
A Reconfigurable CAM Architecture for Network Search Engines
Mehrdad Nourani, Deepak S. Vijayasarathi and Poras T. Balsara

Center for Integrated Circuits & Systems
The University of Texas at Dallas, Richardson, TX 75083

{nourani,dxv033000,poras}@utdallas.edu

ABSTRACT

A novel reconfigurable content addressable memory, called
RCAM, is proposed that supports on-the-fly reconfiguration
between CAM and TCAM. The area overhead of the pro-
posed RCAM cell is only 5.6% when compared to conven-
tional TCAM. This overhead is compensated by area saving
due to removal of the priority encoder. Other features of
our architecture include reconfigurability, and better overall
performance and power. To achieve these we incorporated
two novel techniques: (i) a hybrid CAM/TCAM architecture
that allows user to pre-define CAM/TCAM cell behavior in
each bit or word position and ultimately curtail the overall
power consumptions of memory unit; and (ii) a wired-AND
technique by which we can completely eliminate the sorting
requirement and thus significantly reduce the update time.
A 4Kb RCAM architecture was implemented using 0.18µm
CMOS technology. The simulations indicate a search time of
6.15ns, i.e. capability of handling about five OC-192 at wire
speed.

I. INTRODUCTION

Packet forwarding in network search engines is the process
by which the next hop address of every incoming packet is
determined based on the final destination address of the packet.
Packet forwarding for Classless Inter Domain Routing (CIDR)
environment requires finding the longest prefix that match the
destination address. This is due to the fact that CIDR advocates
variable prefix length.

A. Prior work

Several software and hardware schemes have been proposed
earlier for longest matching prefix (LMP) like trie based
lookup, Patricia tree, prefix expansion and various Content
Addressable Memory (CAM) based packet forwarding [1]
[2] [3]. All the above schemes mainly target on improving
the overall search time which is often achieved at a cost of
increasing the forwarding table update time.

Nowadays, more hardware architects than ever look into
CAM for high performance table lookup tasks [4] [5] [6].
A specifically interesting type of CAM, called Ternary CAM
(TCAM) can store don’t-care values in addition to 0’s and
1’s. Using this capability, the TCAM entries can include
wild-cards. Because of the wild-cards, a search key may
match multiple entries. In this case a TCAM with properly
structured content can produce the highest priority (or the
most specific) result. TCAM completes each lookup task in
just one clock cycle. While simplicity and high performance
are the main reasons for designers to choose TCAM for
hardware-based search applications, high power dissipation,
low storage density and sorting requirement remain to be the

major concerns with this technology, which makes it a hot
topic of ongoing research in both industry and academia. A
few recent works are presented in [7], [8], [9] and [10].

In TCAM based implementation the replacement of any
prefix in the forwarding table will take O(n) shifts (for a table
of n entries) to place the new entry in its correct location.
This is because the forwarding table entries should be sorted
in order wherein the longest prefix has the highest priority.
This may lead to a very high update time and stalls the
packet forwarding process. One technique to alleviate this
problems is to leave predetermined empty spaces between
the table entries so that any new entry to the forwarding
table can directly be placed in those empty spaces. The
drawback of such a technique is waste of memory space.
Moreover, the main problem does not go away. It is simply
reduced from global sorting to local sorting which makes the
performance of system dependent on the traffic. To have a
consistent throughput, regardless of traffic, the update time of
the forwarding table should be guaranteed to be as small as
possible [11].

Kobiyashi et al. proposed a Vertical Logical operation
with Mask-encoded Prefix (VLMP) based search engine for
wire-speed packet processing of an OC-192 link [12]. This
architecture expands upon a CAM architecture but is not made
up of actual CAM cells. It uses registers and combinational
logic to achieve CAM-like functionality. This architecture
also allows random storage of forwarding table entries, thus
reducing the updation time. The main disadvantage of this
architecture is that it cannot get the same prefix search time as
that of the conventional TCAM based architecture and also its
area overhead compared to conventional TCAM architecture
is very high. Another technique which targets update time
reduction is PLO OPT algorithm [13]. This algorithm places
all unused entries in the center of the TCAM such that the first
half of longest prefixes are always above the free space and
next half are always below the free space. Addition or deletion
of any new prefix would have to swap at most n/2 memory
entries, where n is the number entries stored. The drawback
of such an implementation is the time taken during swap of
the entries and the unused TCAM space.

B. Main Contribution

We propose reconfigurable CAM (RCAM) cell that has the
ability to selectively switch its functionality between a binary
CAM (BCAM or simply CAM) and ternary CAM (TCAM)
for any bit position. The configurability feature makes the
contribution of our architecture twofold. First, it allows a
user to configure it as a full CAM (e.g. of size 2n × w
bits) CAM, a full TCAM (of size n × w bits) or a hybrid
module (of size k×w bits, where n ≤ k ≤ 2n). In the hybrid

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

DB

6T-SRAM

XOR

EVALUATION

D

CMP

CAM-BIT

BLB

WL

CMPB

BL

ML

CAM-BIT

DB

6T-SRAM

XOR

D

EVALUATION

BLBLB

WL

CMPB CMP

MB
MBLB

MWL

ML

6T-SRAM

BL

(a) CAM cell. (b) TCAM cell.

Figure 1. Conventional binary and ternary CAM structures.

mode, the behavior (CAM or TCAM) can be defined for
each bit or word position which is an attractive option for
power minimization of TCAM-based search engines. Second,
the masking operation in conventional TCAM is replaced by
a novel wired-AND operation. Effectively, our wired-AND
technique replaces a longest matching prefix operation with
an exact matching mask operation. Applying the wired-AND
technique completely eliminates the need for a priority encoder
and the sorting requirement during updation. Elimination of
these two means significant reduction in power, cost and
increasing the overall throughput. All of these are achieved
with negligible overhead, i.e. 5.6% more than the conventional
9 transistor (9T) TCAM unit of the same size and performance.

II. BACKGROUND

A. Binary CAM Cell

Figure 1(a) shows the basic cell structure of a conventional
binary CAM. It consists of three parts - a 6T SRAM cell, 2T
XOR logic and 1T Evaluation logic. The data (D and DB) is
read/written into the SRAM bit of the CAM cell using the
bit lines (BL and BLB). The search key is given through the
comparand lines (CMP and CMPB) and will be fed to two
NMOS transistors that behave like an XOR gate. The word
line (WL) is activated whenever we want to read/write any
data into the SRAM bit. The match line (ML) is precharged for
every search operation. If there is a match, i.e if the incoming
comparand bit is same as that of the stored data bit, then
the charge of the match line (ML) is retained. Otherwise, ML
discharges through the path created by the mismatch. Overall,
the boolean function of ML can be expressed as:

ML = (D⊕CMP) (1)

where, D and CMP are the data and comparand bits, respec-
tively.

B. Ternary CAM Cell

Figure 1(b) shows the basic TCAM cell structure. The main
difference between binary CAM and ternary CAM is the use

of additional “don’t-care” bits. Such additional state enables
TCAM to perform partial match of the word as opposed to the
binary CAM which exercises only the exact match between
the comparand and data bits. Typically, a ternary CAM is a
16T structure and consists of three parts - a 9T CAM bit, a
6T SRAM bit and 1T evaluation logic. The bit lines (BL and
BLB), comparand lines (CMP and CMPB), word line (WL) and
match line (ML) have the same functionality as that of binary
CAM. The mask word line (MWL) is activated whenever we
want to read/write the mask bit. Throughout this paper we
assume the mask bit M = 1 indicates a don’t-care bit. Thus,
the corresponding bit is masked as it should not affect the
result of comparison. The boolean equation for the match line
in ternary CAM can be written as:

ML = M +(D⊕CMP) = (D⊕CMP) ·MB (2)

where, D is the data bit, CMP is the comparand bit and M
and MB are the mask bit and its complement, respectively.
Equation 2 also shows that the two transistors in the evaluation
block (shown also as E in some figures in this paper) form a
NAND gate whose two inputs are D⊕CMP and MB.

III. RECONFIGURABLE CAM CELL

Reconfigurable Content Addressable memory (RCAM) is
an 18T TCAM cell targeting reconfiguration and reusability.
Figure 2 shows the basic structure of a RCAM cell. It is made
up of two 9T CAM cells along with one extra reconfiguration
transistor whose gate is controlled by R. In general, the
reconfiguration and precharge transistors are shared among
bits and thus are drawn outside the RCAM cell area. The main
difference between RCAM and the conventional TCAM is that
both data and mask SRAM bit of the RCAM cell are embedded
with the 2T XOR logic and 1T evaluation logic. Consequently,
there will be two individual CAM bits as opposed to the
conventional TCAM cell which has a CAM data bit and a
SRAM mask bit.

A. Operation

The RCAM has two separate comparand lines, i.e.
CMP0/CMPB0 in CAM0 for the even-numbered words and
CMP1/CMPB1 in CAM1 for the odd-numbered words. The
source of the evaluation transistors of both CAM bits are
tied to the drain of the reconfiguration transistor. The drain
of the evaluation transistors are connected to the match lines
ML0 and ML1, respectively. The controlling input R of the
reconfiguration transistor basically reconfigures the RCAM
cell into either two independent CAM cells (R = 1) or into
one TCAM cell (R = 0). Depending on the flexibility desired,
we can have one R for the entire RCAM module or one R
for each row or column. For simplicity, we assume there is
only one control R per memory unit. Assume that the data
and mask bit values are already written into the SRAM bits
using the word lines (WL0 and WL1) and the bit lines (BL
and BLB). The operation of RCAM cell can be explained as
follows.

1) CAM Mode (R = 1): Both match lines ML0 and ML1
in RCAM should be precharged before evaluation in

CAM1

CMPB1

WL1

CMPB0

CAM0
WL0

BLB

BLB

PRE0

PRE1

DB

6T-SRAM

XOR

R

6T-SRAM

XOR

DB1
D1

EVALUATION

D

ML0

ML1

CMP1

BL

BL

CMP0

Figure 2. RCAM cell structure.
TABLE I

BEHAVIOR OF A BASIC RCAM CELL

R CAM1 CAM0 Outputs Operation
(Odd Cells) (Even Cells)

1 CAM Bit CAM Bit ML1,ML0 Two CAM bits
0 Mask Bit CAM Bit ML0 One TCAM bit

CAM mode. The comparand lines CMP0/CMPB0 and
CMP1/CMPB1 provide the key to be searched. ML0
and ML1 generate the comparison results.

2) TCAM Mode (R = 0): Match line ML0 is pre-charged
to Vdd and the match line ML1 is tied to ground
during every search operation in TCAM mode. The
comparand lines CMP1 and CMPB1 are connected to
Vdd and ground, respectively. By this arrangement CAM1
behaves exactly like a mask bit in Figure 1(b). Therefore,
CAM0 and CAM1 together form a TCAM cell.

The boolean equation for the main match line (ML0) in
RCAM can be written as:

{
ML0 = R · (D1⊕CMP1)+(D0⊕CMP0)
ML1 = R · (D0⊕CMP0)+(D1⊕CMP1)

(3)

where all signals are shown in Figure 2. When R = 1, we
have ML0 = (D0⊕CMP0) and ML1 = (D1⊕CMP1), that
are identical to Equation 1. When R = 0 and CMP1 = 1, we
have ML0 = ML1 = D1 + (D0⊕CMP0) which is identical
to Equation 2 when D1 is considered as the mask bit. For
consistency, we consider ML0 as the final output of the
cell when it operates in TCAM mode. For more clarity, the
working of RCAM cell in both CAM and TCAM mode is
summarized in Table I.

B. Applications

In what follows we briefly discuss three applications that
benefit from a hybrid binary and ternary CAM cells in terms
of cost, power and update time.

Bit 0

CAM1

...

...

...

CAM0

CAM1

R

Bit w-1

WL0

ML0

CAM0

WL1

E E

CMPB0 CMP0
BL BLB

CMPB0 CMP0
BL

ML1

CMP1CMPB1 CMP1 CMPB1

0

1 ’1’

WL_even

WL_odd

L

BLB

0
ML_even

ML_odd

ML

C/T

1

Figure 3. RCAM word architecture.

1. Classifier Engines: Packet classification in general refers
to finding the best matching rule containing multiple fields
among the rule set for a given search key. The standard five
tuple fields mainly include the source address, destination
address, protocol, source port and destination port. Rule fields
are combination of prefixes, wild cards and exact values.
Hence, a hybrid CAM/TCAMs that have the ability to store
apply exact, range-based and maximal matchings will be quite
efficient [15].
2. Low-Power Forwarding Engines: By comparing only the
first 4-8 bits of incoming packet’s destination address we can
identify up to 80% mismatches in the forwarding table. Using
this technique, average power saving of up to 76% is reported
[16]. Application of such scheme requires mix of CAM (e.g.
for the first 8 bits) and TCAM (for the rest) for which RCAM
is a preferred choice.
3. Engines with no Priority Logic: The RCAM architecture
has the ability to switch between TCAM and CAM function-
ality. This feature is exploited here by generating the maximal
match through exact matching within CAM bits that hold the
masking information. Our architecture, therefore, completely
eliminates the use of prioritizer block, priority encoder and the
need to sort entries. This would be possible by having cells
that can be configured as a CAM or TCAM in each cycle. The
detailed working of the RCAM architecture will be explained
in Section IV.

IV. RCAM ARCHITECTURE

A. Architectural Details

The RCAM architecture uses the RCAM cell as its basic
building block. Figure 3 shows how the word structure is
formed from the basic RCAM cell. The match lines ML0 and
ML1 along with the word lines WL0 and WL1 in the RCAM
cell are connected horizontally with the match and word lines
of neighboring RCAM. Together, they form two final word
match lines (MLeven and MLodd) and two final word lines
(WLeven and WLodd) for each word of RCAM. The multiplexer
with select line C/T is used to choose between CAM and
TCAM modes. A brief explanation of each mode follow.

1) CAM Mode (C/T = 0): The input of reconfigurable
controlling transistor (R) is kept at 1 to essentially
separate the two CAM cells (see Figure 2). Each RCAM
cell will be equivalent to two independent CAM cells.
The resulting outputs are MLeven and MLodd which
in turn are fed to the corresponding n-input encoder.

TABLE II

BEHAVIOR OF RCAM ARCHITECTURE

Mode Cycle C/T R Operation

CAM 1 0 1 2n word exact match search

TCAM 1 1 0 a priority encoder is needed;
(i) n word partial match search

1 1 0 n word partial match search using
TCAM both even and odd CAM cells.

(ii) 2 1 1 Exact match search of longest
mask using wired-AND technique.

L ML0

(D1_i)π
(D1_i)π

ML

ML0

ML_even

ML1

Latch L

ML_odd

BL

WL1

Precharge ML0’s

CMP1

Precharge ML1’s Evaluate ML1’s

Cycle t

Evaluate ML0’s

0 (reset)

Cycle t+1

0

0

Gnd

Vdd

0

0

0

0

10

Vdd

Vdd

1: match
WL_odd: mismatch

ML=ML0

ML0

BL

Wired-AND

ML1

L . ML1 =
ML0(t) . ML1(t+1)

ML =

1: match

ML0(t) . ML1(t+1)

0: mismatch
1: match

0: mismatch

Figure 4. Control signals and operations of a bit-slice RCAM.

Together, two encoders (for odd and even cells) choose
one out of 2n words in the RCAM block.

2) TCAM Mode (C/T = 1): There are two possible
schemes to make RCAM cell behave as a TCAM.

(i) R = 0 and use a conventional n-input priority en-
coder. This scheme has been already mentioned in
Table I and while possible is not of our interest as
it offers no advantage over conventional TCAM.

(ii) R will be 0 and 1 in the first and second cycles,
respectively. The RCAM architecture in this mode
takes two search cycles to compute the longest
prefix match. In this case, ML1 and thus MLodd are
tied to ground. In this scheme, we use the wired-
AND strategy and a n-input regular encoder. This
scheme offers a significant reduction of update time
(to be discussed in Section IV-C).

The behavior of the RCAM architecture is summarized in
Table II. Note that in this paper we focus on TCAM(ii) that
employs the wired-AND technique.

More details about the control signals (shown in Figure 3)
in TCAM mode are shown in Figure 4. In this figure, V dd
and Gnd denote precharging toward V dd and tying to ground,
respectively. The shaded boolean function at the end of second
cycle indicates how the final signal is obtained. The details of
blocks and control signals can be found in [18].

B. Wired-AND Technique

The principle difference between RCAM and the conven-
tional TCAM is the way by which the longest prefix is deter-
mined. Traditionally, TCAM-based packet forwarding engines

i

SENSE AMPLIFIER
0 1 01

CAM1

CAM1

CAM0

CAM1

CAM0

CMP1CMPB1

BLB BL

BLB

CAM0

E

E

...

BL

D1_0

D1_1

D1_n

DB1_0

DB1_1

E

Wired-AND

C/TC/T

πD1_i()

DB1_n

Figure 5. A bit-slice of RCAM architecture

determines the longest prefix entry by sorting the forwarding
table and determining the longest prefix from multiple matches
using a priority encoder (PE). The wired-AND technique used
in our architecture completely eliminates the need for any
sorting or priority encoding. The wired-AND technique in
RCAM is the concept by which selected bits in the same
column of different rows are read simultaneously on the same
BL/BLB wire by activating their corresponding word lines.

In conventional TCAM if we read the data bits simultane-
ously using BL/BLB lines the output is going to be either a
zero or one based on the strength of the equivalent pull up or
pull down logic formed by the inputs being read. To get the
wired-AND logic when multiple rows are read on the same
line we size the related transistors in RCAM cells in such a
way that it can withstand the strength of r parallel pull-up
transistors. Therefore, the pull-down transistor present in the
SRAM of the mask bit is sized r times the original value to
counter this rare worst case. From the implementation point
of view resizing cells for 2 ≤ r ≤ 16 is quite straightforward.
From practical point of view, in networking applications
researchers found out that the maximum number of multiple
matching prefix that can occur in a forwarding table is quite
small. Based on empirical data, the authors in [19] reported
this number to be 6. Similarly, the authors in [20] found that
the highest number of multi match prefix to be eight across
112 ACLs in a router database with a total of 215K rules. The
simulation results show that the distribution of multi match
prefix per search was mainly concentrated between 3 or 4
matches. To be on the safe side we chose r = 8. In applications
that may require larger r the pull-down transistors can be easily
tuned. Figure 5 shows the bit-slice of RCAM architecture
which incorporates this wired-AND technique.

C. Update Time

The behavior of the RCAM architecture is summarized
in Table II. The longest prefix match operation in RCAM,
when operating as a TCAM, takes two search cycles. The
main advantage in this scheme compared to the conventional

TCAM architecture is the drastic reduction of total update
time. The low update time in the RCAM forwarding table is
a direct consequence of allowing the prefixes to be stored in
any order and thus eliminating time consumed for sorting.
To improve the table update time some of TCAM-based
forwarding techniques partition the forwarding table according
to their prefix lengths leaving empty spaces at the end of each
partition for insertion of new entries. This technique does not
require frequent updation but if empty spaces in any one of
the prefix lengths gets filled the TCAM forwarding table has
to be sorted. In general, any forwarding table architecture that
uses priority encoder to find longest prefix match has to sort
its table one way or another. Our RCAM does not face this
problem since it allows prefixes to be stored in any order and
does not need any priority logic.

In order to perform the longest prefix matching the prefix
entries, which is a combination of the data and mask word,
are stored in the even and odd words of the RCAM block,
respectively. During the first search operation, RCAM is con-
figured to work in TCAM mode and finds all possible matches
for the key presented. In the second search, RCAM identifies
the longest prefix match indirectly through the corresponding
mask word. In other words, we first AND all mask words
corresponding to the matches obtained in the previous search
and then search the odd cells (home of masks) for an exact
match (CAM mode).

To be clear about this, let us assume that in the first
search operation there were three matches corresponding to the
mask words D11 = 001111, D12 = 000111 and D13 = 000001.
In this example, obviously, D13 corresponds to the largest
prefix. The logical AND of these three mask words generates
∏3

i=1 D1i = 000001. In the second round, we search the mask
data words that exactly match 000001 which indirectly gives
us the longest prefix match. In our implementation, the wired-
AND operation will generate ∏3

i=1 D1i. The bit-slice of RCAM
architecture incorporating the wired-AND scheme is shown in
Figure 5. The multiplexers in the bit-slice architecture are used
to multiplex the comparand line inputs (CMP1 and CMPB1)
according to the mode of operation. In CAM mode (C/T = 0)
a normal comparand (key) is presented and in TCAM mode
(C/T = 1) the wired-AND of the selected mask words is fed
into the comparand lines.

CMP1 = ∏
i∈Matched

D1i (4)

Note that in TCAM mode, odd CAM cells (i.e. D1i) hold
the mask data. Also note that, since the wired-AND of DB1
lines makes ∏i DB1i (which is different from ∏i D1i) we used
an inverter to directly make CMPB1.

V. TIME ANALYSIS

A. Search Time

Although the RCAM architecture takes two cycles to find
the longest prefix, the overall search time is not doubled when
compared to conventional TCAM architecture. The reason is
the removal of the prioritizer circuit from critical path of the

RCAM architecture. Analytically, the overall search time of
RCAM architecture is given by:

trcam search � 2trcam block + tencoder (5)

where, trcam block is the delay of the RCAM block (n×w cells)
and tencoder is the delay of a regular n-input encoder logic.

The analytical expression for the overall search time of a
conventional TCAM architecture is given by:

ttcam search � ttcam block + tpriority encoder (6)

where, ttcam block is the delay of the TCAM block (n×w cells)
and tpriority encoder is the delay of a n-input priority encoder
logic.

A straightforward VLSI implementation of these compo-
nents indicate that [17]:

trcam block � ttcam block � tpriority encoder >> tencoder (7)

Therefore, by combining Equations 5, 6 and 7, we can
simplify the difference in search speed between the RCAM
and TCAM architectures as follows:

trcam search

ttcam search
� 1+

tencoder

2tpriority encoder
(8)

According to Equation 8 the difference in search speed
between the RCAM and TCAM architecture depends on the
delay (size) of regular and priority encoders. For up to a few
thousand words, tpriority encoder � 2tencoder is a good approxi-
mation. Therefore, Equation 8 predicts that trcam search

ttcam search
� 1.25

which means the search time of RCAM will be approximately
25% slower than conventional TCAM. In spite of longer
search time in the next subsection we will show the overall
performance of the system will significantly improve.

B. Update Time

The overall speedup of RCAM architecture compared to
TCAM depends on both search and update time. In [18] we
have analytically shown that the overall speedup of RCAM
with respect to TCAM is given by:

Speedup =
TTCAM

TRCAM
=

ttcam search

trcam search
∗ [

1+
Savg

α+1

]
(9)

where, TTCAM (TRCAM) is the sum of total search time taken
for NS searches and NU updates for TCAM (RCAM), Savg is
the average number of the shifts during the update time and
α = NS

NU
. Note that no sorting (shifting) is needed in RCAM.

For large tables (e.g. 103 ≤ NU ≤ 104 and 100 ≤ α ≤ 1000)
the RCAM structure will outperform TCAM by 1 to 2 order
of magnitude (speedup of 10 to 100).

VI. EXPERIMENTAL RESULTS

The RCAM cell along with the conventional CAM and
TCAM cells were implemented in 0.18µm digital CMOS
technology using Cadence tools [21]. The RCAM cell was
simulated using Spice [14] for all the possible cases in both
the CAM and TCAM configurations and the results were
extensively reported in [18].

We have summarized some power, performance and area
metrics in Table III. According to Spice simulation [14], the

TABLE III

MAIN CHARACTERISTICS OF DIFFERENT 1-BIT CELLS

Metric Conventional RCAM
CAM TCAM CAM Mode TCAM Mode

Delay (ps) 153.86 166.94 140.77 163.06
Area (µm2) 24.97 47.17 26.36 52.72
Power (µW) 6.07 7.63 15.01 15.88

TABLE IV

COMPARING 4Kb PCAM UNIT WITH PREVIOUS WORK FOR KEY METRICS.

Comparing RCAM Architecture
Metric CAM Mode (C/T = 0) TCAM Mode (C/T = 1)

Technology 0.18µm, 6 metals 0.18µm, 6 metals
Chip Configuration 4Kb 2Kb
Match Line Arch. NOR type NOR type+Wired-AND
Vdd 1.8V 1.8V
Maximum Speed 284.3Mhz @1.8V 162.7Mhz @1.8V
Average Power 8.5mW @ 100Mhz 8.62mW @ 100Mhz
Power-Performance 20.75fJ/bit/search 42.08fJ/bit/search
Core Area 0.254mm2 0.254mm2

delay of a RCAM cell is slightly better than CAM and TCAM
because the addition of the reconfigurable transistor forms
new parallel paths that decrease parasitic resistances. However,
this negligible gain in the search speed of one cell alone will
not have a significant effect on the overall performance. This
is because in RCAM/TCAM word architecture the overall
performance is mainly dictated by both the time taken to
charge/discharge the highly capacitive match line of the entire
word and by the update time. The area per data bit, reported in
Table III, indicates that RCAM cell consumes 5.6% and 11.8%
more silicon compared to TCAM and CAM, respectively. The
power (per data bit) consumed by RCAM working as CAM
and TCAM is also higher than power of 1-bit CAM/TCAM
due to existence of extra transistors. However, similar to our
argument on performance, the increase in power consumption
for an individual RCAM cell will be offset by the power saved
from the elimination of the priority encoder and the update
cycles in RCAM architecture.

Table IV shows the delay, area and power numbers of
a 4Kb (i.e. 128 × 32) RCAM architecture in both modes
compared to two implementations reported in the literature.
Due to differences in technology, size, cell-library and design
objectives (e.g. area, power) a direct comparison of the these
implementations is not possible. Our main goals of show-
ing Table IV is to illustrate that our implementation have
comparable size, performance and power while it provides
the reconfiguration capability. In particular, by eliminating
the priority encoder, the RCAM unit runs in 162.7MHz, i.e.
expectedly almost half of its operational frequency in CAM
mode. This is consistent with the analytical discussion in
Section V where we argued that after removing the priority
encoder, the TCAM mode operation is done in two cycles as
opposed to one cycle in CAM mode.

In terms of area, in spite of area increase in one indi-
vidual cell the overall area actually improves as the prior-
ity encoder is replaced with a regular binary encoder. The
power-performance metric was also evaluated for both the
modes of RCAM and is found to comparable with other
existing architectures [22] [23] [24]. Unfortunately, we cannot

directly compare RCAM in TCAM mode with the TCAM
units reported in these references because of the difference
in implementation technology (0.18 µm versus 0.13 and 0.35
µm) and the size (2Kb versus 4 to 36Mb). In general, RCAM
in TCAM mode with 42.08 f J/bit/search shows 6.5% higher
power-performance value but achieves maximum speed of
162.7Mhz that is 15.1% higher performance than conventional
TCAMs.

REFERENCES

[1] S. Nilsson and G. Karlsson, “IP-Address Lookup Using LC-Tries,” IEEE
J. Selected Areas in Communications, vol. 17, no. 6, pp. 1083-1092,
1999.

[2] Paolo Ferragina and Roberto Grossi, “The String B-Tree: A New Data
Structure for String Search in External Memory and its Applications,”
Journal of the ACM, vol. 46, no. 2, 1999.

[3] R. Kempke and A. McAuley, “Ternary CAM Memory Architecture and
Methodology,” U.S. Patent no. 5,841,874, August 1996.

[4] H. Miyatake, M. Tanaka, and Y. Mori, “A Design for High-Speed Low-
Power CMOS Fully Parallel Content-Addressable Memory Macros,”
IEEE Journal of Solid-State Circuits, vol. 36, no. 6, June 2001.

[5] T. Pei and C. Zukowski, “Putting Routing Tables in Silicon,” IEEE
Network Magazine, January 1992.

[6] A. McAuley and Paul Francis, “Fast Routing Table Lookup Using
CAMs,” IEEE INFOCOM’93, March 1993.

[7] F. Zane, G. Narlikar, A. Basu, “CoolCAMs: Power-Efficient TCAMs for
Forwarding Engines,” IEEE INFOCOM, March 2003.

[8] E. Spitznagel, D. Taylor, and J. Turner, “Packet Classification Using
Extended TCAMs,” IEEE Int. Conf. on Network Protocols (ICNP’03),
November 2003.

[9] R. Panigrahi and Samar Sharma, “Sorting and Searching Using Ternary
CAMs,” IEEE Micro, Feb. 2003.

[10] V. Ravikumar and R. Mahapatra, “TCAM Architecture for IP Lookup
Using Prefix Properties,” IEEE Micro, April 2004.

[11] Craig Labovitz, Robert Malan, Farnam Jahanian, “Internet routing
Instability,” IEEE/ACM Transactions on Networking, vol. 6, no. 5, Oct.
1998.

[12] M. Kobayashi, T. Murase, and A. Kuriyama, “A Longest Prefix Match
Search Engine for Multigigabit IP Processing,” Proc. Int’l Conf. on
Communications (ICC), IEEE Press, Piscataway, N.J., pp. 1360, 2000.

[13] D. Shaw and P. Gupta, “Fast Updating Algorithms for TCAM,” IEEE
Micro, Jan./Feb. 2001.

[14] Texas Instruments Inc., “TI Spice3 User’s and Reference Manual -
Version 1.6,” 1994.

[15] D. E. Taylor and E. W. Spitznagel, “On Using Content Addressable
Memory for Packet Classification,” Technical Report WUCSE-2005-9,
March 2005.

[16] Deepak S Vijayasarathi, Mehrdad Nourani, Mohammad J.
Akhbarizadeh, Poras T. Balsara, “Ripple-Precharge TCAM A Low-
Power Solution for Network Search Engines,” Proc. of ICCD
Conference, pp. 243-248, 2005.

[17] M. Akhbarizadeh and M. Nourani, “Hardware-Based IP Routing Using
Partitioned Lookup Table,” in IEEE Transactions on Networking, vol.
13, no. 4, pp. 769-781, Aug. 2005.

[18] Deepak S Vijayasarathi, Mehrdad Nourani, “Design and Implementation
of Reconfigurable CAM Architecture,” Technical Report, UTD-EE12-
12-2005, 2005.

[19] M. Kounavis, A. Kumar, HM Vin, R. Yavatkar, and A. Campbell,
“Directions in Packet Classification for Network Processors,” Workshop
on Network Processors & Applications – NP2, Feb. 2003.

[20] Karthik Lakshminarayanan, Anand Rangarajan, Srinivasan Venkat-
achary, “Algorithms for Advanced Packet Classification with Ternary
CAM,” SIGCOMM’05, Aug., 2005.

[21] Cadence Design Systems Inc., “Virtuoso Layout Editor Users Guide -
Version 4.4.6,” June 2000.

[22] K. Pagiamtzis and A. Sheikholeslami, “Pipelined Match-Lines and Hier-
archical Search-Lines for Low-Power Content-Addressable Memories,”
in Proceedings of the IEEE Custom Integrated Circuits Conference, pp.
383-386 , Sept. 2003.

[23] Alan Roth, Dick Foss, Robert McKenzie, and Douglas Perry. “Advanced
Ternary CAM Circuits on 0.13 um Logic Process Technology,” in
Proceedings of Custom Integrated Circuits Conference, pp. 465-468,
Oct. 2004.

[24] C. Lin, J. Chang and B. Liu, ”A Low-Power Precomputation-Based
Fully Parallel Content-Addressable Memory,” IEEE Journal of Solid-
state Circuits, vol. 38, no. 4, April 2003.

