
spaces create transient memory redundancy that can be ex-
ploited for both performance improvement and error control.
The proposed soft indexing technique allocates memory re-
sources in a self-adaptive manner in accordance with runtime
memory behaviors, thereby achieving efficient memory access
and effective error protection jointly. Statistical analysis shows
10X improvement in error detection over the existing error-
control techniques. The benefits of the proposed technique are
also demonstrated by the SPEC CPU2000 benchmarks [26].
Simulation results show 94.9% average error-control coverage
on the 23 benchmarks, with average of 23.2% reduction in
memory miss rate as compared to the existing techniques.
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Fig. 1. Microarchitecture of soft indexing memory.

In section II, we develop the soft indexing memory mi-
croarchitecture for joint error protection and performance
improvement. In section III, we present a statistical analysis
on error tolerance and provide the comparison to the existing
techniques. In section IV, we evaluate the performance of the
proposed technique. Section V concludes the paper.

II. SOFT INDEXING MEMORY MICROARCHITECTURE

The size of cache memory has a direct impact on the overall
processor performance. In general, increasing cache size can
reduce the miss rate by providing more memory resources
for the workloads. However, runtime program statistics reveal
some non-uniform memory access patterns, where many cache
lines are accessed less frequently and could even remain idle
or unused over time. This creates transient redundancy that can
be exploited to jointly improve memory access performance
and error tolerance. Since the distribution of idle cache lines
varies during runtime, we need an adaptive (soft) indexing
mechanism for dynamic allocation of memory resources.

In this section, we present the soft indexing memory mi-
croarchitecture that exploits the transient redundancy gener-
ated by non-uniform memory accesses for joint performance
improvement and error tolerance.

A. Soft Indexing

Fig. 1 shows the proposed memory microarchitecture. A re-
indexing function is introduced to assign an idle cache line to
the currently accessed cache line for different purposes that
will be explained later. Each cache line is extended with some
status bits that keep track of the history of access patterns.
These status bits are stored in a status table for the control
of memory allocation. As shown in the following discussion,
memory resources are dynamically allocated according to
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Fig. 2. An example of soft indexing.

the availability of transient redundancy and the statistics of
memory access patterns.

An example of memory access sequence using soft indexing
is shown in Fig. 2. Each cache line can be operated in one
of the three allocation modes: idle, no-checking, and error-
checking, which represent different memory access patterns.
The idle mode indicates that a cache line is currently idle
or unused. Thus, this cache line can be used for transient
redundancy. The no-checking mode represents the situation
where a cache line is accessed frequently but the access pattern
is less predictable. The program lacks the confidence in the
outcome (hit or miss) of subsequent accesses to this cache
line. Since the performance of this cache line is unstable, we
can assign a redundant cache line (i.e., one of those in the idle
mode) to this cache line to improve the access performance.
On the other hand, the error-checking mode indicates the
confidence in hit occurrence for a frequently accessed cache
line. Since this cache line is experiencing access hit in a stable
pattern, we can assign a redundant cache line to this cache line
to improve the error tolerance.

The mode switching is based on the access history stored
in the status table. The detailed operation of memory access
is explained below in reference to the steps in Fig. 2.

Initially, all cache lines are set to the idle mode by default,
and the re-indexing function is disabled. In the subsequent
operations, assume that a miss occurs in a cache line. The
status of this cache line is thus changed from the idle mode
to the no-checking mode (step 2 in Fig. 2). Meanwhile, a
redundant cache line will be assigned to this cache line by re-
indexing the requested address. Ideally, the redundant cache
line should be the one currently in the idle or unused status.
In the proposed technique, we locate the redundant cache line



using a re-indexing function as discussed later.

A single, non-consecutive hit in the cache line that is in the
no-checking mode will not cause any data replacement (steps
3 and 5), whereas a single, non-consecutive miss will result
in a replacement of both the primary and the redundant cache
lines (step 4). The current data in the primary cache line will
be transferred to the redundant cache line, and the new data
will be filled into the primary cache line. Note that in the no-
checking mode, the redundant cache line keeps the previously
accessed data (data 1), which in general is different from the
new data (data 2) in the primary cache line. This improves
memory access performance by saving the previously accessed
data nearby for possible future use.

Two consecutive hits in the no-checking mode establish the
confidence in memory hit occurrence in this cache line. Thus,
this cache line is switched to the error-checking mode (step 6).
The redundant cache line is thereafter updated as a redundant
copy of the primary cache line. Note that the switch condition
(e.g., two consecutive hits or misses in this example) can be
configured for different requirements on memory performance
and error control. In the error-checking mode, a hit will get
both copies in the primary cache line and the redundant cache
line. The two copies are then compared to detect any possible
data errors. If an error is detected, the hit is canceled and a
miss is generated instead (step 7, also see Fig. 1). On the other
hand, a single miss will replace both cache lines with the new
data (step 8).

Two consecutive misses in the error-checking mode will
change the status of the primary cache line to the no-checking
mode (step 9) due to the loss of confidence in hit occurrence.
Furthermore, two consecutive misses in the no-checking mode
will send the cache line back to the idle mode (step 11). When
the status returns to idle mode, this cache line is no longer
associated with any redundant cache line. Subsequently, this
cache line can either return to the no-checking mode if an
access occurs, or remain in the idle mode if no access occurs.
For the latter case, this cache line can be used as a transient
redundancy for other cache lines.

In the proposed soft indexing microarchitecture, the allo-
cation mode switches when enough confidence in hit or miss
occurrence has been established. In the above example, this
confidence is measured by two consecutive hits or misses.
The switch control diagram is shown in Fig. 3. In total, five
states are needed to control the mode switch, which requires
only three status bits each cache line. This incurs very small
hardware overheads.

Ideally, we would like to find the idle or unused cache lines
for redundancy. However, this is a really difficult task due
to the complexity of memory runtime behaviors. Here, we
exploit memory spatial locality to locate redundant cache lines.
Specifically, we utilize a XOR-based re-indexing function,
where the primary cache index are masked by an XOR code
to generate the address of the redundant cache line that is
guaranteed to be far away from the primary cache line. Due
to memory spatial locality, it is unlikely that the program will
access these two memory locations simultaneously. Simulation
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Fig. 3. Allocation mode switch control.

results in section IV demonstrate this scheme is quite effective.

B. Joint Performance Improvement and Error Tolerance

The proposed soft indexing technique exploits runtime
memory behaviors to improve access performance and error
tolerance. For cache lines in the no-checking mode, the pro-
gram does not have enough confidence in hit or miss occur-
rence. This implies that the access performance is unstable for
these cache lines. Instead of trashing the previously accessed
data during a miss, we save these data in the redundant cache
lines for possible future use (see steps 4, 5 and 10 in Fig. 2). In
response to the subsequent memory accesses, if the redundant
cache lines have the requested data, the data can be retrieved
instead of fetching from the lower level memory. Indeed, by
holding the previously accessed data in the redundant cache
lines, conflict misses are reduced due to an equivalent increase
in set associativity.

For cache lines in the error-checking mode, the program
provides enough confidence in hit occurrence. These cache
lines are hit frequently and presumably contain important data.
Therefore, the redundant cache lines are assigned to these
cache lines for error control (see steps 6—8 in Fig. 2). During
data read-out, there is an additional comparison between the
two data copies in the cache line pair. This comparison can
be performed in parallel with the tag address comparison.
Mismatches between the two copies indicate errors and hence
call for cancelation of the data read-out. A memory miss
is generated as a result and the new data will be fetched
from the lower level memory. The redundant cache lines are
generated dynamically and provide an effective means for error
tolerance.

C. Design Considerations

The overheads of the proposed microarchitecture are man-
ageable. Our technique does not require extra ports for the
cache. Actually, only a small write buffer is needed. Other
hardware overheads include a few bits per cache line for



the status table and the XOR re-indexing function. Also, the
latency of the additional data comparison is masked by the tag
address comparison, thereby not involving any timing penalty
on the critical paths.

The operations in the idle mode remain the same as those
in traditional cache. On the other hand, if the accessed cache
line is in the no-checking mode, the original tag and data in
the primary cache line are forwarded to the write buffer, while
the tags from both the primary cache line and the redundant
cache line are compared at the same time. If either cache
line contains the requested address, a hit is generated and the
requested data is delivered to the execution unit (for a read)
or written to the primary cache line (for a write). Otherwise,
a miss is generated and the requested data are fetched from
the lower level memory (for a read) or written to the primary
cache line (for a write). Thereafter, the previous data in the
primary cache line stored in the write buffer will be written
to the redundant cache line. This write operation is performed
off-line and thus does not affect other memory operations that
might be timing-critical.

Similarly, if the accessed cache line is in the error-checking
mode, an additional data comparison between the cache line
pair is needed during a read access for error detection. As
mentioned before, this comparison can be conducted in parallel
with tag comparison, thereby not affecting memory timing. For
a write access, the write buffer is able to hide the write latency
by scheduling the access to the redundant cache line at a later
time.

III. STATISTICAL ANALYSIS OF ERROR TOLERANCE

In this section, we perform a statistical analysis to quantify
the error tolerance achieved by the proposed soft indexing
technique.

In traditional memory systems, soft errors are typically
modeled as single-bit upsets (SBU). As the feature size
of semiconductor process being scaled into the nanometer
domain, a single partial strike may potentially corrupt mul-
tiple memory bits, resulting in multiple-bit upsets (MBU). In
addition, timing noise tends to cause MBU as well. Among
the existing solutions, parity checking code is considered as
the most effective for detecting SBU, whereas Hamming code
provides error detection for up to two bits of errors. Error-
control codes for more than two bits of errors are quite
complicated and thus are seldom used in memory systems.

Consider a cache line with n bits each entry, i.e., each access
can obtain n bits in total. A single soft error corruption may
lead to either a SBU or a MBU. In [24], the rates of SBU and
MBU are different from one order to three orders of magnitude
based on the operating conditions such as supply voltages.
According to this observation, we use two orders of magnitude
of difference between the SBU and MBU rates, i.e.,

P, =3, (D
P, =3-1072, 2

where (3 is the soft error rate (SER). The soft errors are
assumed to be independently and identically distributed (i.i.d.)

TABLE I
PROBABILITY OF UNDETECTED SBU (PUS).

SER PUS PUS

parity checking | proposed technique
10—1 1.20 x 10~ © 1.60 x 10— 7
10-° 1.20 x 10~ 8 1.60 x 10—9
10=6 1.20 x 10~ 10 1.60 x 10~ T
10-7 [ 1.20 x 10~ 12 1.60 x 1013
10—8 1.20 x 10~ 1% 1.60 x 1013

events.

For SBU dominant cases, we denote Py s sr and Pye s par
as the probabilities of undetected errors (PUE) in the proposed
technique and that in the parity checking code, respectively.
We can derive

Puc.s.ar —ZC;P;T P ), 3
n/Z
Puc.s par = Z C2p2i(] — p)n2 (4)

=1

where C! = @ ”,:),l‘, and P,, = P? is the probability of
a single-bit error that cannot be detected by the proposed
technique. This occurs rarely only when the same bits of
the original data and the redundant copy are both corrupted.
On the other hand, the undetectable errors in parity checking
schemes occur when the number of corrupted bits are even.
Numerical results from (3) and (4) demonstrate 10X improve-
ment in error detection capability over the parity checking
code, as shown in Table I where the number of bits is n = 16,
i.e., each memory access fetches a 16-bit word.

The proposed technique is also able to detect multiple errors
occurred in any bits. This is a significant improvement over the
existing error-control techniques such as parity checking code
and single-error-correction double-error-detection Hamming
code. The probability of undetected errors (PUE) in the MBU
cases can be derived as

Pucm_sr = Z Cr Py (1= Prn)" ™, ®)

uc _m_ham — Z C:L-P;n m)7b7i: (6)

where P, = P2 denotes the probability of a double-bit
error (the dominant MBU) that cannot be detected by the
proposed technique. Similar to the SBU cases, this happens
rarely only when the same two bits are corrupted in both the
original data and the redundant copy. On the other hand, the
undetectable errors in Hamming code occur when more than
two memory bits are corrupted. Again, numerical results from
(5) and (6) demonstrate 10X improvement in error detection
capability over the Hamming code, as shown in Table II where
the number of bits is n = 16.

Unlike parity checking and Hamming code that provide
static error-control coverage to all the cache lines, the proposed



TABLE II

PROBABILITY OF UNDETECTED MBU (PUM).

SER PUM PUM
Hamming code | proposed technique

1077 [ 1.20x 10~ 10 1.60 x 10~

10=° [ 1.20 x 10~ 12 1.60 x 10— 13

10785 | 1.20x 1071 1.60 x 10~ 1®

10-7 [ 1.20 x 10~ 16 1.60 x 10~ 17

108 | 1.20x 10~18 1.60 x 10~19

TABLE III

CONFIGURATION OF SIMULATION ENVIRONMENT.

\ Parameter [ Value ]
Cache Size 32KB
Line Size 32B
Associativity Direct Mapped
States number of initial mode 1
States number of no-checking mode 2
States number of error-checking mode 2
Reindexing XOR code 10°’b1000010001

technique relies upon a dynamic mapping strategy that enables
error protection only when necessary while releasing the
unused memory resources for other critical tasks such as
improving access performance. In fact, this approach leads to
a joint optimization for efficient memory access and effective
error tolerance. Since memory operation mode is dynamically
switching in accordance with runtime memory requirements,
the cache lines are not always under the error protection.
Specifically, when a cache line is in the no-checking mode, the
data is not protected as this cache line undergoes an unstable
access pattern. The error-control coverage ratio, denoted as
R, can be calculated by

MAcrrorfchccking
R, = , 7
P ]\/[Atota,l ( )

where M Acrror—checking and MAioq are the number of
memory accesses when the cache line is in the error-checking
mode and the total number of memory accesses, respectively.
The error-control coverage ratio Iz, reflects the effectiveness
of the proposed technique in dealing with soft errors. Obvi-
ously, the switching frequency of memory allocation modes
affects the error-control coverage ratio.

IV. SIMULATION RESULTS

In this section, we study the performance of memory access
and error tolerance achieved by the proposed technique.

Our simulation results were obtained from a trace-driven
simulator based on Dinero IV [25], which is a uniprocessor
cache simulator for memory reference. The cache model in this
simulator is modified to support the proposed soft indexing
microarchitecture. Table III shows the configuration of the
simulation environment. All the simulations were running
on the SPEC CPU2000 [26] trace files collected from the
Stream-Based Trace Compression (SBC) [27], where traces
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TABLE IV
ERROR-CONTROL COVERAGE RATIO.

[ Index | Workloads [ Error-Control Coverage Ratio |

1 ammp 97.6%
2 applu 99.8%
3 apsi 91.9%
4 art 84.2%
5 crafty 97.2%
6 eon 99.9%
7 equake 99.9%
8 fma3d 99.8%
9 galgel 99.6%
10 gap 99.9%
11 gee 99.9%
12 gzip 97.7%
13 lucas 99.8%
14 mcf 26.6%
15 mesa 99.9%
16 mgrid 93.4%
17 parser 98.7%
18 perlbmk 99.7%
19 sixtrack 99.7%
20 swim 99.8%
21 twolf 98.9%
22 vortex 99.8%
23 wupwise 99.7%

Average 94.9%

of 23 benchmarks are available. In these simulations, we use
direct mapped cache for the purpose of demonstration. We
expect to extend the proposed memory microarchitecture to
set-associative cache in our future work.

As shown in Fig. 4, our technique achieves an average
of 23.2% reduction in miss rate for the 23 benchmarks as
compared to the conventional cache design. These results
demonstrate that our technique is very effective in improving
memory access performance. Note that the XOR code for the
re-indexing function is a pre-determined value for all the 23
benchmarks. This XOR code introduces three-bit inversion



from the index of the primary cache line to that of the
redundant cache line. Future work needs to exploit dynamic
code generation for re-indexing function to further improve
the adaptability.

Evaluating error tolerance using architecture simulators re-
quires realistic error models and error injection mechanisms.
Many existing works [28]— [32] on soft errors usually assume
certain conditions or target specific architectures. Instead of
simulating errors directly, we evaluate the error-control cover-
age ratio as defined in (7). A higher error protection coverage
ratio along with the improved error detection capability implies
better tolerance to memory errors. Table IV shows the results
of error-control coverage ratio of the 23 workloads. These
results are obtained from (7) using statistical results reported
by the simulator. The average error-control coverage ratio of
all the 23 benchmarks is measured at 94.9%. These results
along with the theoretical analysis on error detection capability
in section III demonstrate the significant advantage of the
proposed technique in error tolerance. Moreover, the proposed
technique induces very small design overheads as described
in section II-C. Future work to improve the proposed error-
control technique could be a combination of the soft indexing
and error checking codes, thereby providing error checking to
cover all the data and meanwhile improve error detection.

V. CONCLUSIONS

This paper presents a new memory microarchitecture, re-
ferred to as the soft indexing, for joint performance im-
provement and error protection. Statistical analysis shows
about 10X improvement in error detection capability over the
existing error-control techniques for both single-bit upsets and
multiple-bit upsets. Trace-based simulation results demonstrate
94.9% average error-control coverage on the 23 benchmarks,
with average of 23.2% reduction in memory miss rates as
compared to the conventional techniques. Future work is being
directed towards exploiting transient redundancy with thread
information for multithreaded computing.
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