
Conjoining Soft-Core FPGA Processors
David Sheldon*, Rakesh Kumar†, Frank Vahid*, Dean Tullsen†, Roman Lysecky‡

*Department of Computer Science
and Engineering

University of California, Riverside
{dsheldon,vahid}@cs.ucr.edu

†Department of Computer Science
and Engineering

University of California, San Diego

{rakumar,tullsen}@cs.ucsd.edu

‡Department of Electrical and
Computer Engineering
University of Arizona

rlysecky@ece.arizona.edu

ABSTRACT
Soft-core programmable processors on field-programmable gate
arrays (FPGAs) can be custom synthesized to instantiate only
those hardware units, such as multipliers and floating-point units,
that an application requires to meet performance demands, thus
minimizing soft-core size on the FPGA. Conjoining processors,
meaning to share hardware units among two or more processors,
can further reduce soft-core size, leaving more resources for other
circuits such as custom coprocessors. Using Xilinx MicroBlaze
coprocessors and standard embedded system benchmarks, we
show that conjoining two processors can provide 16% processor
size reductions on average, with less than 1% cycle count
overhead. We introduce an efficient dynamic-programming-based
exploration method to find the best custom instantiation of
hardware units, considering both standalone and conjoined
options, for soft-core processors.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: –
Microprocessor/microcomputer applications, Real-time and
embedded systems.

General Terms
Performance, Design, Experimentation.

Keywords
FPGAs, soft-core processors, conjoined processors, tuning,
customization, parameterized platforms.

1. INTRODUCTION
Soft-core processors on field-programmable gate arrays (FPGAs)
are an increasingly popular software implementation option in
embedded computing systems. A soft-core FPGA processor is a
synthesizable processor mapped onto the FPGA fabric, in contrast
to a hard-core processor that is laid out next to the FPGA fabric.
FPGA vendors tailor synthesizable processors, such as the Xilinx
MicroBlaze or the Altera Nios, for FPGA implementation,
resulting in processors having less size and performance overhead
than a general synthesizable processor mapped to an FPGA
[2][12]. Soft-core, as well as hard-core, processors on FPGAs

enable reductions in system device counts by co-existing with
custom processing circuits and glue logic on a single device. Soft-
core processors possess an additional advantage of being
realizable on general-purpose FPGA devices, with those devices
typically being lower cost than devices with hard cores due to
mass production and hence economy of scale. Furthermore, soft-
core processors enable custom numbers of processors on a device,
and custom interconnection structures among those processors –
increasingly important features as multiprocessing systems grow
in importance and diversity.
Soft-core FPGA processors come with optional hardware units
that may be instantiated, such as a multiplier, divider, barrel
shifter, or floating-point unit. FPGA tools generate accompanying
instructions, like a multiply instruction, to utilize an instantiated
unit, and soft-core compilers then utilize those instructions rather
than software library routines. Because a soft-core user may map
a single software application onto a soft-core, the user typically
instantiates minimal hardware units to meet desired performance
targets while minimizing the soft-core’s circuit size, a task known
as customizing the soft-core. Such soft-core customization can
reduce soft-core size by a factor of three compared to a core with
all units instantiated. That reduction not only frees FPGA
resources for use by other circuits co-existing on the FPGA, but
also can enable use of smaller and hence lower-cost FPGA
devices. Such reduction is magnified by the increasingly common
situation of users mapping several or even dozens of soft-cores
onto a single FPGA device [5][6][7][8][9], making soft-core
customization even more critical to best utilize available FPGA
resources. Furthermore, our analyses have shown that reducing
hardware units, in addition to reducing circuit size, can even
improve performance, due to shorter critical paths in the soft-
core’s circuit and hence faster processor clock frequency. Because
FPGAs typically support numerous clock frequencies within a
single device, each processor on a device could conceivably be
clocked at its fastest frequency.
An important problem is to find, for a given application, the
instantiation of possible hardware units that minimizes size while
meeting performance constraints. Given the large number of
possible configurations of hardware units, and the interactions
among units, the problem is quite challenging.
We can distinguish between two types of customizable
processors. A customizable-instruction processor allows
definition of custom-built hardware units and accompanying
custom instructions, and is often referred to as an application-
specific instruction-set processor (ASIP). Examples include
[1][3][4][10]0; Cong has investigated ASIPs specifically targeted
to FPGAs [3]. A parameterized processor has specific pre-
determined parameters that can be set to particular values to
create a custom processor instance. One type of parameter
corresponds to instantiating a pre-determined hardware unit and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ICCAD'06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011...$5.00

694

Figure 1: Conjoined processor example: (a) two separate

processors each with a multiplier, (b) two conjoined
processors sharing a single multiplier.

 Regular
LUTs

Hard-core
mult 18x18

“Size”
(Equivalent

LUTs)

Barrel Shifter 228 0 228

Divider 122 0 122

Multiplier 41 3 1331

Floating Point
Unit 1018 4 2738

Base MicroBlaze 1570 0 1570

Full MicroBlaze 3010 7 5989

Figure 2: FPGA resource requirements for each instantiatable
unit, and for the base and full MicroBlazes.

Multiplier Processor 1 Processor 1

possibly an accompanying instruction, such as a multiplier unit
and a multiply instruction, or a floating-point unit (FPU) and FP
instructions. There may even be multiple versions of a unit, such
as several multipliers that tradeoff speedup and size. Other
parameters may relate to the size of the register file, the number
of pipeline stages, the activation of data forwarding, the inclusion
and configuration of cache, etc. Yiannacouras et al [14] showed
the performance and size benefits of application-specific tuning of
parameterized FPGA soft-core processors. The two types of
customizable processors are not distinct; for example, Altera’s
Nios soft-core processor supports both types of customization [2].
In this paper, we specifically consider parameterized processors
consisting of pre-defined hardware units.
Conjoining processors means to share hardware units between
two (or more) processors. For example, two processors might
share a single multiplier as shown in Figure 1(b), thus reducing
total size of the two-processor system compared to each processor
having its own multiplier as in Figure 1(a). Conjoining may result
in performance overhead due to extra multiplexing and longer
routing caused by conjoining. Performance overhead may also be
caused by extra clock cycles due to contention for the shared unit,
because if one processor requires use of the shared unit but
another processor is already using the unit, the first processor may
stall until the unit becomes available. Kumar [8] introduced
conjoined processors and showed their benefits in multi-core
desktop processor architectures. To the best of our knowledge, no
soft-core FPGA vendor today supports conjoined processors.
Thus, the data presented in this paper presents a case for future
support of conjoinment. Conjoining processors may become an
increasingly important consideration as soft-core processors
continue to gain additional optional hardware units, such as
multiply-accumulate units, vector processing units, and
signal/image processing units like sum-of-absolute difference
units. Furthermore, even while Moore’s Law eases size
constraints, smaller FPGA devices tend to be lower cost and
lower power, making system size minimization an important goal
for multiprocessor systems implemented on FPGAs.
In this paper, we provide results of an analysis showing that
conjoining soft-core FPGA processors would yield very little
clock cycle count overhead, while achieving significant size
reductions, for a commercial soft-core processor executing
standard embedded system benchmarks. We also develop an
effective exploration method to automatically customize a two-
processor system of parameterized processors, considering non-
conjoined as well as conjoined options for every unit.

2. CONJOINED PROCESSOR
ARCHITECTURE
Our experimental framework utilizes Xilinx MicroBlaze soft-core
processors mapped to a Virtex II device on an ML310 board. The
MicroBlaze is a parameterized soft-core processor, coming with
the following hardware units that can be optionally instantiated
using Xilinx’s Embedded Development Kit toolset: a multiplier, a
divider, a floating-point unit, and a barrel shifter. Upon
instantiating one (or more) units, the toolset generates an
accompanying instruction (or instructions), which the MicroBlaze
compiler may then use when generating code for an application.
Furthermore, the MicroBlaze also has instruction and data caches
that can be instantiated, which have possible sizes ranging from 0
to 64 Kbytes. We will use the term base MicroBlaze to refer to a
MicroBlaze with none of these optional hardware units
instantiated, and the term configured MicroBlaze to refer to a
MicroBlaze having a particular instantiation of the optional
hardware units. A full MicroBlaze has all units instantiated. The
toolset synthesizes a circuit for a configured MicroBlaze, with
that circuit utilizing hard-core items on the FPGA when possible,
such as hard-core multipliers (for the multiplier or floating-point
units) or block RAMs (for cache). For such units, the toolset also
synthesizes control logic circuits onto the FPGA fabric alongside
e base MicroBlaze processor circuit, and some units, like the
barrel shifter, consist entirely of such logic circuits on the fabric.
Figure 2 provides size data for each of the MicroBlaze’s
instantiatable hardware units and for base and full MicroBlazes.
In discussing sizes, we need a straightforward way to describe the
relative sizes of two configured MicroBlazes. Describing relative
sizes is non-trivial because a MicroBlaze uses two types of
hardware resources: lookup tables (LUTs), and hard-core
multipliers. (We presently do not consider cache, so we do not
consider an FPGA’s block RAM hardware resources.) We thus
define the concept of Equivalent LUTs for the multipliers for the
purpose of describing relative sizes. A full MicroBlaze uses 3010
regular LUTs and 7 hard-core multipliers. Assuming regular
LUTs and hard-core multipliers to be equally important resources,
then the 7 hard-core multipliers have an equivalent LUT value of
3010, and one hard-core multiplier has an equivalent LUT value
of 3010/7 = 430. An instantiatable unit or configured MicroBlaze
thus has an equivalent LUT value equal to the number of regular
LUTs used, plus the number of equivalent LUTs contributed by
the hard-core multipliers used. For example, the floating point
unit uses 1018 regular LUTs, and 4 hard-core multipliers worth

Multiplier Processor 2
Multiplier

Processor 2
(a) (b)

695

Configuration Cycle count

Barrel Shifter 2

Divider 34

Multiplier 3

FP
U

 Add, Sub, Mul

Div

6

30

Figure 4: Cycle counts for each instantiatable unit when
conjoined, including a one-cycle access penalty due to

conjoinment.

0

2000

4000

6000

8000

10000

bs div mul fpu
Unit instantiated with base processor

Eq
ui

va
le

nt
 L

U
Ts

sep
conj

6% 4%

23%

32%

Figure 3: Sizes of two-processor systems with two separate
units (sep), or one conjoined unit (conj). % size savings from

conjoining are shown, showing significant savings.

430 equivalent LUTs each, for a total of 1018+4*430 = 2738
equivalent LUTs. A similar equivalent LUT concept was
developed independently by researchers using Altera devices
[14], lending confidence to the utility of the concept. We also
recently found our equivalent LUT concept to correlate almost
perfectly with Xilinx’s own equivalent gate concept.
We use LUTs, and not configurable logic blocks (CLBs), as a
measure of size, based on direct communications with the
MicroBlaze design time indicating that LUTs are a more
meaningful size measure than CLBs.
Using equivalent LUTs, Figure 3 shows the size savings
achievable by conjoining just one unit for two processors.
Conjoining two or more units would result in further size savings.
Conjoining all units would yield 65% size savings. .
The next section addresses the key question of how much clock
cycle count performance penalty is imposed by such conjoining.

3. CONJOINED PROCESSOR
PERFORMANCE OVERHEAD
This section describes experiments to determine the clock cycle
count performance overhead that would occur for standard
benchmarks when conjoining two FPGA soft-core processors.

3.1 Simulation Framework
The MicroBlaze toolset includes a MicroBlaze simulator, which
can generate instruction traces for any configured MicroBlaze.
The MicroBlaze toolset does not support synthesis of conjoined
processors (nor at this time does any soft-core processor toolset of
any company that we are aware of), and hence that simulator does
not simulate conjoined processors. We therefore developed a trace
simulator that takes as input those instruction traces and
configuration data including conjoinment information, and that
outputs stall and cycle data. The trace simulator presently
considers a two-processor system, and assumes that both
processors operate at the same clock frequency. The trace
simulator takes as input a list of conjoined hardware units. Each
conjoined unit may have an access penalty associated with the
unit, expressed in number of cycles. We pessimistically assume
that every conjoined unit has a one cycle access penalty even
when the unit is available, to account for checking of a busy flag.
Schemes can be introduced to reduce the penalty well below one
cycle on average [8].

 A collision occurs when two processors need to use a conjoined
unit in the same cycle. There are two types of collisions that can
occur. The first is when processor A is already using a unit and
processor B needs to use that unit. This type of collision can only
occur for multi-cycle units. All of the components in the
MicroBlaze are multi-cycle, as shown in Figure 4. For such a
collision, our simulator assumes that processor currently using the
unit continues to use the component until finished. The second
type of collision occurs when both processors want to start using a
unit on the same cycle. In this case, we use a simple arbiter that
uses a round-robin (alternating in the case of two processors)
policy. In either type of collision, we pessimistically assume that
the processor waiting for a unit will completely stall.
Conjoining processors could potentially decrease the clock
frequency of one or both processors, if the hardware required to
share a conjoined unit lengthens the critical path. This decreased
clock frequency could be minimized by placing the processors
and the conjoined unit in such a way that the shared components
are sitting between the two processors. As FPGAs do not
presently support conjoined processors, we are presently unable to
determine whether conjoining will actually impact frequency, and
if so, to what extent. We plan to investigate this subject in the
future through collaborations with an FPGA company.

3.2 Speedups for Instantiatable Units
We considered 10 applications from the EMBCC and Mediabench
benchmark suites (aifir, BaseFP01, brev, bitmnp, canrdr, g3fax,
g721_ps, matmul, ttsprk, ttblook) and one additional benchmark
raytrace, for a total of 11 benchmarks. These benchmarks were
chosen to show how the impact of the units varies over a wide
range of benchmarks.
Each benchmark has a “beginning” and an “end,” enclosed in a
main loop whose iteration count can be varied. The beginning to
end behavior may itself contain loops, but such behavior does not
contain the infinite loop that often surrounds an embedded
application. For each application, we first determined the number
of cycles to execute the application from beginning to end (i.e.,
one main iteration) on a base processor. For each application, we
also determined the number of cycles to execute one main
iteration on a processor consisting of the base processor plus
exactly one optional hardware unit, doing so for each possible
hardware unit. Figure 5 shows the cycle data for one application,
aifir, with that data consisting of the cycles on the base processor,
and on all versions of the processor extended with one hardware
unit. That figure shows that instantiating either a barrel shifter, or
a multiplier, reduces the number of cycles needed to execute the
application, and hence yields the speedups shown.

696

Figure 6 shows the speedup data we obtained by each hardware
unit for every application, in addition to aifir. That figure shows
substantial speedups, as high as 6.5 in some cases. The next
question is therefore how much of that speedup would be lost if
the unit yielding the speedup were conjoined with another
processor whose application also needs that unit for speedups.

3.3 Speedup Reductions due to Conjoining Units
We considered all possible pairs of applications running on a two-
processor system, with one application per processor. Because
applications have different runtimes, we increased the number of
main loop iterations of the shorter application so that its runtime
was longer than the longer application, and then we ran for the
length of the originally longer application. For each application
pair, we considered each optional hardware unit H. Considering
the speedups shown in Figure 6, three possible situations exist
among a pair of applications and the hardware unit H.
One situation is that neither application derives a speedup benefit
from instantiating H. In this situation, neither processor would
instantiate H, so conjoinment is not possible. A second situation is
that only one application derives a speedup from instantiating H.
In this case, only that processor might instantiate H, so
conjoinment need not be considered.
The third situation is when both processors derive speedups from

instantiating H. In this situation, conjoinment is an option to
consider among five options: the processors share one H
(conjoined), the processors each instantiate their own H, the first
processor instantiates H but the second doesn’t, the second
processor instantiates H but the first doesn’t, or neither processor
instantiates H. This third situation, which we refer to as a
conjoinable situation, is the only one for which we collected
conjoinment data, because providing conjoinment data for the
other two situations would have shown no speedup reductions and
would have thus resulted in misleadingly low average
performance overheads, i.e., in an exaggeration of the benefits of
conjoinment.

Configuration Cycles Speedup vs. base

Base MicroBlaze 2,134,921 1

Base + Barrel Shifter 1,833,752 1.16

Base + Divider 2,134,920 1

Base + Multiplier 1,849,715 1.15

Base + FPU 2,134,921 1

Figure 5: Cycle counts for one main iteration of the aifir
benchmark, for a base MicroBlaze, and for a base

MicroBlaze plus one unit. The barrel shifter and multiplier
each provide speedups over the base for this benchmark. For every conjoinable situation encountered when considering all

pairs of applications and every hardware unit, we determined the
cycles each application required from beginning to end, but this
time assuming that the hardware unit was shared among the two
processors running those two applications. Recall that we
pessimistically assume every access to a shared unit, even in the
absence of a collision, has a one-cycle access penalty
incorporated in a unit’s cycle latency in Figure 4. Because a
shared unit could be busy when an application required that unit,
the number of cycles for a particular application could increase
over the cycles shown in Figure 4, i.e., sharing a unit may result
in processor stalls. For example, Figure 7 shows the stalls
computed by our trace simulator when sharing a barrel shifter
between two particular benchmarks, chosen for the figure due to
their resulting in one of the most stalls of any pair (note that the
stalls are not very frequent even for that pair). Note that the one-
cycle access penalty for a shared unit is also shown as a stall
cycle.
We computed the speedups (over a base processor) for each
application for every conjoinable situation considering each
pairing with another application and each hardware unit, and
compared those speedups with the earlier-computed speedups of
Figure 6 for each hardware unit without any conjoining. We
define the performance overhead of conjoinment as the ratio of
the unconjoined speedup minus the conjoined speedup, divided by
the unconjoined speedup, times 100%. Thus, if conjoining yields

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

aif
ir

Bas
eF

P01 bre
v

bit
mnp

ca
nrd

r
g3

fax

g7
21

_p
s

matm
ul

ray
tra

ce
tbl

oo
k

tts
prk

Sp
ee

du
p

Base

Barrel Shifter

Divider

Multiplier

FPU

Figure 6: Speedups for each instantiatable unit, for each benchmark. Instantiating particular units can have significant speedup

impacts.

6.54 2.64 4.09 1.97 1.93 1.54

Figure 7: Stalls (shown as filled regions) determined by the simulator using a shared barrel shifter, for the brev, bitmnp pairing of
benchmarks. This example involves one of the highest amounts of interference of all the examples considered.

brev

bitmnp

697

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

(br
ev

),c
an

rdr

bre
v,(

ca
nrd

r)

(br
ev

),b
itm

np

bre
v,(

bit
mnp

)

(br
ev

),b
rev

bre
v,(

bre
v)

(bi
tm

np
),c

an
rdr

bit
mnp

,(c
an

rdr
)

(bi
tm

np
),b

itm
np

bit
mnp

,(b
itm

np
)

(ca
nrd

r),
ca

nrd
r

ca
nrd

r,(c
an

rdr
)

Sp
ee

du
p

Conjoined
Unconjoined

Figure 8: Application speedups for six pairings of applications, for conjoined and unconjoined barrel shifter cases. Only

applications that benefit from the barrel shifter (i.e., for which an unconjoined barrel shifter provides a speedup of 1.3 or more)
are shown. The benchmark in parentheses is the one from that pair whose speedup is shown in the bar above. The figure shows

that conjoinment only has a small impact on the speedup provided by the barrel shifter.
a speedup of 1.7 whereas unconjoined execution yielded a
speedup of 2.0, the overhead would be 100%*(2.0-1.7)/2.0 =
15%. We again point out that this performance overhead is with
respect to cycle count only, and does not presently consider
potential lengthening of the clock cycle caused by conjoinment.
Figure 13 shows the conjoinment performance overheads for all
pairs of applications, for each hardware unit, only showing data
for conjoinable situations (as defined earlier). The data shows that
conjoinment results in very small performance overheads, usually
1% or less, occasionally about 5%, and only in a couple cases
around 16% (which happened to involve a barrel shifter). In other
words, most of the benefit of instantiating a unit is preserved even
when the unit is conjoined.
Figure 8 shows the data specifically for a barrel shifter unit, and
only for six “significant” pairs for which a barrel shift yielded
speedups of 1.3 or more. Other pairs are omitted as they do not
use the barrel shifter much and thus do not provide interesting
data points. The figure again shows that conjoinment has only
modest performance overhead. Plots for other units are similar,
actually better – we showed the barrel shifter since it exhibited
the most performance overhead compared to all other units.
Figure 9 shows the barrel shifter utilization for the same six pairs
of benchmarks, showing that unit utilization is 40% on average,
and over 50% in some cases. Yet even with such relatively high
utilization, performance overheads were relatively small. The
early example in Figure 7 for one of the highest overhead
situations (brev/bitmnp sharing a barrel shifter) – even with 53%
utilization (37 of 70 cycles), stalls are infrequent. Similar patterns
occur for other example application pairs; in fact, other pairs

exhibit even fewer stalls.

4. EXPLORATION METHOD FOR THE
TWO-PROCESSOR UNIT-
INSTANTIATION WITH CONJOINING
PROBLEM
The previous section showed that conjoining soft-core processors
could potentially yield significant size savings with small or no
performance overhead in most cases. In this section, we introduce
an automated exploration method for determining the best
instantiation of units for two processors, with conjoining
considered.

4.1 Problem Definition
Given a pair of applications running on the two processors, and a
total size constraint, the two-processor unit-instantiation with
conjoining problem is to find the instantiation of units that gives
the greatest average speedup while not exceeding the size
constraint.
We consider all four earlier-mentioned instantiatable unit types:
barrel shifter, divider, multiplier, and FPU. Each unit type has
five possible instantiations for two processors A and B: no
instantiation, instantiated for A, instantiated for B, instantiated for
A and instantiated for B (i.e., instantiated twice), and instantiated
for both A and B (i.e., instantiated once but shared – conjoined).
The complete solution space is thus 5*5*5*5, or 625 possible
instantiations. Each unit has a size as shown in Figure 2. Each
processor executes one application repeatedly. Performance
speedup for a given instantiation of units is computed as described

0%
20%
40%
60%
80%

100%

brev,canrdr
brev,bitmnp

brev,brev
bitmnp,canrdr

bitmnp,bitmnp
canrdr,canrdr

average

%
 u

til
iz

at
io

n

% unused

app2 %
uitlization
app1 %
utilization

Figure 9: Component utilization for significant (>30% speedup) barrel shifter pairs. The previously shown low speedup overheads
are achieved despite the relatively high unit utilizations shown here.

698

in Section 3.2 for each application relative to a base processor,
and averaged for a given pair to obtain a single speedup value.

4.2 Disjunctively-Constrained Knapsack Solution
We determined that the two-processor unit-instantiation problem
could be approximately mapped to a variation of the 0-1 knapsack
problem. The 0-1 knapsack problem consists of a set of items,
with each item having a profit and a weight, and a total weight
constraint on the knapsack. The problem is to choose which items
to assign to the knapsack such that profit is maximized while not
violating the weight constraint.
The key to the problem mapping involves noting that each unit
can be considered to be an item in the knapsack problem, with
instantiating a unit corresponding to adding the item to the
knapsack. Ignoring conjoinment for the moment, eight “items”
would exist: barrel shifter for processor A, divider for A,
multiplier for A, FPU for A, barrel shifter for processor B, divider
for B, multiplier for B, and FPU for B. An item’s weight would be
the corresponding unit’s size from Figure 2. An item’s profit
would be the speedup increment (i.e., the speedup amount above
1.0) that the corresponding unit provides over a base processor for
the given application, shown in Figure 6 (e.g., if a multiplier
speeds up the application by 1.3x, the profit would be 0.3). This
mapping is approximate because speedup increments are not
necessarily additive – if a barrel shifter provides a speedup of
1.2x, and a multiplier of 1.3x, instantiating both a barrel shifter
and multiplier might yield a speedup less than 1.5x, such as 1.4x,
due to overlapping functionality (e.g., a multiplier may be used
for shifting). However, we examined all pairs of units for all
applications, and found that adding speedup increments had an
average inaccuracy of 5.9% (though the worst case was 26%
between the multiplier and divider), which we considered
acceptable.
With the above mapping, we could solve the two-processor unit-
instantiation problem using a well-known dynamic programming

solution to the 0-1 knapsack problem.
Extending the mapping to consider conjoinment, we can introduce
new “items” in addition to those eight listed above: barrel shifter
for processors A and B (i.e., one barrel shifter shared by both
processors – conjoined), divider for both A and B, multiplier for
both A and B, and FPU for both A and B, for twelve items total.
However, this extension is not complete, because these items
corresponding to conjoined units cannot co-exist in the knapsack
with items corresponding to non-conjoined units. For example, we
cannot have a multiplier for A, and a multiplier for A and B, both
in the solution – either the multiplier is for A, or the multiplier is
shared by A and B. Fortunately, the disjunctively constrained
knapsack problem [13] extends 0-1 knapsack to prohibit certain
combinations of items from appearing in the knapsack. We thus
specify the prohibited combinations, and apply the algorithm
described in [13]. The algorithm is known to be “pseudo-
polynomial,” and effectively quadratic, proportional to the
number of items times the size of the knapsack.
Note that, although the used algorithm optimally solves the
knapsack problem, the solution is not necessarily optimal for the
two-processor unit-instantiation problem, because the mapping of
that problem to knapsack was approximate, due to the additive
speedup increment approximation.

5. RESULTS
We obtained solutions for all pairs of our 11 applications (thus,
121 pairs), using our knapsack approach, and using exhaustive
search. Due to space limitations, we show results for eight
representative pairs, shown in Figure 10. The pairs were selected
to show the multiple types of applications. BaseFP01 and tblook
both require a floating point unit for large speedups, while bitmnp
and canrdr rely on the barrel shifter and multiplier. With these
pairings, we can see how our solution works over the entire search
space. We imposed a size constraint guaranteed to “hurt”
somewhat by not allowing all units from which an application

0

1

2

3

4

5

6

7

8

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Size (Equiv LUTs)

Sp
ee

du
p

bitmnp, bitmnp knapsack

bitmnp, bitmnp optimal

canrdr, canrdr knapsack

canrdr, canrdr optimal

BaseFP01, BaseFP01 knapsack

BaseFP01, BaseFP01 optimal

BaseFP01, bitmnp knapsack

BaseFP01, bitmnp optimal

BaseFP01, canrdr knapsack

BaseFP01, canrdr optimal

tblook, tblook knapsack

tblook, tblook optimal

tblook, bitmnp knapsack

tblook, bitmnp optimal

tblook, canrdr knapsack

tblook, canrdr optimal

Figure 10: Solutions obtained by exhaustive (optimal) and knapsack algorithms, for eight randomly-selected application pairs, and
an area constraint set to 80% of the area of the best configuration. The knapsack algorithm finds near-optimal solutions for seven

of the eight pairs (circled), doing poorly on one pair (the two non-circled points).

699

0
1
2
3
4
5
6
7
8

B
as

eF
P

01
,

B
as

eF
P

01

B
as

eF
P

01
,

bi
tm

np

B
as

eF
P

01
,

ca
nr

dr

bi
tm

np
,

bi
tm

np

ca
nr

dr
,

ca
nr

dr

tb
lo

ok
,

bi
tm

np

tb
lo

ok
,

ca
nr

dr

tb
lo

ok
,

tb
lo

ok

A
V

E
R

A
G

E

S
pe

ed
up

knapsack
exhaustive w/ conj.
exhaustive w/o conj.

Figure 11: Speedup of the chosen benchmark pairs, using the

80% of the best configuration size constraint.

0

2000

4000

6000

8000

10000

12000

Ba
se

FP
01

,
Ba

se
FP

01

Ba
se

FP
01

,
bi

tm
np

Ba
se

FP
01

,
ca

nr
dr

bi
tm

np
,

bi
tm

np

ca
nr

dr
,

ca
nr

dr

tb
lo

ok
,

bi
tm

np

tb
lo

ok
,

ca
nr

dr

tb
lo

ok
,

tb
lo

ok

AV
ER

AG
E

S
iz

e
(e

qu
iv

. L
U

Ts
)

knapsack
exhaustive w/ conj.
exhaustive w/o conj.

Figure 12: Size reductions for chosen benchmark pairs.

benefits, by first determining for each application what units
provide speedup, summing the sizes for each processor having
those units, and setting the size constraint to 80% of that size.
Figure 11 shows that the knapsack approach usually obtains near-
optimal solutions, sometimes having slightly worse speedup
(barely discernible in the figure) and/or slightly worse size
(though always satisfying the size constraint, of course). The one
sub-optimal case involves the large FPU and occurs due to the
additive speedup increment assumption – we plan to investigate
improvements to reduce this sub-optimality, where such a
solution would likely involve modifications for large units not
obeying the additive assumption. Average speedup was within 1%
of optimal.
Figure 12 shows the size savings obtained by using conjoinment
versus not considering conjoinment. Knapsack achieves nearly
the same size savings as exhaustive search, yielding size savings
of 16% on average.
Runtimes of the dynamic programming algorithm were under one
second in all cases. That time does not include a fixed initial setup
time required to obtain size data for each unit through synthesis
(requiring tens of minutes), and simulations to determine speedup
increments for each unit (requiring seconds).

6. CONCLUSIONS
While customizing soft-core FPGA processors by custom-
instantiating datapath units provides for good speedups and
efficient size usage, we showed that conjoining processors by
sharing those units further reduces size with little impact on
speedup. We developed an effective dynamic programming
method for automatically finding a good instantiation of units,
including conjoined units, for two processors. We showed that
considering conjoined units yields 16% average size savings with
less than 1% speedup penalty, even using pessimistic performance
assumptions.

7. ACKNOWLEFGEMENTS
This research was supported in part by the National Science
Foundation (CCR-0203829), by the Semiconductor Research
Corporation (2005-HJ-1331), and through hardware and software
donations provided by Xilinx.

8. REFERENCES
[1] Abraham, A., B. Rau., Efficent Design Space Exploration in

PICO. 2000. International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems
(CASES).

[2] Altera Corp. Nios II Processors.
http://www.altera.com/products/ ip/processors/nios2/ni2-
index.html, 2005.

[3] Cong, J., Y. Fan, G. Han, Z. Zhang. Application-Specific
Instruction Generation for Configurable Processor
Architecures. 2004. ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (FPGA).

[4] Cong, J., Y. Fan, G. Han, A. Jagannathan, G. Reinman, Z.
Zhang. Instruction Set Extension with Shadow Registers for
Configurable Processors. 2005. ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA).

[5] Dwivedi, B.,A. Kumar, M. Balakrishnan, Automatic
Synthesis of System on Chip Multiprocessor Architectures
for Process Networks. 2004. International Symposium on
Hardware/Software Codesign and Internation Symposium on
System Synthesis (CODES/ISSS).

[6] Huebner, M., T. Becker, J. Becker. Real-Time LUT-Based
Network Topologies for Dynamic and Partial FPGA Self-
Reconfiguration. 2004. 13th Symposium on Integrated
Circuit Design and System Design (SBCCI).

[7] Jin. Y., N. Satish, K. Ravindran, K. Keutzer. An Automated
Exploration Framework for FPGA-based Soft Multiprocessor
Systems. 2005. International Symposium on
Hardware/Software Codesign and Internation Symposium on
System Synthesis (CODES/ISSS).

[8] Kumar, R., N. Jouppi, D. Tullsen. Conjoined-core Chip
Multiprocessing. In the Proceedings of the 37th International
Symposium on Microarchitecture.

[9] Kumar, R., V. Zyuban, D. Tullsen. Interconnections in
Multi-core Architectures: Understanding Mechanisms,
Overheads and Scaling. 2005. In the Preceedings of the 32nd
International Symposium on Computer Architecture.

[10] Poseidon Triton System. http://www.poseidon-systems.com

700

[11] Tencillica, www.tencillica.com
[12] Xilinx, Inc. MicroBlaze Soft Processor Core.

http://www.xilinx.com/
xlnx/xebiz/designResources/ip_product_details.jsp?key=micr
o_blaze, 2005.

[13] Yamada, T., S. Kataoka and K. Watanabe, "Heuristic and
Exact Algorithms for the Disjunctively Constrained

Knapsack Problem", Information Processing Society of Japan
Journal, Vol. 43, No. 9 (2002), 2864-2870.

[14] Yiannacouras, P., J. Rose, J. Steffan, The Microarchitecture
of FPGA-Based Soft Processors. 2005. International
Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES).

bs: 0.84% bs: 0.21% bs: 5.82% bs: 5.71% bs: 1.45% bs: 0.71% bs: 1.51% bs: 0.87% bs: 0.33% bs: 0.36% bs: 0.56%
div: div: div: div: div: div: div: div: div: div: div: 1.21%

mul: 1.01% mul: 0.34% mul: 1.40% mul: 0.78% mul: 1.63% mul: 0.33% mul: 0.60% mul: 1.08% mul: 0.33% mul: 1.11% mul: 1.11%
fpu: fpu: fpu: fpu: fpu: fpu: fpu: fpu: fpu: fpu: fpu:
bs: 0.80% bs: 0.16% bs: 5.76% bs: 5.70% bs: 1.41% bs: 0.67% bs: 1.47% bs: 0.82% bs: 0.28% bs: 0.31%

div: div: div: div: div: div: div: div: div: div:
mul: 0.80% mul: 0.17% mul: 1.20% mul: 0.59% mul: 1.41% mul: 0.16% mul: 0.42% mul: 0.89% mul: 0.16% mul: 0.34%
fpu: fpu: 0.27% fpu: fpu: fpu: fpu: fpu: fpu: fpu: 0.10% fpu: 0.19%
bs: 0.75% bs: 0.13% bs: 5.70% bs: 5.59% bs: 1.36% bs: 0.63% bs: 1.42% bs: 0.79% bs: 0.47%

div: div: div: div: div: div: div: div: div:
mul: 0.61% mul: 0.01% mul: 0.98% mul: 0.41% mul: 1.17% mul: 0.00% mul: 0.24% mul: 0.68% mul: 0.00%
fpu: fpu: 0.38% fpu: fpu: fpu: fpu: fpu: fpu: fpu: 0.73%
bs: 1.32% bs: 0.66% bs: 6.87% bs: 6.58% bs: 2.00% bs: 1.21% bs: 2.07% bs: 1.53%

div: div: div: div: div: div: div: div:
mul: 1.44% mul: 0.69% mul: 1.79% mul: 1.17% mul: 2.09% mul: 0.68% mul: 0.98% mul: 1.35%
fpu: fpu: fpu: fpu: fpu: fpu: fpu: fpu:
bs: 1.16% bs: 0.51% bs: 6.42% bs: 6.26% bs: 1.80% bs: 1.87% bs: 4.03%

div: div: div: div: div: div: div:
mul: 0.90% mul: 0.25% mul: 1.30% mul: 0.69% mul: 1.51% mul: 0.25% mul: 0.48%
fpu: fpu: fpu: fpu: fpu: fpu: fpu:
bs: 1.16% bs: 0.51% bs: 6.42% bs: 6.26% bs: 1.80% bs: 0.99%

div: div: div: div: div: div:
mul: 0.61% mul: 0.01% mul: 0.98% mul: 0.98% mul: 0.41% mul: 0.01%
fpu: fpu: fpu: fpu: fpu: fpu:
bs: 1.95% bs: 1.21% bs: 7.92% bs: 7.60% bs: 2.41%

div: div: div: div: div:
mul: 2.02% mul: 1.18% mul: 2.58% mul: 1.74% mul: 2.34%
fpu: fpu: fpu: fpu: fpu:
bs: 6.55% bs: 5.32% bs: 16.51% bs: 13.10%

div: div: div: div:
mul: 1.10% mul: 0.42% mul: 1.53% mul: 0.85%
fpu: fpu: fpu: fpu:
bs: 6.65% bs: 5.39% bs: 16.97%

div: div: div:
mul: 1.82% mul: 0.98% mul: 1.95%
fpu: fpu: fpu:
bs: 0.62% bs: 0.02%

div: div:
mul: 0.62% mul: 0.02%
fpu: fpu: 0.57%
bs: 1.27%

div:
mul: 1.21%
fpu:

bitmnp

brev

BaseFP01

aifir

g721_ps

g3fax

canrdr

ttsprk

tblook

raytrace

matmul

matmul raytrace tblook ttsprkcanrdr g3fax g721_psaifir BaseFP01 brev bitmnp

Figure 13: Performance overhead for conjoined units for all pairs of applications. The % shown is the performance overhead caused by
stalls due to conjoined unit contention and by 1 extra cycle for accessing a conjoined unit (even without contention), versus using non-

conjoined units (with no extra cycle for access). The overheads are the average of the two overheads of the applications in a pair.

701

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

