
Trends and Future Directions in Nano Structure
Based Computing and Fabrication

R. Iris Bahar
Division of Engineering

Brown University
Providence, RI 02912

Email: iris bahar@brown.edu

Abstract— As silicon CMOS devices are scaled down into
the nanoscale regime, new challenges at both the device and
system level are arising. While some of these challenges will be
overcome in the near future, nanoscale devices will have high
manufacturing defect rates and will operate at reduced noise
margins, exposing computation to higher soft error rates. Thus,
a key challenge for the future will be building fault and defect-
tolerant computing systems. Researchers are looking to develop
hybrid systems that combine on the same chip CMOS-based
circuitry with any number of alternatives, including circuits
composed of nanowire or carbon nanotube devices. The big
advantage of including these new devices on the same chip is
the increased device densities, and potential drop in fabrication
costs. On the other hand, integrating very large numbers of
devices on a single chip leads to questions of how to manage so
many devices with tight constraints on cost, performance, power,
and reliability, without having it become a design complexity
nightmare. In this paper, we review some key issues and trends
arising from nanostructure based computing and fabrication,
while providing a few examples of defect-tolerant circuits and
architectures currently being proposed as alternatives to “tra-
ditional” computing based exclusively on CMOS technology.
These include hybrid nanowire/CMOS designs, reconfigurable
or redundant architectures, and designs based on probabilistic
computing. We end with a discussion on future challenges and
direction in nanoscale computing.

I. INTRODUCTION

As silicon CMOS devices are scaled down into the
nanoscale regime, new challenges at both the device and
system level are arising. In particular, although the semi-
conductor industry has successfully overcome many hurdles
(including the current transition to silicon-on-insulator (SOI)
technology [1]), there remain many challenges for CMOS,
including developing new materials (e.g., high-κ and low-κ
dielectrics [2]), dealing with new device geometries (dual-gate
or fin-FET devices [3]), and managing power dissipation, and
economics of commodity manufacturing resulting from further
downscaling of devices and supply voltages [2]. Longer term
challenges include the development of a hybrid system that
combines CMOS FET-based digital logic with any number
of alternative devices, ranging from analog circuits, to more
exotic alternatives (optical sources and detectors, quantum or
molecular transistors, nanowire or carbon nanotube devices,
etc.), all on the same chip [4]. The big advantage of including
these molecular scale devices is the increased device densities
— between 10X and 1000X greater than those predicted

by ITRS for silicon-based CMOS [5]. On the system side,
integrating very large numbers of devices on a single chip with
tight constraints (cost, performance, power, and reliability),
will increase the design complexity greatly.

While there is no clear consensus on how far and how fast
CMOS will downscale, and which of the emerging hybrid
technologies will eventually enter production, it is certain that
future nanodevices will have high manufacturing defect rates.
It is also clear that the supply voltage, VDD, will be ag-
gressively scaled down to reduce dynamic power dissipation.
Supply voltage at VDD = 0.5V is the current prediction for
low-power CMOS in 2018 [6], although extrapolations to even
lower VDD = 0.3V have appeared in the literature [4]. This
reduction in noise margins will expose computation to higher
soft error rates. Another point to consider is the economic
practicality of manufacturing devices at such small scale.
Economics may dictate the use of regular layouts or self-
assembly techniques rather than the use of arbitrary structures.

In this paper, we review some key issues and trends arising
from nanostructure based computing and fabrication. We start
in Section II with a discussion on issues facing lithographic
and self-assembly techniques for device fabrication. Next,
we give a taste of a few hybrid nanoscale/CMOS circuits
and architectures being proposed today in Section III. All
these structures include some form of fault or defect toler-
ance, specific to the structural implementation. In Section IV
we consider general strategies for reliable computing in the
presence of both static and transient errors. These strategies
include triple modular redundancy, error correcting codes,
and dynamic reconfiguration. In Section V, we discuss a
new paradigm based on probabilistic computation, appropriate
for systems operating under very noisy (i.e., fault-prone)
conditions. We end with a discussion on future challenges and
direction in nanoscale computing.

II. BUILDING TOP-DOWN VS. BOTTOM-UP DESIGNS

Today’s approach to designing integrated circuits uses a top-
down methodology. That is, layers are added on top of a silicon
wafer, requiring hundreds of steps before the final circuit is
complete. Although this process has allowed the manufacture
of reliable circuits and architectures, future scaling will make
the production of reliable mask sets extremely expensive. In
the near future, a major shift from top-down lithography-based

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

fabrication may be needed in order to cost-effectively fabricate
devices at true nanoscale dimension.

As an alternative, bottom-up approaches rely on self-
assembly for defining feature size and may offer opportunities
to drastically reduce the number of steps required to produce
a circuit. However, the biggest impact in going from top-down
designs to bottom-up is the inability to arbitrarily determine
placement of devices or wires. Instead, we are restricted
to simple structures. Therefore, self-assembly techniques are
more easily applied to fabrication of two-terminal devices.
Since these devices are usually non-restoring, a major design
challenge is providing signal restoration between nanoscale
logic stages. Furthermore, this self-assembly approach also
lends itself to defect rates orders of magnitude higher than
traditional top-down approaches largely because of the inabil-
ity to precisely control the design of these devices. Therefore
some means of defect and/or fault tolerance (whether at the
circuit, logic, or architecture level) will be needed if reliable
computation is to be achieved. Taking a hybrid approach
that uses self-assembled structures as an add-on to a CMOS
subsystem may create a design framework where fault tolerant
techniques can be more effectively applied.

Bottom-up assembly techniques require fabrication regu-
larity. However, even if a hybrid approach is used, it may
be advantageous, in terms of fabrication costs, to build the
photo-lithographically manufactured components from regular
structures as well. Not only will this allow for an easier
fabrication process, it will also lend itself more easily to
reconfigurable architectures. That is, the desired circuit may
be designed by configuring around faulty structures; since
all structures are identical, one faulty element can be easily
swapped out and replaced with an operational one, therefore
creating a reliable system out of an unreliable substrate.

Of the molecular-scale devices being developed using
these self-assembly techniques, the non-volatile programmable
switch has gained much attention. Such a switch can be
fabricated using two layers of parallel nanowires, with the
two layers perpendicular to each other, forming a 2D array. At
every crosspoint, the wires are connected together via a two-
terminal nanodevice formed by the layering. These crossbar
arrays are similar to programmable logic arrays (PLAs) and
can be used as building blocks for implementing logic. The
array can then be interconnected, using CMOS circuitry, as
part of a hybrid nanoscale/CMOS design architecture. We
describe some of these hybrid architectures in the following
section.

III. BUILDING ARCHITECTURES FROM HYBRID

NANOWIRE/CMOS CIRCUITS

In this section, we provide three different examples of
hybrid nanoscale/CMOS circuits and architectures being pro-
posed today. These hybrid designs combine nanoscale devices
and nanowires with larger CMOS components. The main
advantage of these approaches is that the CMOS subsystem
can serve as a reliable medium for connecting nanoscale circuit
blocks, providing long interconnects and I/O functions.

A. nanoPLA

In [7], [8] DeHon al. have proposed a programmable inter-
connect architecture built from hybrid components. The main
building block, called the nanoPLA, is built from a crossed
set of N-type and P-type nanowires. An electrically switchable
diode is formed at each crosspoint. The diodes then provide a
programmable wired-OR plane that can be used to configure,
or program, arbitrary logic into the PLA. The nanoPLA is
programmed using lithographic scale wires along with stochas-
tically coded nanowire address [9]. The programmability also
allows defective devices to be avoided as a means of fault
tolerance. DeHon and Naemi have shown that when 20% of
devices (i.e., crossbar diodes) were defective, only a 10%
overhead in devices was needed to correctly configure the
array around the defects [10]. Note that the nanoPLAs are
build on top of a lithographic substrate. Lithographic circuitry
and wiring provides a reliable means of probing for defects,
and configuring the logic.

The nanoPLA is composed of two stages of programmable
crosspoints. The first stage defines the logical product terms
(pterms) by creating a wired-OR of appropriate inputs. The
outputs of this wire-OR plane are restored through field-effect
controlled nanowires that invert the outputs (thus creating the
logical NOR of the selected input signals). These restored
signals are then sent to the inputs of the next stage of pro-
grammable crosspoints. Each nanowire in this plane computes
the wired-OR of one or more restored pterms. The outputs of
the stage are then restored in the same manner as the first stage.
The two stages together provide NOR-NOR logic (logically
equivalent to AND-OR logic of a conventional PLA) [8].

The nanoPLA blocks are interconnected by overlapping the
restored output nanowires from each block with the wired-OR
input region of adjacent nanoPLA blocks. This organization
allows each nanoPLA block to receive inputs from a number
of different nanoPLA blocks. With multiple input sources and
outputs routed in multiple directions, the nanoPLA block can
also serve as a switching block by configuring the overlap
appropriately. Their experiments mapping benchmark circuits
onto the proposed architecture have suggested that device
density could be one to two orders of magnitude better than
what is projected for the 22nm roadmap node [8]. See [11]
for additional discussion on this architecture.

B. NASIC

Other work in hybrid systems combining nanowires and
CMOS includes the NASIC designs described in [12]. Two-
dimensional nanowire grids are used as the basis, and at each
junction, the crossing wires act as FETs or diodes when acti-
vated. A circuit is broken up into tiles, where each tile contains
enough circuitry to implement flip-flops, multiplexors, adders,
etc. A NASIC design is effectively a connected chain of AND-
OR tiles.

An inefficiency of this 2D array structure is that logic ends
up along the diagonal, with large wasted spaces away from
the diagonal. Another limitation is that the circuits have been
based on static-ratioed logic, which requires careful sizing

and may have undesirable effects in terms of static power
dissipation. One solution to the static ratioed logic problem
is to use dynamic, nanogrid adapted, cascaded circuits. The
dynamic circuits require one type of doping in each dimension
and allow latching functionality without actually adding an
explicit latch circuit. The gate-level latching also provides
opportunities for pipelining. By using dynamic circuits and
pipelining on the wires, NASICs eliminates the need for
explicit flip-flops to store intermediate values, therefore con-
siderably improving density.

The NASIC group has used its proposed architecture to
create a simple processor with a 5-stage pipeline built using
2D nanowire fabric, called the wire-streaming processor, or
WISP-0 [13]. Each stage is implemented in its own tile
and nanowires are used to provide communication between
adjacent nanotiles. Each nanotile is surrounded by microwires
that carry Vdd, ground, and control wires.

In order to get a sense of the kind of area advantage that
might be achieved with this architecture, the authors compared
the WISP-0 with a CMOS implementation that is scaled to
30nm technology. Initial estimates puts the CMOS implemen-
tation at about 12.5X larger than the WISP-0, with only 9% of
the total area taken up by nanowires (i.e. microwires dominate
relative to nanotiles) [13]. However, they claim that with better
layout, this area advantage could go up to 100X. In their later
work, they explore defect-tolerant approaches for the WISP-
0 processor [14], [15]. Their solution for defect-tolerance
is based mainly on built-in circuit-level redundancy in the
cascaded AND-OR planes of the nanotiles. They combine
this with system-level CMOS voting using triple modular
redundancy (TMR) to further improve the yield (TMR will
be discussed further in Section IV). Overall, they show a 3X
density advantage over CMOS, even with all the built-in fault
tolerance. With 14% defective transistors, the WISP-0 still had
a yield of 30%.

C. Molecular CMOS (CMOL)

The molecular-CMOS, or CMOL, circuits proposed in [16],
[17] are designed using the same crossbar array structure
consisting of two levels of nanowires as the nanoPLA and
NASIC designs. The main difference with CMOL is how the
CMOS/nanodevices are interfaced. Pins are distributed over
the circuit in a square array, on top of the CMOS stack to
connect to either lower or upper nanowire levels. The nano
crossbar is turned by some angle < 90◦ relative to the CMOS
pin array.

By activating two pairs of perpendicular CMOS lines, two
pins, and the two nanowires they contact, are connected to the
CMOS lines. Each nanodevice may be uniquely accessed using
this approach. That is, each device may be switched ON/OFF
by applying some voltage to the selected nanowires such that
the total voltage applied to the device exceeds the switching
threshold of the selected nanodevices. By angling the nanoarry
the nanowires do not need to be precisely aligned with each
other and the underlying CMOS layer in order to be able to
uniquely access a nanodevice.

CMOS

CMOSCMOS

row 2

column 2column 1

row 1
CMOS

output nanowire

nanowire
input

Fig. 1. The CMOS logic cell consisting of two pass transistors and in
inverter (taken from [18]). The function is determined by how the overlaying
nanowires are programmed. Note that typically, there are many nanowires
(and thus many nanodevices) available per CMOS cell.

The most straightforward application of CMOL would be
for memories (embedded or stand alone). The authors project
that a CMOL based memory chip about 2×2 cm2 in size will
be able to store about 1Tb (Terabits) of data [17]. To improve
reliability of the memory array, the authors propose adding
spare lines and error correction codes (ECC), a standard
procedure in memory array design, to improve yield.

The CMOL circuits have also been proposed for building
FPGA-like architectures for implementing random logic [18].
A CMOS cell comprised of an inverter and two pass transistors
are connected to the nanowire crossbar via two pins, as shown
in Figure 1. This essentially creates a configurable logic block
(CLB) structure, similar to that found in an FPGA. The
CMOS cell is then programmed by disabling the inverter and
selectively switching devices ON in the crossbar array. After
configuration, the pass transistors act as pull-down resistors
while the nanodevices programmed to be in the ON state
serve as pull-up resistors. In this way wire-NOR gates may be
formed within a CMOS cell. Note that the inverter provides
signal restoration. Any arbitrary Boolean function (represented
as a product-of-sums) may be implemented as a connection of
two or more CMOS cells. Further, the idea is to have many
nanodevices per CMOS cell. This allows gates with high fanin
and/or high fanout to be formed, with extra devices available as
“spares” for reconfiguring around faulty devices. Their Monte
Carlo simulations of a 32-bit adder and a 64-bit full crossbar
switch have shown that the reconfiguration allows the circuit
yield to be increased to above 99% when the fraction of bad
nanodevices is above 20%.

IV. DESIGN STRATEGIES FOR RELIABLE COMPUTATION

Reliable computation requires systems to be resilient to
both static errors (e.g., static device defects), and transient
errors (e.g., those arising from noise and signal coupling
and alpha particle emissions, leading to single-event upsets
(SEUs)). Of the example nanoscale systems described in
the previous section, the nanoPLA and CMOL architectures
are designed to handle only static errors, while the NASIC

WISP-0 architecture is designed to handle both static and
transient errors. Traditional design strategies for handling
transient errors included redundant execution, error-correcting
codes, and dynamic reconfiguration. In this section, we briefly
review these techniques and provide some additional examples
of nanosystem designs that employ one or more of these
techniques. A more detailed discussion on this topic can be
found in [19].

Triple modular redundancy (TMR), or more generally N -
modular redundancy (NMR), was first proposed by von Neu-
mann as a method for building reliable systems from unreliable
components (which was the prevalent concern for computing
systems of his time) [20]. NMR is based on the idea of
executing N copies of the same hardware modules, where
N is odd and N ≥ 3 and then taking the outputs and feeding
them into a majority voter to determine the most likely correct
value at the output of the circuit. The modules can be at a
single gate, logical block or functional unit depending on the
amount of error tolerance required in the system. While NMR
provides relief from errors caused in a single unit, errors in
more than bN

2
c modules will cause the logic to fail. In order

to allow the circuit to withstand more errors, the NMR process
can be repeated by taking each NMR module as a single
module, making N copies and then combining the outputs
of the individual NMR units with another majority gate. This
method of redundancy is called cascaded NMR (CNMR). An
NMR module can be considered to be a 0th order CNMR.
While NMR and CNMR greatly increase the reliability of the
system in the presence of transient errors, the main assumption
made in these redundancy processes is that the final majority
voting gate is free from the same failures that the rest of the
circuitry is facing.

The nanocomputing community has been interested in N -
modular redundancy techniques because they can provide high
reliability even in the presence of high device failure or soft
error rates. Although the redundancy overhead can be very
high, nano-assembly techniques promise to produce devices
with such high density that the redundancy requirements
become reasonable. Note that there may be some assumptions
made on the reliability of the majority voter itself in order
to improve the reliability of the whole system. Although
redundant voters may be used to improve reliability, it comes
at a cost of even greater redundancy overhead.

As an alternative to fully replicating hardware, error coding
adds extra encoded bits in the hardware to help distinguish
error-free from erroneous data. Error-correcting codes (ECC)
are commonly used in storage arrays and communication. In
addition to hardware needed to store the coding bits, extra
hardware is needed for encoding, decoding, and correcting;
however, in general, this overhead will be less than that
required for full replication (e.g., when implementing a TMR
scheme). Note that there is an implicit assumption that this
extra encoding/decoding/correcting hardware is reliable, which
may be a significant issue when applying this to nanocomput-
ing.

The reconfigurable architectures described in Section III all

required some means of testing the components and creating a
defect “map” or database to avoid programming a circuit onto
faulty devices. In general, the reconfiguration is done up front,
in the initial programming stage, and therefore is set up for
handling only static faults. In addition, the defect map may
require a non-negligible amount of area to store. On the other
hand, if dynamic reconfiguration is possible, then the system
may be to handle dynamic faults, as well as static faults that
cannot be located easily during an initial test stage.

An example of an architecture that uses dynamic recon-
figuration is the Cell Matrix [21]. Instead of using a static
defect discovery process, the Cell Matrix (CM) design uses
dynamic defect/fault discovery and recovery. The idea is to
design a distributed, parallel system such that failure detection
is a hierarchical set of increasingly simple, local tasks run
while the system is running. The Cell Matrix is a fine-grained
reconfigurable fabric composed of simple homogeneous cells
and nearest-neighbor interconnects. Cells can be configured
to operate in either data or configuration mode. With this
set up, a collection of cells can monitor neighbor’s activities,
detect erroneous behavior, disable defective cells, or relocate
damaged portions of the circuit to other locations. While the
CM architecture allows for autonomous, self-repairing circuits
constructed from simple, locally interconnected homogeneous
fabric, the dynamic reconfigurability adds another level of
complexity to the design and also requires a high overhead
in interconnection and control.

One example of an architecture that uses error codes,
triple modular redundancy and reconfiguration is the Recursive
NanoBox [22]. The NanoBox is a generic black box that
employs a specific fault-tolerant technique for any computation
done within the box. The NanoBox Processor Grid uses a
hierarchical organization of these boxes such that different
fault-tolerant techniques can be used at the bit, module, and
system levels. At the bit level, error correction techniques are
implemented by using FPGA-style lookup tables, while at the
module or system level, redundancy is used by computing
an operation multiple time across different cells. At the bit
level, the error detection/correction scheme can vary from
stored check bits, to triple modular redundancy. At the next
level of hierarchy, simple ALUs coupled with memory and a
communication router are constructed from the fault-tolerant
lookup tables to create a processor cell. A single instruction
will be executed multiple times on the processor cells (using
either space or time redundancy) and results are fed into a
majority voter to determine the output. A processor cell may be
permanently disabled if it has exceeded it error threshold. At
the highest level, the NanoBox Processor Grid consists of a 2D
grid of processor cells. Their experiments showed that using
redundancy at both the bit and module levels incurred a 9X
area overhead; however, their simulation results showed that
they can achieve 100% correct computation when operating at
FIT rates above 1023. While their analysis assumed that logic
for error detection/correction and voters were error free, this
is still an impressive result.

V. USING A PROBABILISTIC COMPUTING PARADIGM

As discussed in the previous section, if a system is sus-
ceptible to high rates of transient errors, then reconfiguration
may be rather costly in terms of added complexity or high
interconnection and control overhead. Furthermore, applying
N- modular redundancy may lead to an extremely high device
overhead and requires some restrictions on the reliability of
the majority voters. Instead, to more effectively protect against
transient errors, a different computing paradigm may be
needed for reliable operation of logic circuits and architectures.
In this section, we explore the use of probabilistic computing
based on principles of Markov Random Fields [23]. Under this
framework, logic states are considered to be random variables,
and one no longer expects a correct logic signal at all nodes
at all times, but only that the joint probability distribution of
signal values has the highest likelihood for valid logic states.
Markov Random Fields have been used extensively in other
areas outside of logic design, most notably pattern recognition
and communication, as a way of effectively handling fault-
prone data. Its successful application to such problems has
led to the exploration of its application to logic design as
well [23], [24].

The Markov Random Field defines a set of random variables
that can each take on various values and interact with other
similar random variables in a finite neighborhood [25]. Logic
circuits can be expressed in terms of such neighborhoods
and the interaction of the logic states and variables can be
represented as a dependence graph. The crucial factor for
probabilistic circuit design is that the full set of nodes (logic
variables) in the circuit can be factored into a product of
joint probabilities in the set of cliques that describe the local
interactions.

There are two key requirements for the MRF model to be
mapped onto a CMOS circuit:

• Each logic state, Xi, should be represented as a bistable
storage element, taking on logical values of “0” an “1”
with equal probability. The probability for any other
signal value should be low.

• The constraints of each logic graph clique should be
enforced by feedback to the appropriate storage elements,
implementing the logic compatibility functions to maxi-
mize the joint probability of the correct logical values.

The first requirement insures that the MRF logic states are
maintained so that the conditional probabilities among the
neighboring elements can propagate. The feedback paths, re-
quired by the second design principle, are based on conditional
probabilities and insure that the correct logic state is the most
probable state.

Consider, for example, a NAND gate. The constraints for the
gate can be expressed using the following logic compatibility
function:

Uc(x0, x1, x2) = x′

0
x′

1
x2 + x′

0
x1x2 + x0x

′

1
x2 + x0x1x

′

2
, (1)

or more concisely as:

Uc(x0, x1, x2) = (x′

0
+ x′

1
)x2 + x0x1x

′

2
(2)

Using this factored form given in Equation 2, a mapping of the
NAND gate can be created, as shown in Figure 2. The mapping
consists of an OAI (OR-AND-INV) gate implementing the
first term (x′

0
+x′

1
)x2 and a 3-input static CMOS NAND gate

implementing the second term x0x1x
′

2
. Note that the correct

output values on x2 and x′

2
are always reinforced for every

possible input assignment.

Fig. 2. An MRF NAND gate implementation. The inputs are x0 and x1,
the output is x2.

This new implementation of a NAND was simulated in
SPICE using the 70 nm Berkeley predictive technology
model [26] at VDD = 0.15V [27]. Operating the circuit at sub-
threshold voltages allowed the effects of noise on the transient
error rate to be better evaluated. They found that their MRF-
inspired circuits were very resilient to noise, whereas circuits
designed using standard CMOS logic gates experienced very
high error rates. Being able to operate correctly at ultra low
voltages can also provide a significant power advantage. Their
preliminary results estimate an average 33% savings in power
dissipation using this approach [27].

This MRF-inspired approach has also been applied to handle
soft errors and single event upsets in sequential logic. The
approach has some similarities with TMR, in that state is
replicated three times. However, instead of using a majority
voting mechanism to determine the correct state value, feed-
back is used to reinforce the value of the dominant state
assignment using MRF-inspired circuitry. In this way, the
scheme allows the entire circuit to be resilient to soft errors,
single event upsets, and other sources of signal noise. This
approach has also been extended to circuits that use error-
correcting codes to protect data. The MRF ECC differs from
traditional ECC in two fundamental ways: (i) both data and
parity bits are treated equally in the MRF graph node, and
(ii) error detection and correction is done naturally in the
system without explicit decoding [28]. They estimate that the
MRF approach for a (6,3) Hamming decoder is comparable
to a traditional ECC implementation in CMOS in terms of
transistor count. Furthermore, their simulations estimate that
for the traditional Hamming decoder to operate reliably, it
would have to dissipate 12X more power compared to the
MRF technique [27].

VI. FUTURE DIRECTIONS IN NANOCOMPUTING

Emerging nanoscale technologies will enable extremely
high levels of devices to be integrated onto a single substrate.

These nanoscale devices may consist of nanowire, carbon
nanotubes, single electron transistors, or even CMOS devices
shrunk down to ultimate dimensions. Regardless of which
devices may be used to design these nanoscale systems, some
sort of fault tolerance will have to be built into the designs
at multiple levels in order to guarantee reliable computation.
Essentially, reliability needs to become one more constraint
added to the optimization equation, along with area, perfor-
mance, power, and cost.

In this paper, we have reviewed a few hybrid schemes
that combine CMOS and nanoscale devices. While mixing
reliable elements among unreliable devices appears to have
some advantages, there are still issues that need to be explored
in this area. For instance, how do you best integrate alternative
nanodevices into CMOS technology? What kind of constraints
will these hybrid designs place on the architecture designs?
Will random technology layouts become less desirable as a
fabric for handling defective devices? Also, how will inter-
connect and memory bottlenecks limit the ability to handle
high fault and defect rates?

As we have discussed, design strategies for reliable com-
putation require various means of redundancy. What is not
yet clear is at what point will a designer be better off using
reliable, micro-scale devices rather than unreliable nanoscale
devices that require high levels of redundancy?

Computation with nanoscale devices implies computing
close to the thermal limit, where, computation becomes prob-
abilistic in nature. New computational paradigms need to be
developed that take probabilistic behavior into account.

There are many other issues related to reliability of
nanoscale computing that were not discussed in this paper.
Below, we touch on some of these issues and discuss how
they may influence future directions in nanocomputing.

Asynchronous circuits and self-timed or clockless logics
have been tried with CMOS technology, but are generally
not found in mainstream architecture designs. Asynchronous
computation may have a larger role in reliable computation
since these designs may simplify global communication and
power issues.

More realistic assumptions should be made about the nature
of faults for these new devices, and how the faults may
manifest themselves in the logic or system behavior. These
new fault models may change theoretical results as well as the
way reliability estimation is done for these nanoscale systems.

In order to aid the architecture, software for fault man-
agement also needs to be developed. The software should
have some awareness of the faults in the system and should
also have some part in managing the error rates, testing,
and recovery schemes. For instance, the software may be
responsible for driving the architectural reconfiguration when
faults are detected. Programming languages that map high-
level program descriptions onto nanoscale devices also need
to be developed.

REFERENCES

[1] G. K. Celler and S. Cristoloveanu, “Frontiers of silicon-on-insulator,”
Journal of Applied Physics, vol. 93, pp. 4955–4978, May 2003.

[2] S. Luryi, J. M. Xu, and A. Z. eds., Future Trends in Microelectronics:
The Nano, the Giga, and the Ultra. New York: Wiley, 2004.

[3] H. S. P. Wong, “Beyond the conventional transistor.” IBM Journal of
Research and Development, vol. 46, no. 2-3, pp. 133–168, 2002.

[4] H. Iwai, The future of CMOS downscaling. New York: Wiley, 2004,
ch. in: S. Luryi, J. M. Xu, and A. Zaslavsky, eds., Future Trends in
Microelectronics: The Nano, the Giga, and the Ultra, pp. 23–33.

[5] M. Butts, A. DeHon, and S. Goldstein, “Molecular electronics: Devices,
systems and tools for gigagate, gigachips,” in IEEE/ACM International
Conference on Computer-Aided Design, San Jose, November 2002, pp.
433–440.

[6] The latest 2004 update to the ITRS is available at
http://www.public.itrs.net.

[7] A. DeHon and M. J. Wilson, “Nanowire-based sublithographic pro-
grammable logic arrays,” in International Symposium on Field-
Programmable Gate Arrays, February 2004, pp. 123–132.

[8] A. DeHon, “Design of programmable interconnect for sublithographic
programmable logic arrays,” in International Symposium on Field-
Programmable Gate Arrays, February 2005, pp. 127–137.

[9] A. DeHon, P. Lincoln, and J. Savage, “Stochastic assembly of sublitho-
graphic nanoscale interfaces,” IEEE Transactions on Nanotechnology,
pp. 165–174, 2003.

[10] A. DeHon and H. Naeimi, “Seven strategies for tolerating highly
defective fabrication,” IEEE Design and Test of Computers, vol. 22,
no. 4, pp. 306–315, July-August 2005.

[11] A. DeHon, “Nanowire-based progammable architecture,” ACM Journal
on Emerging Technologies in Computing Systems, 2005.

[12] T. Wang, Z. Qi, and C. A. Moritz, “Opportunities and challenges in
application-tuned circutis and architectures based on nanodevices,” in
First ACM Conference on Computeirn Frontier, New York, NY, 2004,
pp. 503–511.

[13] T. Wang, M. Ben-Naser, Y. Guo, and C. A. Moritz, “Wire-streaming pro-
cessor on 2-D nanowire fabrics,” in NSTI (Nano Science and Technology
Institute) Nanotech 2005, California, May 2005.

[14] C. A. Moritz and T. Wang, “Towards defect-tolerant nanoscale architec-
tures,” in IEEE Nano2006, 2006.

[15] T. Wang, M. BenNaser, Y. Guo, and C. A. Moritz, “Self-healing wire
streaming processor on 2-D semiconductor nanowire fabrics,” in NSTI
(Nano Science and Technology Institute) Nanotech 2006, May 2006.

[16] K. K. Likharev and D. B. Strukov, Introducing Molecular Electronics.
Springer, 2005, ch. 16: CMOL: Devices, circuits, and architectures.

[17] X. Ma, D. B. Strukov, J. H. Lee, and K. K. Likharev, “Afterlife for sili-
con: Cmol circuit architectures,” IEEE Transactions on Nanotechnology,
2005.

[18] D. B. Strukov and K. K. Likharev, “CMOL FPGA: a reconfigurable
architecture for hybrid digital circuits with two-terminal nanodevices,”
Nanotechnology, no. 16, pp. 888–900, 2005.

[19] K. Nikolić, A. Sadek, and M. Forshaw, “Fault-tolerant techniques for
nanocomputers,” Nanotechnology, vol. 13, no. 3, pp. 357–362, 2002.

[20] J. von Neumann, Probabilistic Logic and the Synthesis of Reliable Or-
ganisms from Unreliable Components, ser. Automata Studies. Princeton
University Press, 1956.

[21] L. Durbeck and N. Macias, “The cell matrix: An architecture for
nanocomputing,” Nanotechnology, pp. 217–230, 2001.

[22] A. KleinOsowski, K. KleinOsowski, V. Rangarajan, P. Ranganath, and
D. J. Lilja, “The recursive nanobox processor grid: A reliable system
architecture for unreliable nanotechnology devices,” in International
Conference on Dependable Systems and Networks, June 2004.

[23] R. I. Bahar, J. Mundy, and J. Chen, “A probabilistic-based design
methodology for nanoscale computation,” in Proceedings of Interna-
tional Conference on Computer Aided Design, Nov. 2003.

[24] K. Nepal, R. I. Bahar, J. Mundy, W. R. Patterson, and A. Zaslavsky,
“Designing logic circuits for probabilistic computation in the presence
of noise,” in Proceedings of Design Automation Conference, June 2005.

[25] S. Z. Li, Markov Random Field Modeling in Computer Vision. Berlin:
Springer - Verlag, 1995.

[26] Available at http://www-device.eecs.berkeley.edu/∼ptm/.
[27] K. Nepal, R. I. Bahar, J. Mundy, W. R. Patterson, and A. Zaslavsky,

“Optimizing noise-immune nanoscale circuits using principles of markov
random fields,” in Proceedings of Great Lakes Symposium on VLSI, April
2006.

[28] ——, “Designing MRF based error correcting circuits for memory
elements,” in Proceedings of Design Automation and Test in Europe,
March 2006.

