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Abstract

Boolean Satisfiability (SAT) is a core NP-complete problem in logic
synthesis. Several heuristic software and hardware approaches have
been proposed to solve this problem. In this paper, we present a hard-
ware solution to the SAT problem. We propose a custom IC to implement
our approach, in which the traversal of the implication graph as well
conflict clause generation are performed in hardware, in parallel. In our
approach, clause literals are stored in specially designed cells. Clauses
are implemented in banks, in a manner that allows clauses of variable
width to be accommodated in these banks. To maximize the utiliza-
tion of these banks, we initially partition the SAT problem. Our design
is flexible in that it can implement various Boolean Constraint Propa-
gation (BCP) engines on the same die, at the same time, allowing the
user to switch BCP engines dynamically. Our solution has significantly
larger capacity than existing hardware SAT solvers, and is scalable in
the sense that several ICs can be used to simultaneously operate on the
same SAT instance, effectively increasing capacity further. Our area and
performance figures are derived from layout and SPICE (using extracted
parasitics) estimates. Additionally, the approach presented in this paper
have been functionally validated in Verilog. Preliminary results demon-
strate that our approach can accommodate instances with approximately
63K clauses on a single IC of size 1.5cmx1.5cm. The approach re-
sults in over 4 orders of magnitude speed improvement over BCP based
software SAT approaches (2-3 orders of magnitude over other hardware
SAT approaches). The capacity of our approach is significantly higher
than most hardware based approaches.

1 Introduction

Boolean Satisfiability (SAT) [1] is a classic NP-complete problem,
which has been widely studied in the past. Given a set V of variables,
and a collection C of Conjunctive Normal Form (CNF) clauses over V,
the SAT problem consists of determining if there is a satisfying truth
assignment for C.

Given the broad applicability of the problem to several diverse appli-
cation domains such as logic synthesis, circuit testing, pattern recogni-
tion and others [2], there has been much effort devoted to devising ef-
ficient heuristics to solve SAT. Some of the more well-known software
approaches include [3, 4, 5, 6]. Again, given the general applicability
of the SAT problem, there has been much interest in the hardware im-
plementation of SAT solvers as well. An excellent survey of existing
hardware approaches to solve the SAT problem is found in [7].

In this paper, we propose an approach that utilizes a custom IC to
accelerate the SAT solution process, with the goal of speedily solv-
ing large instances in a scalable fashion. By scalable, we mean that
multiple SAT ICs implemented in our approach can be easily made to
work in tandem on larger SAT instances. The hardware implements the
GRASP [3] strategy of non-chronological backtracking. In this IC, lit-
erals and their complement are implemented as custom cells. Clauses
of variable width are implemented in banks. Any row of a bank can
potentially accommodate more than one clause. The SAT problem is
mapped to this architecture in an initial partitioning step which helps
maximize the hardware utilization. Experimental results are obtained
using area and performance figures derived from layout and SPICE (us-
ing extracted layout-level parasitics) estimates. Our hardware approach
performs, in parallel, both the tasks of implicit traversal of the implica-
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tion graph, as well as conflict clause generation. The contribution of
this work is to come up with a high capacity, fast, scalable hardware
SAT approach. We do not claim to propose any new SAT solution
heuristics in this paper. Note that although we used the BCP engine
of GRASP [3] in our hardware SAT solver, the hardware approach can
be modified to implement other BCP engines as well. The BCP logic
of any BCP based SAT solver can be ported to an HDL and directly
synthesized in our approach.

2 Previous Work

There have been several hardware based SAT solvers reported in the
literature, which are summarized and compared in [7]. Among these
approaches, [8, 9] utilize configurable processors to accelerate SAT,
demonstrating a maximum speedup of 60x using a board with 121 con-
figurable processors. The largest example mapped to this structure had
24,700 clauses. In [10, 11], the authors describes an FPGA-based SAT
accelerator. The speedup obtained was 30x, with 64 FPGA boards re-
quired to handle an example containing 1280 clauses. The largest ex-
ample that the approach of [12] handles has about 1300 clauses, with an
average speedup of 10x. This paper states that the hardware approaches
reported in [13, 14, 15] do not handle large SAT problems.

In [16, 17], the authors present a software plus configurable hardware
(configware) based approach to accelerate SAT. Software is used to do
conflict diagnosis, backtrack and clause management. Configware is
used to do implication computation and next decision variable assign-
ment. The speedup over GRASP [3] is between 1-2 orders of magnitude
for the accelerated fraction of the SAT problem. The largest problem
tackled has 214,304 clauses [17] (after conversion to 3-SAT, which can
double the number of clauses [16]). In contrast, our approach performs
all tasks in hardware, with a corresponding speedup of 2-3 orders of
magnitude over the existing hardware approaches, as shown in the se-
quel. In most of the above approaches, the capacity of the proposed
approaches is clearly limited, and scalability is a significant problem.
The approach in this paper is inspired by the requirement of handling
significantly larger problems on a single die, and also with the need to
allow the design to scale more elegantly. By utilizing a custom IC ap-
proach, each die can accommodate significantly larger SAT instances
than most of what the above approaches report. Our approach is not
FPGA based, and can accommodate 63,000 clauses on a single die.

Further, the architecture of our design is designed with scalability in
mind, allowing the approach to scale seamlessly to handle larger prob-
lems. The rest of this paper is organized as follows. Section 3 describes
the hardware architecture employed in our approach. The generation
of implications and conflicts (which is done in parallel) is explained,
along with the hardware partitioning utilized, the communication proto-
col that banks implement, and the generation of conflict induced clauses.
Section 4 describes the up-front clause partitioning methodology, which
targets maximum utilization of the hardware. Section 5 reports the ex-
perimental results we have obtained, while Section 6 concludes with
some directions for future work in this area.

3 Hardware Architecture
3.1 Abstract Overview

Figure 1 shows an abstracted view of our approach, in order to illus-
trate the main concept, and to explain how Boolean Constraint Propa-
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gation (BCP) [3] is carried out. Note that the physical implementation
we use is different from this abstracted view, as subsequent sections will
describe. In Figure 1, the clause bank stores all clauses (a maximum of
n clauses on m variables). The bank architecture is capable of implicitly
storing the implication graph and consequently generating implications
and conflicts. A variable is assigned by the decision engine and the
assignment is communicated to the clause bank. The clause bank, in
turn, generates implications and possible conflicts due to this assign-
ment. This is done in parallel, at hardware speeds. The decision engine
accordingly assigns next variable or in case of a conflict, generates a
conflict induced clause and backtracks non-chronologically [3].

Variables

12, ... m

| »-Clause bank

Clauses

fa
Clause cell

(m)\—» lit, lit_bar, var_implied

| Decision engine ‘

Figure 1: Abstracted view of the proposed idea.

As seen in Figure 1, a column in the bank corresponds to a variable,
a row corresponds to a clause and a clause cell corresponds to a literal
(which can be positive, negative or absent) in the clause. The clause cell
is central to our idea and provides the parallelism obtainable by solving
the satisfiability problem in hardware.

3.2 Hardware Overview

The actual hardware architecture of our SAT IC differs from the ab-
stracted view of the previous section. The differences are not functional,
rather they are caused by circuit partitioning and speed constraints. The
different components of the hardware SAT IC are briefly described next.

The core circuit structure of our implementation, the clause cell, is
capable of computing the implication graph implicitly, and also helps in
generating implications and conflicts, all in parallel. This is explained in
Section 3.3. In practice, we do not have a single clause bank as shown
in Figure 1. Rather, clauses are arranged in several banks, with a limited
number of rows (clauses) and columns (variables). Each bank has sev-
eral strips, which partition the columns of the bank into smaller groups.
Between strips, we have special cells which allow us to implement arbi-
trarily long rows (clauses). The bank and strip structures are explained
in Section 3.4. Because we partition the hardware into many banks,
it is possible that a particular variable occurs in several banks. There-
fore, implications or assignments on such variables, generated in a bank
by, must be communicated to other banks b; where the same variable
occurs. This communication is performed by a hierarchical arrange-
ment of communication cells, arranged in a tree fashion. The details of
this inter-bank communication are provided in Section 3.5. Figure 2 de-
scribes the banks, and the inter-bank communication cells. It also shows
the centrally located BCP() engine, as well as the banks for storing con-
flict induced clauses. The clause banks and strips will be illustrated in
the sequel.

3.3 Clause Cell and Conflict Clause Generation
3.3.1 Clause Cell

Figure 3 shows the signal interface of a clause cell. Figure 4 pro-
vides details of the clause cell structure. Each column (variable) in the
bank has three signals — lit, lit_bar and var_implied, which are used to
communicate assignments, implications and conflicts on that variable.
Each row (clause) in the bank has a signal clausesat_bar to indicate if
the clause is satisfied. The free lit cnt signals serve as an indicator of
number of free literals in the clause. The imp_drv and cclause_drive
signals facilitate generation of implications and conflict clauses respec-
tively. Also, each row has a termination cell at its end (which we as-
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Figure 2: Generic floorplan.

sume is at the right side of the row) which drives the imp_drv and
cclause_drive signals. The next section describes the encoding of these
signals and how they are employed to perform BCP.

clausesat_bar |e——

——| precharge cclause_drv |e——»

. .
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——| in_free_lit_cnt .
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Figure 3: Signal interface of the clause cell.

3.3.2 Generating Implications and Conflicts

Note that the signals lit, lit_bar, var_implied and cclause drive are
predischarged and clausesat_bar is a precharged signal. Also, each
clause cell has two registers bits namely reg and reg_bar to store the
literal of the clause. The data in these registers can be driven in or driven
out on the /it and /it_bar signals.

A variable is said to participate in a clause if it appears as a positive or
negative literal in the clause. The encoding of the reg and reg_bar bits is
as shown in Table 3.3.2. The iamfree signal for a variable indicates that
the variable has not been assigned a value yet, nor has it been implied.

Table 1: Encoding of {reg,reg_bar} bits.

Encoding Meaning
00 variable does not participate in clause.
0l variable participates as a positive literal.
10 variable participates as a negative literal.
11 Tllegal.

The assignments and failure-driven assertions [3] are driven on /it,
lit_bar and var_implied signals by the decision engine whereas impli-
cations are driven by the clause cells. Table 2 lists the encoding of the
lit, lit_bar and var_implied signals.

If a variable V; participates in clause C; and no value has been as-
signed or implied on /it and lit_bar signals for V;, then V; is said to
contribute a free literal to clause C;. Also, a clause is satisfied when
variable V; participates in clause C; and the value on the /it and lit_bar
signals for V; matches the register bits in clause cell ¢;;. In such a case,
the precharged signal clausesat_bar for C; is pulled down by c;;.

If clause C; has only one free literal and C; is unsatisfied, then C; is
called a unit clause [3]. When C; becomes a unit clause with c;; as the
only free literal, its termination cell senses this condition by monitoring
the value of free lit cnt and testing if its value is 1. If free lit _cnt is
found to be 1, the termination cell asserts the imp_drv signal. When
c;j (which is the free literal cell) senses the assertion of imp_drv, then
it drives out its reg and reg_bar values on the /it and lit_bar wires and
also asserts its var_implied signal, indicating an implication on variable
Vi.

A conflict is indicated by the assertion of the cclause_drv signal. It
can be asserted by the termination cell or a clause cell. The termina-
tion cell asserts cclause drv when free lit_cnt indicates that there is
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Figure 4: Schematic of the clause cell.

Table 2: Encoding of {lit,lit_bar} and var_implied signals.

Meaning

Variable is neither assigned nor implied
Value 0 is assigned to the variable

Value 1 is assigned to the variable

Value 0 is implied on the variable

Value 1 is implied on the variable

0 as well as 1 implied i.e. confict

Variable participates in confict induced clause
llegal

(=}
—
= = =l =]

no free literal in the clause and the clause is unsatisfied (indicated by
clausesat_bar staying precharged). When cclause_drv is asserted for
clause Cj, all the clause cells in C; drive out their respective reg and
reg_bar values on the respective it and /it bar wires. Thus, if two
clauses cause different implications on a variable, both the clauses will
drive out all their literals (which will both be high, since /it and /it _bar
are predischarged signals). This indicates a conflict to the decision en-
gine, which monitors the state of /it, lit_bar and var_implied for each
variable. This can trigger a chain of cclause_drv assertions leading to
back-tracing of the implication graph in parallel, which causes all the
variables taking part in the conflict clause to be identified.

Figure 6 shows an example CNF instance, its implication graph and
how it is implicitly traversed in this scheme. c; ...cg are the clauses
as shown in Figure 6(b). Let us call the lit, lit_bar and var_implied
signals for a variable as a signal triplet. Initially the signals of all signal
triplets are predischarged and held at high impedance. The implication
graph in Figure 6(a) shows a conflict occurring at decision level 7. a =
0,b=0, p=1and f =1 are the assignments made before level 7
and ¢ =0 and y = 1 are the implications caused by them. Figure 6(c)
shows the transitions occurring on the signal triplet of each variable.
Decisions are reflected as logic low and implication as logic high on the
var_implied signal. The decision ¢ = 0 at level 7 causes implications
on d and e due to clauses c¢; and ¢, respectively. It results in c3 and
c4 imposing conflicting requirements on the value of z. Therefore, c3
drives 011 and ¢4 drives 101 on the signal triplet of z and the resultant
status on z becomes 111. Note that triplet signals that are 0 are initially
predischarged, so that they can be driven to 1 during the implication

graph analysis. After the occurrence of a conflict, an implicit process of
back-traversal of the graph starts in hardware. The conflict on z causes
the assertion of the cclause_drv signal in c3 and c4 which in turn causes
the data in their registers to be driven on the /it and lit_bar signals. Thus,
111 gets driven on the signal triplets of d due to c4, and e and ¢ due to
c3 (as they are implied variables). The 111 on d causes the assertion
of cclause_drv in cy, resulting in 110 on «a and c as they are decision
variables. Similarly 110 is driven on b and ¢ due to ¢, and on p due to
¢5. And thus the variables taking part in the conflict clause are a, b, ¢
and p and the conflict clause is formed by inverting their assigned values
ie. (a+b+c+ ). Also, it can be seen that the status on f and y does
not change as they are not a part of the conflict graph. This makes the
generation of implications and conflict clauses implicit and parallel and
hence fast.

3.3.3 Decision Engine and Conflict Induced Clauses

Figure 5 shows the state machine of the decision engine. To begin
with, the hardware is programmed with the CNF instance and all the
banks’ signals are precharged or predischarged as mentioned earlier.
The decision engine assigns the variables in the order of their identifica-
tion tag, which is a numerical ID for each variable, statically assigned
such that most commonly occurring variables are assigned a lower tag.
The decision engine assigns a variable and waits for the banks to com-
pute all the implications. If no conflict is generated due to the assign-
ment, the decision engine assigns the next variable. If there is a conflict,
all the variables participating in the conflict clause are communicated
by the banks to the decision engine. Based on this information, the de-
cision engine generates and stores the conflict induced clause. Also it
non-chronologically backtracks according to the GRASP [3] algorithm.
After a conflict is analyzed, the banks are again precharged and the back-
tracked decision is applied to the banks. Each variable in a bank re-
tains the decision level of the current assignment/implication. When the
backtrack level is lower than this stored decision level, then the stored
decision level is cleared before further computations of the bank.

last level

assign_next_variable

var_implied

no_conflict

waitﬁforiimplicationsa implication

analyze_conflict

Oth level

Figure 5: State diagram of the decision engine.

As the conflict induced clauses are generated dynamically, the width
of the conflict clause banks can not be fixed while programming the CNF
instance in the hardware. Therefore, the width of conflict induced clause
banks is kept equal to the number of variables in the given CNF instance.
The decision engine can still pack more than one conflict induced clause
in one row of the conflict clause banks. To be able to use the space in
the conflict induced clause banks effectively, we propose to store only
the clauses having fewer literals than a pre-determined limit, updated in
a first-in-first-out manner (such that old clauses are replaced by newly
generated clauses). Further, we can utilize the clause banks for regular
or conflict clauses, allowing our approach to devote a variable number
of banks for conflict clauses, depending on the SAT instance.

The above functionality of the clause cell, along with implication,
conflict generation, BCP, backtracking and decision generation has been
implemented and verified in Verilog.
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Figure 6: Example of implicit traversal of implication graph.

3.4 Partitioning the Hardware

In a CNF instance, a very small subset of variables participate in a
single clause. Thus, putting all the clauses in one monolithic bank, as
shown in the abstracted view of the hardware (Figure 1) results in a
lot of non-participating clause cells. For the DIMACS [18] examples,
on average, more than 99% of the clause cells do not participate in the
clauses if we arrange the clauses in one bank. Therefore we partition the
given CNF instance into disjoint subsets of clauses and put each subset
in a separate clause bank. Though a clause is fully contained in one
bank, note that a variable may appear in more than one banks.

Columns of terminal cells
/4 Multiple clauses packed in a row
\ V4 A >

Clause strips
(a) (b)
Figure 7: (a)Internal structure of a bank. (b)Multiple clauses packed in
one bank-row.

Figure 7 depicts an individual bank. Each bank is further divided
into strips to facilitate a dense packing of clauses (such that the non-
participating clause cells are minimized). We try to fit more than one
clause per row with the help of strips. This is achieved by inserting a
column of terminal cells between the strips. Please refer to Figure 8 for
a detailed schematic of the terminal cell. Each terminal cell has a pro-
grammable register bit indicating if the cell should act as a mere con-
nection between the strips or act as a clause termination cell. While
acting as a connection, the terminal cell repeats the clausesat_bar,
cclause_drv, imp_drv, and free_lit_cnt signals across the strips ex-
panding a clause over multiple strips. However, while acting as a clause
termination cell, it generates imp_drv and cclause_drv signals for the
clause being terminated. A new clause can start from the next strip (the
strip to the right of the terminal cell). The schematic view of the terminal
cell is shown in Figure 8.

The number of clause cell columns in a bank (or a strip) is called
the width of a bank (or a strip) and number of rows in a bank is called
height of a bank. On the basis of extensive experimentation, we settled
on 25 rows and 6 columns in a strip. With the help of terminal cells, we
can connect as many strips as needed in a bank. Consequently, a bank
will have 25 rows but its width is variable since the bank can have any
number of strips connected to each other through the terminal cells.

Figures 4 shows the schematic of our clause cell. The layout, gener-
ated in a full-custom manner, had a size of 12um by 9um.
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Figure 8: Schematic of a terminal cell.

The algorithm for partitioning the problem into banks, and for pack-
ing the clauses of any bank into its strips (to minimize the number of
non-participating cells) is described in Section 4. Also, experimental
results and optimal dimensions of the banks and strips are presented in
Section 5.

3.5 Inter-bank Communication

Since a variable may appear in multiple banks (we refer to such vari-
ables as repeated variables), implications on such variables need to be
communicated between the banks. Also, the assignments done by the
decision engine need to be communicated to the banks and the implica-
tions or conflict clauses generated in the bank need to be communicated
back to the decision engine.

In our design, we employ a hierarchical arrangement of communi-
cation units to perform this communication between the banks and the
decision engine, as depicted in Figure 9. Each column in the bank has a
base cell that actually drives and senses the /it, lit_bar and var_implied
signals for that variable, and communicates with the decision engine
through a hierarchy of communication cells. As seen in Figure 9, the
communication cells and base cells form a tree structure. The commu-
nication cell directly interacting with the decision engine is said to be at
0" Jevel of hierarchy and base cells are said to be at the highest level of
hierarchy.

Each variable is associated with an identification tag in this scheme.
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Figure 9: Hierarchical structure for inter-bank communication.
Every base cell has a register to store the identification tag of the vari-
able it represents. The base cells and the decision engine use the identi-
fication tags to communicate assignments, implications, conflict clause
variables and backtrack level. A base cell also has a programmable reg-
ister bit named repeat bit and a register named repeat level. The repeat
bit indicates if the variable represented by the base cell is a repeated
variable. The repeat level register for any variable v is pre-programmed
with the hierarchy level of the communication cell that forms the root of
the subtree containing all the base cells containing that repeated variable
v. If the repeat bit for variable v is set, and an implication has occurred
on v, the base cell of the variable v communicates the implied value,
its identification tag and its repeat level to the communication cell C at
the next lower level of hierarchy. The communication cell C communi-
cates these data to other communication cells at lower levels if the repeat
level of the implied variable v is lower than its own hierarchy level. In
this way, the inter-bank implication communication is completed using
the smallest possible communication subtree, allowing for parallelism
during inter-bank communication.

The assignments made by the decision engine are broadcast to all
levels. The variables participating in the conflict induced clause are also
communicated to the decision engine via this hierarchy.

Figure 2 shows the proposed generic floorplan. The decision engine
is at the center of the chip surrounded by the clause banks. Additional
banks required to store the conflict induced clauses are also near the
center of the chip. Each communication unit resides at the center of the
chip area occupied by the banks in its communication subtree, as shown
in Figure 2.

4 Partitioning the CNF Instance

This section describes the algorithms used to partition the given CNF
instance into banks and strips. We cast these problems as hypergraph
partitioning problems, and use hMetis [19] to solve them.

To partition the CNF instance in multiple banks, we represent the
clauses as vertices in the hypergraph and variables as hyperedges. Let
C =cy,cy,...,c, be the set of all clauses and V = v{,v,,...,v,, be the
set of all variables in the given CNF instance. Then the resultant hyper-
graph is G = (U,E), where U = uy,up,...,u, is a set of n vertices each
corresponding to a clause in C and E = ey, ey, ...,ey, is a set of m hy-
peredges each corresponding to a variable in V. Edge e; connects vertex
u; if and only if variable v; participates in clause c;. This hypergraph
is partitioned with hMetis such that each balanced partition contains k
vertices and the number of hyperedges cut due to partitioning is mini-
mized.

To partition a bank into strips, we represent the clauses as hyperedges
and variables as vertices in the hypergraph. Similar to the above con-
struction, let C; =cy,ca,...,c; be the set of clauses and V; = v, v, ..., 1
be the set of variables in bank B;. Then the resultant hypergraph is
G; = (Uj,E;), where U; = uy,up,...,u; is a set of [ vertices each cor-

responding to a variable in V; and E; = ey, es,...,¢; is a set of k hy-
peredges each corresponding to a clause in C;. Edge e, € E; connects
vertex uy € U; if and only if variable v, participates in clause c).

After each bank is partitioned into strips, we need to order the strips
so as to minimize the number of rows required to fit the clauses in the
bank. For this purpose, we use a 2-dimensional graph bandwidth mini-
mization algorithm and then use a greedy bin-packing approach to pack
the clauses in the rows. Figure 7 depicts this packing of multiple clauses
in one row. The details of the diagonalization and greedy bin-packing
algorithm are omitted from this description due to space constraints.

5 Experimental Results

To validate our ideas, we tested several examples from the DI-
MACS [18] test suite and from the SAT-2004 [20] competition bench-
mark suite. The examples we used are listed in Table 3, along with the
number of clauses and variables (Columns 1 through 3). For a IC of
size 1.5 cm on a side, we can accommodate 1.875 million clause cells.
The total number of strips in the IC is therefore 12,500. The IC imple-
ments a total of 6 hierarchical levels in the inter-bank communication
methodology.

We tested the functionality of the clause and termination cells, the im-
plication generation and conflict clause generation logic in Verilog. The
chip level performance estimates were obtained by running SPICE [21],
using layout-extracted parasitics. The hardware SAT IC was imple-
mented in a 0.1um process, with a VDD of 1.2V.

For all the examples listed in Table 3, we performed partitioning (into
banks) and binning (into strips) as described in Section 4. The initial
partitioning was performed to create banks with 200 clauses. We de-
fine the packing factor (PF) as a figure of merit for the partitioning and

binning procedure.
PF = Total # of Cells
# of Participating Cells
The PF before partitioning and binning is shown in Column 4. This

corresponds to the PF of a monolithic implementation. Note that this can
be as high as a few 1000. The PF after partitioning and binning is shown
in Column 5, and it is about 10 on average. Attempting to lower the
PF beyond this value results in several variables appearing in multiple
banks. The total number of strips for all the examples are shown in Col-
umn 6. Note that all examples require less than 12,500 strips, indicating
that they would fit on our IC. This is a dramatic improvement in ca-
pacity over existing monolithic hardware-based SAT approaches, which
can handle between 1280 and 24,700 clauses with 64 FPGA boards or
121 configurable processors, as opposed to about 63,000 clauses on a
single die for our approach. Further, the total run-time for the partition-
ing (using hMetis [19]), diagonalization and greedy bin-packing for the
examples listed in Table 3 ranged from 8 to 200 seconds on a 3.6GHz,
3GB machine running Linux. These runtimes are significantly lower
than the BCP based software SAT runtimes for these examples. Even if
the partitioning runtimes were higher, the time spent in partitioning is
amply recovered when multiple SAT calls need to be made for the same
instance.

Table 3: Partitioning and Binning Results

Instance #Clauses #Vars PF (initial) PF (opt.) #strips avg #strips per cl.
parl6-3 3344 1014 379 9.53 486 1.93
ii8b4 8214 1067 474 14.68 1548 2.19
am 7814 2268 835 8.42 1021 2.04
par32-5 10325 3175 1183 9.01 1426 1.76
iil6al 19368 1649 719 25.71 10514 2.87
ii32c4 20862 758 137 12.45 8178 4.57
dekker 58308 19472 8346 10.40 8084 1.78
xlmul 55571 8755 2592 7.50 8054 2.15
frg2mul 62943 10313 3063 8.68 10514 241

The delay of each bank (the difference between the time a new deci-
sion variable is driven to the time the last implication is driven out by
the bank) was computed to be Ap = 3ns (for a bank with 3 strips, which
is approximately the average number of strips per clause as indicated
in Column 7 of Table 3). We also estimated the delay due to the inter-
bank communication via SPICE simulations. To do this, we first found



the average number of implications caused by any decision, over all the
examples under consideration. The average number of implications per
decision was found to be about 21. For the computation of delay due
to inter-bank communication, we assumed that the average number of
implications per decision was 25. We assumed the worst-case situation
(where each of these 25 implications are on variables that repeat across
banks, with a repeat level of 0). This results in the slowest inter-bank
communication scenario. Using SPICE delay values (computed using
layout-extracted wiring parasitics), we obtained the values of the delay
between communication units at level i and i+ 1. Let this delay be de-
noted by A;. Then the total communication delay is estimated as

Ac=2-25-Y3 ,(A)

Note that long wires (between communication units at different repeat
levels) are optimally buffered for minimal delay. Using the values of A;
that we obtained, Ac is computed to be 27ns. Using this estimate, we
compute the time for the accelerated fraction of the SAT problem in our
hardware SAT engine as

Our Runtime = Number of Decisions -A¢

Our runtime is compared, in Table 4, against MiniSAT[22], a state-of-
the-art BCP based software SAT solver. The number of decisions made
by MiniSAT was used in computing our runtime. The MiniSAT run-
times for these instances were obtained on a 3.6 GHz, 3GB machine run-
ning Linux. The average speed up over MiniSAT obtained is 2.29 x 10%.

In other words, our approach yields over four orders of magnitude im-
provement in time, for the accelerated fraction of the SAT problem, over
an advanced BCP based software SAT solver, (2-3 orders of magnitude
over other hardware SAT approaches), which is significantly better than
the results reported for other hardware SAT engines. Other hardware
SAT approaches have significant capacity problems, making them im-
practical for large instances. With our high capacity and scalability, our
approach is ideally suited for large SAT instances.

Table 4: Comparing Runtimes against MiniSAT BCP-based Software
SAT

Instance MiniSAT runtime(s) Our Runtime(s) Speed Up
parl6-3 0.568 0.169e-3 3362.16
ii8b4 0.006 0.015e-3 389.86

am 12631.400 0.646 19561.99
par32-5 5355.150 0.183 29261.85
iil6al 0.013 0.024e-3 530.85
ii32c4 0.019 0.001e-3 15637.86
dekker 535.778 0.007 72634.34
xLmul 44265.500 0.768 57659.68
frg2mul 621.059 0.088 7081.45
AVG 22902.24

For the examples listed in Table 3 we compared the BCP based soft-
ware SAT runtimes with or without a limit on the number and width of
the conflict clauses. The purpose of this experiment was to determine
if limiting the number and width of conflict clauses significantly affects
SAT runtimes. The number and width of clauses corresponded to a sin-
gle row of clause banks in the center of the chip. With this limit, we
noted a negligible difference in the SAT runtimes compared to the case
when there was no limit (for a timeout of 1 hour). Since our clause banks
can be interchangeably used for conflict clause storage as well as regular
clause storage, we can trade off the size of the SAT instance stored in
the IC with the size of the conflict clause banks.

Larger designs can be handled elegantly by our approach, since mul-
tiple SAT ICs can be connected to work cooperatively on a single large
instance. A pair of such ICs would effectively implement an additional
level in the inter-bank communication tree. The only wires that are
shared between two such ICs are those implementing inter-bank com-
munication. By implementing these using fast board-level IO, the sys-
tem of cooperating SAT ICs can be made to operate extremely fast.

6 Conclusion and Future Work

In this paper, we have presented a custom IC implementation of a
hardware SAT solver. The speed and capacity obtained are dramati-
cally higher than those reported for existing hardware SAT engines. The

speedup comes from performing the tasks of computing implications
and determining conflicts in parallel, using a specially designed clause
cell. Approaches to partition a SAT instance into banks and bin them
into strips have been developed, resulting in a very high utilization of
clause cells. Note that although we used the BCP engine of GRASP [3]
in our hardware SAT solver, the hardware approach can be modified to
implement other BCP engines as well. In the future, we plan to fabricate
this design to validate its performance in a real-life setting.
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