
On the Improvement of Statistical Timing Analysis
Rajesh Garg Nikhil Jayakumar Sunil P Khatri

rajeshgarg at tamu.edu nikhil at ece.tamu.edu sunilkhatri at tamu.edu
Department of Electrical & Computer Engineering,
Texas A&M University, College Station TX 77843.

Abstract— As the minimum feature sizes of VLSI fabrication
processes continue to shrink, the impact of process variations is
becoming increasingly significant. This has prompted research
into extending traditional static timing analysis so that it can be
performed statistically. However, statistical static timing analysis
(SSTA) tends to be quite pessimistic. In this paper we present
a sensitizable statistical timing analysis (StatSense) technique
to overcome the pessimism of SSTA. Our StatSense approach
implicitly eliminates false paths, and also uses different delay
distributions for different input transitions for any gate. These
features enable our StatSense approach to perform less conser-
vative timing analysis than the SSTA approach. Our results show
that on average, the worst case (µ + 3σ) circuit delay reported
by StatSense is about 20% lower than that reported by SSTA.

I. INTRODUCTION

In recent times, statistical timing analysis has received
significant attention in both academe and industry. This has
been primarily due to the fact that process variation control has
not kept pace with the rapidly diminishing feature sizes. While
a lot of research has suggested that statistical timing analysis
is essential for timing closure in VLSI design today, the use
of this new method of timing analysis has not been readily
welcomed by all chip designers. It is not just the reticence
of designers towards adopting a new design methodology
that is preventing/slowing the adoption of this new timing
approach. There is also a legitimate concern that the results
of statistical timing analysis tend to be overly pessimistic.
Besides, statistical timing analysis takes longer to run. It also
requires a greater effort during the gate library characterization
phase. Designers are hence skeptical about the benefits of this
new timing analysis methodology.

The are many sources of pessimism in statistical timing
analysis and many of them are dependent on the method used
for the analysis. Some of the common sources are:

1) Spatial correlations
2) Path correlations
3) Approximation of PDFs (Probability Density Functions)

to Gaussian distributions (usually done during calcula-
tion of MAX of two PDFs)

4) False paths
5) The assumption that gate delays are Normally distributed
In this paper we deal with the last two sources of pessimism.

The approach discussed in this paper also implicitly considers
path correlations and does not approximate PDFs to Gaussian
distributions. In particular, each input transition at a gate
(which results in an output change) is assumed to have a
Normal distribution. Since there may be several such input

transitions that cause some output transition, the resulting
delay at the output consists of several Normal distributions
(one for every input transition that causes an output change).

II. PREVIOUS WORK

Most techniques for statistical timing analysis are essentially
based on the principles of Static Timing Analysis (STA).
Hence statistical timing analysis is often called statistical
static timing analysis (SSTA). The fundamental operations in
a SSTA tool are the SUM and the MAX operations. Most
SSTA algorithms rely on smart ways to implement these SUM
and MAX operations for delay distributions, rather than use a
single discrete delay value.

In [1], the authors use PCA (Principal Component Analysis)
to handle spatial correlations. They assume all delay distribu-
tions to be Gaussian and approximate the MAX of 2 or more
Gaussian distributions to be Gaussian as well. In [2], a canon-
ical first-order delay model is proposed and an incremental
block based timing analyzer is used to propagate arrival times
and required times through a timing graph in this canonical
form. One of the major contributions of the algorithm proposed
in [2] is that it allows the statistical timing engine to be used
incrementally. In [3], [4], [5], the authors note that accurate
statistical timing analysis can become exponential. Hence, they
propose faster algorithms that compute bounds on the exact
result rather than the exact result itself. In [6], the authors
propose representing the arrival times as CDFs (Cumulative
Distribution functions) and the gate delays as PDFs to help
perform the SUM and MAX operations efficiently. In [7], the
authors propagate delay distributions (PDFs) through a circuit.
The PDFs are discretized to help make the operation more
efficient.

The common theme in all the above works is that they are
based on the static timing analysis framework. Hence only the
structurally long paths are identified through these algorithms.
The authors of [8] identify this deficiency and come up with a
statistical timing analysis flow that considers false paths. While
the authors of [8] reduce pessimism by considering false paths,
they do not address the pessimism that arises from considering
the gate delay distribution to be a single Gaussian.

Our approach eliminates false paths implicitly. In the statis-
tical timing analysis flow discussed in [8], a traditional SSTA
is done, followed by an attempt to find sensitizable paths. In
our approach, this order is reversed. We first find the primary
input vector transitions that result in the sensitizable longest
delays for the circuit, and then do a statistical analysis on these

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

vector transitions. This statistical analysis utilizes, for each
gate, the particular Normal distribution which corresponds to
the input transition that the gate undergoes for the longest
delay to be sensitized.

The main contributions of this paper are two-fold:
• By utilizing a sensitizable timing analysis tool, our ap-

proach implicitly eliminates false paths. SSTA does not
eliminate false paths, leading to pessimistic results.

• For each input transition on the gate (which causes an
output change), our approach utilizes separate Normal
distributions, hence the statistical delays reported at the
circuit level are more representative of the true circuit
behavior. In SSTA, a single normal distribution is used
for any gate, regardless of the input transitions that the
gate undergoes.

III. OUR APPROACH

Our approach eliminates false paths and also accounts
for the fact that the delay of a gate has different Normal
distributions for different input transitions (which cause an
output transition). Our approach consists of two phases. In
the first phase we find a set of logically sensitizable vector
transitions that result in the largest delays for the circuit. In
the second phase, we use Monte-Carlo based techniques to
propagate the arrival times for these delay-critical sensitizable
vector transitions, and come up with a delay distribution at the
outputs. The input transitions at any gate are known after the
first phase, and so the gate delay distribution corresponding
to this input transition is utilized in the second phase. The
second phase therefore performs SSTA, using the appropriate
gate delay distribution corresponding to the input transition for
each gate. In the remainder of this section, these two phases
are described, along with a discussion on how input arrival
times are propagated for any gate.

A. Phase 1: Finding Sensitizable Delay-critical Vector Tran-
sitions

To make sure that we don’t spend time performing statistical
analysis on false paths, we first find a user-specified number of
sensitizable vector transitions that result in the largest delays
for the circuit. This is done using the sense [9] package in
SIS [10]. Sense uses a SAT solver to verify if a particular
delay (initially set to the delay found from a static timing
analysis) is sensitizable. If there is no satisfiable input vector
that produces this delay, then the delay value is reduced in
steps till we reach a delay D that has a satisfying vector (a
vector on the primary inputs that has a delay D). In its original
implementation, sense returns only the critical delay of the
circuit. We augmented the sense routine to return the vector
(final vector) at the primary inputs, as well as all the possible
previous vectors at the primary inputs that cause this delay. A
change from any previous vector to a final vector is referred
to as a vector transition. The set of input transitions is stored
in an array for use in the second phase of our statistical timing
flow. We then insert the complement of this largest sensitizable
delay vector as a SAT clause in the sense’s SAT routine and run

Rising Transition # ab → ab Delay(ps)
1 11 → 00 30.5
2 11 → 01 50.5
3 11 → 10 53.0

Falling Transition # ab → ab Delay(ps)
1 00 → 11 55.3
2 01 → 11 46.5
3 10 → 11 42.7

TABLE I
TRANSITIONS FOR A NAND GATE THAT CAUSE ITS OUTPUT TO SWITCH

55.3ps

42.7ps

30.5ps

10ps 35ps 77.7ps

10ps 35ps 60.5ps

50.5ps

b

a
c

a

b

c

a

b

c

Fig. 1. Example of Timing Analysis using a NAND2 gate

sense again to get the next critical vector. We continue this till
we get a large enough set of delay-critical vector transitions.
The number of vector transitions collected before we move on
to the second phase of the flow is decided based on desired
accuracy and available time for computation. In the second
phase of the flow, we propagate arrival times in a manner that
exploits the fact that we know the input transition at each gate.
This is explained in the following section.

B. Propagating Arrival Times
In a regular static timing analysis, we find the structurally

worst case delay. In our timing analysis we take advantage of
the fact that we know exactly what transitions cause a node
to switch. The details of how we do this is explained with
the example of a NAND2 gate. Let us first consider just the
nominal delay of a NAND2 gate.

Table I is a list of input transitions that cause the output of
the NAND gate to change its logic value. Let AT

fall
i denote

the arrival time of a falling signal at node i and AT rise
i denote

the arrival time of a rising signal at node i.
In the case of a regular STA, the rising time (delay) at the

output c of a NAND2 gate is calculated as

AT rise
c = MAX [(AT fall

a + MAX(D11→00, D11→01)),

(AT
fall
b + MAX(D11→00, D11→10))]

where, MAX(D11→00, D11→01) is often referred to as the
pin-to-pin rising output delay from the input a, while
MAX(D11→00, D11→10) is referred to as the pin-to-pin rising
output delay from the input b.

Similarly, in STA the falling time (delay) at the output c of
a NAND2 gate is given by

AT fall
c = MAX [(AT rise

a + MAX(D00→11, D01→11)),

(AT rise
b + MAX(D00→11, D10→11))]

where, MAX(D00→11, D01→11) is often referred to as the
pin-to-pin falling output delay from the input a, while
MAX(D00→11, D10→11) is referred to as the pin-to-pin
falling output delay from input b.

For example, if the worst case falling or rising arrival time
at inputs a and b was 10ps and 35ps respectively, then the
rise delay at c would be calculated to be = MAX(10+50.5,
35+53.0) = 88.0ps. Similarly for a falling c output, the delay
would be MAX(10+55.3,35+55.3) = 90.3ps. However this is
a pessimistic method of calculating the delay. In our approach
we attempt to remove some of this pessimism.

Let us first consider the rising output. The output of the
NAND2 gate switches high when any of the two inputs
switches low. From the output of sense we can find the actual
vector transition that causes the largest delay for a given
circuit. This primary input vector transition induces a transition
on the gate inputs. Let us assume that this input transition was
11 → 00 for the NAND2 gate. A naive way of calculating the
delay would be to state that the delay would be given by

AT rise
c = MAX(AT fall

a , AT
fall
b) + D11→00

Assuming again that the arrival times at inputs a and b

were 10ps and 35ps respectively, the delay would be then
be calculated as MAX(10,35)+30.5 = 65.5. However, we do
know that the output would start switching before 65.5 since
signal a arrives earlier than signal b. As a result, we can say
that the gate effectively goes through the transition 11 → 01
→ 00 rather than 11 → 00 directly. Note that the output of
the NAND2 gate falls for the vector 01 as well. Hence, we
calculate the delay to be

AT rise
c = MIN((AT fall

a + D11→01), (AT
fall
b + D11→00))

In our example, the delay is hence MIN(10+50.5,35+30.5) =
60.5. Note that we used the minimum of two delays in this case
since any one input falling causes the output to switch. Also
note that the delay calculated (60.5ps) is much smaller than
the worst case delay calculated using regular STA (88.0ps).
The reduction in pessimism in our approach occurs due to the
fact that we have information about the input transition for the
gate.

Now consider the case of the falling output. The output
of the NAND2 gate switches low only when both the inputs
switch high. Again, we exploit the fact that sense provides the
actual vector transition that caused the critical delay. Let us
assume that the induced input transition for the NAND2 gate
was 00 → 11. A naive way of calculating the delay would be
to state that the delay is

AT fall
c = MAX(AT rise

a , AT rise
b) + D00→11

Assuming again that the arrival times at inputs a and b were
10ps and 35ps respectively, the delay would be calculated as

MAX(10,35)+55.3 = 90.3. However, we do know that a arrives
earlier than b. As a result, we can say that the gate effectively
goes through the transition 00 → 10 → 11 rather than 00 →
11 directly. Hence, in our approach, we calculate the delay to
be

AT fall
c = MAX((AT rise

a + D00→11), (AT rise
b + D10→11))

In our example, the delay is hence MAX(10+55.3,35+42.7)
= 77.7. Note that we used the maximum of two delays in
this case since both inputs need to switch to cause the output
to switch. Also note that the delay calculated (77.7ps) is
smaller than the worst case delay calculated using regular STA
(90.3ps).

These results are shown graphically in the Figures 2 and
3. These plots show the arrival time of the output c of a
NAND2 gate, for the 00 → 11 and 11 → 00 transitions
respectively. The arrival time of one of the inputs a is fixed to
zero and the arrival time of the other input b swept between
-150ps to 150ps. The propagated delays are shown for STA
and our method, along with the delay found by SPICE [11].
As can be seen from these plots, our method of calculating
the arrival times for multiple switching inputs matches SPICE
quite accurately and is significantly better (less pessimistic)
than a traditional STA method for computing arrival times.

 40

 60

 80

 100

 120

 140

 160

-150 -100 -50 0 50 100 150

Ar
riv

al
 T

im
e

at
 o

ut
pu

t(p
s)

Time Difference(ps)

SPICE
OURS

STA

Fig. 2. Plot of arrival times at output of NAND2 gate calculated through
various means for the transition 00 → 11

We can similarly derive the equations to calculate the arrival
times for any arbitrary gate, depending on the input transitions
at that gate. Let us consider a NAND3 gate with inputs
{a, b, c}. Let us first consider the inputs to the NAND3 gate
changing as follows:

000 → 100 → 110 → 111

The output of the NAND3 gate switches low only when the
inputs are 111. Hence the delay of the gate would be calculated
as follows:

AT
fall
out = MAX [(AT rise

a + D000→111), (1)
(AT rise

b + D100→111), (2)
(AT rise

c + D110→111)]

-50

 0

 50

 100

 150

 200

-150 -100 -50 0 50 100 150

Ar
riv

al
 T

im
e

at
 o

ut
pu

t(p
s)

Time Difference(ps)

SPICE
OURS

STA

Fig. 3. Plot of arrival times at output of NAND2 gate calculated through
various means for the transition 11 → 00

Now let us consider a NAND3 gate with its output rising.
Let the inputs change as below

111 → 011 → 001 → 000

In this case, the output of the NAND3 gate starts switching
high when at least one of the inputs is logic 0. Hence the delay
of the gate would be calculated as:

AT rise
out = MIN [(AT fall

a + D111→011), (3)
(AT

fall
b + D111→001), (4)

(AT fall
c + D111→000)]

An extension to handling delay distributions is easily done
by simply considering the distribution to be made of several
distinct delay values, obtained from the PDF of the gate delay.

C. Phase 2: Computing the Output Delay Distribution

In the second phase of the computation, we perform Monte
Carlo analysis on the sensitizable vector transitions that result
in the largest delays for the circuit (which were computed
in the first phase, described in Section III-A). In each of
the STA runs for Monte Carlo analysis, we perform arrival
time propagation as described in Section III-B. Since the
primary input vector transitions may induce transitions on the
input of each gate, the delay distribution of the gate for the
corresponding gate input transition is used. A random value of
the gate delay is computed from this distribution. This is done
for each gate in the circuit. Finally, STA is performed, using
these delay values. The resulting maximum delay over all the
outputs is used to compute the worst case delay distribution
of the circuit.

In a NAND2 gate we have 3 different input rising transitions
that cause an output falling transition (these are shown in the
bottom half of Table I). For any iteration of STA, if we choose
the value of delay for one of the 3 transitions (say 00 → 11)
to be µ00→11 + nσ00→11, we choose the value of the other
two transitions (01 → 11, 10 → 11) to be µ01→11 +nσ01→11

and µ10→11 + nσ10→11 respectively.

Parameter Nominal Value σ

L 0.1µ 0.005µ

V N

T
0.2607V 0.013V

V P

T
0.3030V 0.01515V

TABLE II
PARAMETERS WITH THEIR VARIATION

IV. EXPERIMENTAL RESULTS

In order to demonstrate the effectiveness of our technique,
we tested our technique on several benchmark circuits from the
ISCAS89 and MCNC91 benchmark suite. For all simulations,
we assumed a 0.1µm process and used the BPTM 0.1µ

process [12] model card for SPICE simulations. Our standard
cell library consisted of 8 cells. The 8 cells were INV, INV2X,
NAND2, NAND3, NAND4, NOR3, NOR3, NOR4.

We first characterized each of the standard cells in our
library to come up with a table of values for the mean and
standard deviation of the delay of each transition (that cause a
change in the output). This pre-characterization was done for
a set of different capacitance values. This pre-characterization
was done using SPICE. The parameters considered to be
varying, along with their variations, are given in Table II. In
this table, all parameters are modeled such that their σ is 5%
of their µ.

The characterization results for a NAND2 gate (with a
load capacitance of 6fF) are shown in Figures 4 and 5.
Figure 4 shows the delay histogram for the three vector
transitions which result in a rising output. These vectors are
11 → 00, 11 → 01 and 11 → 10. Note that each of these
vector transitions exhibit different output delay distributions.
Similarly, Figure 5 shows the delay histogram for the three
vector transitions which result in a falling output. These
vectors are 00 → 11, 01 → 11 and 10 → 11. Note that
each of these vector transitions also exhibit different output
delay distributions. The mean and standard deviation of all
these distributions are computed and used in the second phase
of our algorithm.

During the timing analysis phase of our approach, we inter-
polate between these capacitance values to find the mean and
standard deviation of the delay for the given load capacitance
value.

Next we carry out the first phase of our flow. We use
sense to find the top few sensitizable critical delays and their
corresponding input vector transitions. The result of the first
phase of our approach is a set of vector transitions on the
primary inputs of the circuit. In our experiments, we utilize
the top 50 (or 25) primary input vector transitions that result
in the largest circuit delay.

For the second phase of our approach, we propagate these
transitions throughout the circuit. Since we have the knowl-
edge of the input transitions at each gate, we use the arrival
time propagation methodology explained in Section III-B to
compute the arrival time at the gate output. This step of prop-
agating circuit delays is done 1000 times in our experiments
(or as many times as is required to get a reasonably stable
and accurate estimate of the mean and standard deviation of

Ckt SSTA StatSense 50 StatSense 25
µ (ps) σ (ps) µ + 3σ Time µ (ps) σ (ps) µ + 3σ Ratio Time Ratio µ (ps) σ (ps) µ + 3σ Ratio Time Ratio

alu2 1008.39 19.08 1065.63 278.8 661.25 17.69 714.32 0.67 1991.5 7.14 668.64 17.27 720.45 0.68 1232.5 4.42
alu4 1234.77 18.21 1289.4 560.2 753.01 23.74 824.23 0.64 3386.8 6.04 767.45 16.52 817.01 0.63 3217.9 5.74

apex6 680.51 10.95 713.36 632.2 447.66 26.36 526.74 0.74 895.0 1.41 460.44 29.87 550.05 0.77 453.1 0.716
apex7 489.79 8.16 514.27 207.5 427.17 12.89 465.84 0.90 260.6 1.25 430.79 12.94 469.61 0.91 129.5 0.62
C499 737.00 11.29 770.87 419.4 617.92 14.55 661.57 0.86 481.6 1.15 617.79 14.65 661.74 0.86 238.8 0.57
C1355 714.82 8.59 740.59 484.8 418.08 11.47 452.49 0.61 578.1 1.2 418.06 11.62 452.92 0.61 291.8 0.60
cordic 669.99 8.60 695.79 657.0 578.18 18.5 633.68 0.91 657.23 1.00 587.74 12.55 625.40 0.90 355.3 0.54

i6 496.16 22.80 564.56 353.0 449.55 19.84 508.52 0.90 609.5 1.73 449.63 19.88 509.27 0.90 293.79 0.83
i7 496.25 21.76 561.53 514.3 449.31 20.60 511.11 0.91 494.9 0.96 449.39 20.65 511.34 0.91 366.6 0.65
rot 781.23 13.75 822.48 571.0 501.65 17.24 552.72 0.67 1343.6 2.35 501.87 17.26 552.78 0.67 810.4 1.42
x1 319.34 10.40 350.54 261.5 269.43 13.70 310.10 0.88 277.14 1.06 277.62 13.37 317.73 0.91 141.6 0.54

AVG 0.79 2.29 0.80 1.51

TABLE III
COMPARISON OF SSTA AND STATSENSE

 0

 5

 10

 15

 20

 25

 30

 15 20 25 30 35 40 45 50 55

Nu
m

be
r o

f S
am

pl
es

Delay (ps)

’nand1100.hist’
’nand1101.hist’
’nand1110.hist’

Fig. 4. Characterization of NAND2 Delay for all Input Transitions which
Cause a Rising Output

the maximum delay of the circuit). For each of these 1000
iterations, a random value of delay is chosen for each gate.
This random value is chosen from a Gaussian distribution
with a µ and σ derived from the precharacterized table of
values for each gate. Note that the µ and σ used for any gate
correspond to the vector transitions that appear at that gate,
for the primary input vector transition being simulated. We
assume that the variations of process parameters within a gate
are correlated (i.e. the threshold voltages and channel lengths
of all the devices within the gate vary in the same manner).
To enforce this assumption, we must choose the random delay
value carefully. For example, in a NAND2 gate we have 3
different input rising transitions that cause an output falling
transition (these transitions are shown in the bottom half of
Table I). For any iteration of the timing analysis, if we choose
the value of delay for one of the 3 transitions (say 00 → 11) to
be µ00→11 + nσ00→11, we must choose the value of the other
two transitions (01 → 11, 10 → 11) to be µ01→11 +nσ01→11

and µ10→11 + nσ10→11 as well.
Table III describes the results of experiments conducted

to compare StatSense with SSTA. Our major contribution
in this work is to make statistical timing analysis more
realistic. Hence, we compare our methodology with Monte-

 0

 5

 10

 15

 20

 25

 30

 20 25 30 35 40 45 50 55

Nu
m

be
r o

f S
am

pl
es

Delay (ps)

’nand0011.hist’
’nand0111.hist’
’nand1011.hist’

Fig. 5. Characterization of NAND2 Delay for all Input Transitions which
Cause a Falling Output

Carlo based SSTA. It is well known that block based SSTA
sacrifices accuracy for speed due to approximations when
propagating PDFs (especially when computing the MAX of
2 or more delay distributions). The SSTA experiments in this
table were conducted using 10000 iterations. The StatSense
iterations were computed using 1000 iterations per input vector
transition. In this table, Column 1 lists the circuit under consid-
eration. Columns 2 through 4 list the µ, σ and µ+3σ delays(in
ps) returned by SSTA. Column 5 lists the SSTA runtime. All
runtimes in this table are in seconds. Columns 6 through 11
list the results for StatSense, when 50 input vector transitions
(which result in the largest sensitizable circuit delay) were
simulated. Columns 6 through 8 list the µ, σ and µ + 3σ

delays(in ps) returned by StatSense. Column 9 reports the ratio
of the µ + 3σ value returned by StatSense, compared to that
returned by SSTA. Note that StatSense, on average, returns a
much lower worst case circuit delay (the µ + 3σ delay) than
SSTA. This illustrates the pessimism of SSTA, and validates
our claim that StatSense reduces this pessimism. Column 10
and 11 respectively list the runtime for StatSense and the ratio
of this runtime with the runtime of SSTA. On average, note
that StatSense (run with 50 input vector transitions requires
about 2.3× more runtime than SSTA.

Columns 12 through 17 have the same information as
Columns 6 through 11, except that the StatSense simulations
for these columns were performed using 25 input vector
transitions (which result in the largest sensitizable circuit
delay). The purpose of this experiment was to verify if the
StatSense runtime can be reduced by simulating fewer input
vector transitions. By comparing Columns 8 and 14, we note
that there is no appreciable loss of fidelity when 25 input
vector transitions are used, instead of 50. The worst case
circuit delay (the µ + 3σ delay), averaged over all designs, is
almost identical in both cases. The benefit of using 25 input
vector transitions is indicated in Column 17, which shows
that on average, StatSense (with 25 input vector transitions)
requires only about 50% more runtime that SSTA. For most
of the circuits used in our experiments, the difference between
the nominal delays for the first and fiftieth vector chosen was
large. In cases, where this delay difference is small, a larger
number of vectors will need to be used.

In spite of the fact that SSTA conducts 10000 STA itera-
tions, and StatSense conducts 50000 (or 25000) iterations, the
runtime of StatSense is not 5× (or 2.5×) that of SSTA. This is
because StatSense performs an event driven delay simulation.
Whenever there is no transition at the output of a gate g, delay
computations for gates in the fanout of g may be avoided. This
pruning is not possible in SSTA.

Figure 6 illustrates the delay histogram obtained by SSTA
(with 50000 STA iterations) along with the delay histogram
obtained by StatSense (with 50 input vector transitions simu-
lated). These histograms were obtained for the apex7 example.
For each input vector transition in StatSense, 1000 iterations
of delay computation are performed. This figure shows how
the pessimism of SSTA is alleviated by StatSense.

 0

 50

 100

 150

 200

 250

 300

 340 360 380 400 420 440 460 480 500 520 540

Nu
m

be
r o

f S
am

pl
es

Delay (ps)

StatSense apex7
SSTA apex7

Fig. 6. Delay Histograms for SSTA and StatSense (for apex7)

V. FUTURE WORK AND CONCLUSIONS

In response to the growing impact of process variations,
there has been much research in extending traditional static
timing analysis so that it can be performed statistically. The
resulting statistical static timing analysis (SSTA) approaches
are, however, quite pessimistic. This pessimism arises from the

fact that most static timing analysis tools and their statistical
counterparts do not consider false paths. The second major
source of pessimism is that most statistical timing analyzers
assume delay distributions at all gates in a design to be
Gaussian. However, the delay distribution of a gate is not
necessarily Gaussian. In fact the delay distribution for a
multi-input gate is Gaussian for each input vector transition
that causes a change on the gate output. In this paper we
present a sensitizable statistical timing analysis (which we call
StatSense) technique to overcome the pessimism of SSTA. Our
StatSense approach implicitly eliminates false paths, and also
uses different delay distributions for different input transitions
for any gate. These features enable our StatSense approach
to perform less conservative timing analysis than the SSTA
approach. Our results show that on average, the worst case
(µ + 3σ) circuit delay reported by StatSense is about 20%
lower than that reported by SSTA. In the future, we plan to
work on techniques to reduce the runtime of the statistical
timer. This would allow us to use more input vector transitions
for the statistical analysis. We also plan to investigate methods
to find out the minimum number of vector transitions required
to get a realistic statistical timing result.

REFERENCES

[1] H. Chang and S. S. Sapatnekar, “Statistical timing analysis under spatial
correlations,” vol. 24, pp. 1467–1482, Sept. 2005.

[2] C. V. C, K. Ravindran, K. Kalafala, S. G. Walker, and S. Narayan,
“First-order incremental block-based statistical timing analysis,” in DAC,
pp. 331–336, 2004.

[3] A. Agarwal, V. Zolotov, and D. T. Blaauw, “Statistical timing analysis
using bounds and selective enumeration,” in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 22,
pp. 1243–1260, Sept 2003.

[4] A. Agarwal, D. Blaauw, and V. Zolotov, “Statistical timing analysis
for intra-die process variations with spatial correlations,” in ICCAD,
pp. 900–907, 2003.

[5] A. Agarwal, D. Blaauw, V. Zolotov, and S. Vrudhula, “Statistical timing
analysis using bounds,” in DATE, pp. 62–67, 2003.

[6] A. Devgan and C. V. Kashyap, “Block-based static timing analysis with
uncertainty.,” in ICCAD, pp. 607–614, IEEE Computer Society / ACM,
2003.

[7] J.-J. Liou, K.-T. Cheng, S. Kundu, and A. Krstic, “Fast statistical timing
analysis by probabilistic event propagation.,” in DAC, pp. 661–666,
ACM, 2001.

[8] J.-J. Liou, A. Krstic, L.-C. Wang, and K.-T. Cheng, “False-path-aware
statistical timing analysis and efficient path selection for delay testing
and timing validation.,” in DAC, pp. 566–569, ACM, 2002.

[9] P. McGeer, A. Saldanha, R. Brayton, and A. Sangiovanni-Vincentelli,
Logic Synthesis and Optimization, ch. Delay Models and Exact Timing
Analysis, pp. 167–189. Kluwer Academic Publishers, 1993.

[10] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “SIS: A System for Sequential Circuit Synthesis,” Tech.
Rep. UCB/ERL M92/41, Electronics Research Lab, Univ. of California,
Berkeley, CA 94720, May 1992.

[11] L. Nagel, “Spice: A computer program to simulate computer circuits,”
in University of California, Berkeley UCB/ERL Memo M520, May 1995.

[12] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu, “New paradigm
of predictive MOSFET and interconnect modeling for early circuit de-
sign,” in Proc. of IEEE Custom Integrated Circuit Conference, pp. 201–
204, Jun 2000. http://www-device.eecs.berkeley.edu/ ptm.

