
Performance analysis of concurrent systems
with early evaluation

∗

Jorge Júlvez
†

Universitat Politècnica de
Catalunya

Barcelona, Spain

Jordi Cortadella
Universitat Politècnica de

Catalunya
Barcelona, Spain

Michael Kishinevsky
SCL

Intel Corporation
Hillsboro, USA

ABSTRACT
Early evaluation allows to execute operations when enough infor-
mation at the inputs has been received to determine the value at
the outputs. Systems that can tolerate variable-latency units, such
as latency-insensitive or asynchronous systems, can enhance their
performance by using early evaluation. The most relevant example
of a unit with early evaluation is the multiplexor: the output can
be determined as soon as the information of the selected channel
arrives, without waiting for the other channels.

This paper analyzes the potential impact of early evaluation in
concurrent systems. An analytical model, based on a Petri net ex-
tension with early firing is proposed to estimate the performance.
The reduction of the analytical model to a linear programming for-
mulation for an efficient estimation of the upper bound for the sys-
tem throughput is proposed. The results show the accuracy of the
model and the benefits of early evaluation.

1. INTRODUCTION
Lazy and eager evaluation are two different strategies to com-

pute the value of expressions. Lazy evaluation is typically used
to minimize resource utilization, since expressions are only evalu-
ated when it is strictly necessary. On the other hand, eager evalu-
ation aims at speeding-up computations by evaluating expressions
as soon as the values of the variables are available, thus triggering
the evaluation of other expressions.

The main motivation of this work comes from the area of latency-
insensitive (LI) and asynchronous systems [4, 11]. The computa-
tional model of this type of systems resembles dataflow computing.
Every wire and storage unit has an extra bit that indicates whether
the contents of the component is valid or not. Every computational
unit produces a valid result when all input data are valid.

The dynamic behavior of these systems can be often modeled
by marked graphs [5], a subclass of Petri nets [9] without choices.
Data items are modeled as tokens on the arcs of the graph. When a
computational unit has tokens in all input arcs, it can consume all
input data and produce a result on the output arcs.

∗This work has been partially supported by a gift from Intel Corp.
and CICYT TIN 2004-07925.
†Supported by the Spanish Ministry of Education and Science
(Juan de la Cierva fellowship).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD ’06, November 5­9, San Jose, CA, USA
Copyright 2006 ACM 1­59593­389­1/06/0011 ...$5.00.

a b c a b c
c

(true)
c

(false)

(a)

a b a b c
−1

a b a b c

(b) (c)

−1

Figure 1: Multi-guarded transitions: (a) AND-causality; (b)
early firing with guard {a,c}; (c) early firing with guard {b,c}.

1.1 Early evaluation
The requirement that all input data must be available to compute

a result is too strict in some cases. For example, if a functional unit
computes a = b∗c, it is not necessary to wait for both operands if
one of them is already available and known to be zero. Therefore,
the result a = 0 could be produced by an early evaluation of the
expression. A typical component in digital circuits is the multi-
plexor. The simplest multiplexor has two input data (a and b), one
input control signal (c) and one output data (z), with the following
behavior:

z = if c then a else b

The early evaluation of the multiplexor can be produced if, for in-
stance, c and a are available and the value of c is true. In that case,
the result z = a can be produced and the value of b can be dis-
carded when it arrives at the multiplexor. Early evaluation has been
proposed and used in asynchronous design [2, 10].

Petri nets are not capable of modeling early evaluation, since
the enabling of transitions is based on AND-causality, i.e., all in-
put conditions must be asserted. Causal Logic Nets from [12] ex-
tend Petri nets to allow transition enabling triggered by arbitrary
logic guards associated with transitions. In this paper we present a
new model of nets, called multi-guarded nets (GN), with the power
of modeling early evaluation that associate with a single transi-
tion multiple logic guards selected non-deterministically. This non-
deterministic selection models interaction of the control with con-
ditions in the data-path.

Figure 1(a) illustrates the firing rule in Petri nets (AND-causality).
Early evaluation is modeled by multi-guarded transitions. A guard
is a subset of places that can enable a transition. A multi-guarded
transition has a set of guards from which one of them is chosen
nondeterministically at each firing. For example, a transition mod-
eling the previously described multiplexor would have a set of two
guards, {{a,c},{b,c}}. The availability of information is deter-
mined by the presence of a token in the place. For every token,
there is an associated data value. For example, c has a Boolean
value (true or false).

However, GNs only model the control of the system. Data-
dependent control is modeled by the nondeterminism that selects
the guard. In our example, the selection between {a,c} and {b,c}
is what models the fact that the token associated to c can have the
value true or false.

448

Μ1

Μ2

α1−α

1−ββ

(1) (2) (3)

α
0.02 0.2 0.4 0.6 0.8 0.98

β

0.02 0.403 0.403 0.403 0.403 0.403 0.403
0.2 0.423 0.423 0.424 0.424 0.425 0.426
0.4 0.429 0.436 0.442 0.447 0.451 0.453
0.6 0.430 0.441 0.454 0.465 0.480 0.487
0.8 0.430 0.443 0.460 0.479 0.507 0.530
0.98 0.430 0.443 0.461 0.488 0.527 0.584

Figure 2: Throughput of a GN with probabilistic guards.

When a transition is early-enabled, it can fire by storing a neg-
ative token (-1) in the input places without tokens. This negative
token will be cancelled out when the late positive token arrives at
the place.

1.2 Performance analysis
Evaluating the performance of choice-free systems has been ex-

tensively studied by many authors. The performance is determined
by the minimum cycle mean [7]. If we assign a delay to each node
in the marked graph, the mean weight of a cycle is defined as the
total delay of the cycle divided by the number of tokens in the cy-
cle. The cycle with the maximum value is the one that determines
the performance of the system. The minimum cycle mean can be
efficiently computed in polynomial time [6]. The performance of
these systems can be increased when the delay of the critical cycles
can be partially hidden by sporadic early evaluations.

Figure 2 depicts a marked graph with three cycles. The shad-
owed transitions M1 and M2 model two multiplexors. Their control
signals are assumed not to be critical and are not depicted in the
graph. Thus, the two input arcs of the multiplexors model the two
input data. Associated to each input arc there is a guard and a real
number in the interval [0,1] that indicates the probability for the
guard to be selected. Each transition is assumed to have unit delay.

Under a pure Petri net model with AND-causality, the perfor-
mance of the system would be determined by the most stringent
cycle. The throughput T hi (tokens/transitions) for each cycle is the
following:

T h1 =
3

7
= 0.429 T h2 =

3

5
= 0.6 T h3 =

2

5
= 0.4

Hence, the global throughput of the system would be 2/5. By in-
corporating early evaluation, the throughput can be increased, as
shown in the table at the right-hand side of the figure. When β
is close to 0, the system throughput tends to 0.4, i.e., it is almost
completely determined by cycle (3). On the other hand, as α and
β approach 1, the throughput increases and tends to 0.6, i.e., cycle
(2) determines the system throughput. In general, the throughput
may oscillate between 0.4 and 0.6 depending on the probabilities at
each multiplexor.

Note that, as it can be seen in this example, the naive method
of computing the throughput of the early evaluation system as a
weighted sum of the throughputs of the individual loops is incor-
rect, since loops may affect each other in a complex interplay.

The speculative execution of branches, the selection of data items
from the cache memory (instead of main memory), or the bypasses
in the pipeline to avoid stalls, are typical examples of early evalu-
ation schemes to improve the performance of microprocessors. In
each of these schemes, a multiplexor-based implementation is in-
volved. The impact of these mechanisms in the performance is
strongly related to the probability of the events associated to each
multiplexor input, e.g. hit ratio of the cache, probability of branch
instructions, etc.

Having analytical models for early evaluation contributes to ease
the exploration of different architectural mechanisms and evaluate
their impact in performance.

2. MULTI­GUARDED NETS

DEFINITION 1 (GN). A Multi-Guarded Net (GN) is a tuple

N = 〈P,T,F,G〉 where:

• P is a finite set of places

• T is a finite set of transitions

• F ⊆ (T ×P)∪ (P×T) is the flow relation, and

• G : T → 22P

assigns a set of guards to every transition, such
that the following condition is satisfied. Let us define the
preset and the postset of a transition as •t = {p|(p,t) ∈ F}
and t• = {p|(t, p) ∈ F}, respectively. Every transition t is
assigned a set of guards G(t), where every guard gi ∈ G(t)
is a subset of of t’s preset, i.e., gi ⊆

•t.

A classical Petri net is simply a GN in which G(t) = {•t}, for
every t ∈ T (see, e.g. [9] for a tutorial on Petri nets). In a GN,
the transitions can also satisfy the condition G(t) = {•t}. Such
transitions will be called simple transitions.

DEFINITION 2 (MARKING). A marking in a GN is a function
m : P → Z, that assigns an integer m(p) to each place p. A marked

GN is a tuple N = 〈P,T,F,G,m0〉, where m0 is the initial mark-
ing.

Note that, unlike Petri nets, GNs can have negative markings. If
m(p) ≥ 0 one says that place p has m(p) positive tokens. Other-
wise, place p has |m(p)| negative tokens. Negative tokens account
for the activity that must be discarded when arriving at the input
of the transition, e.g. discarding the branch target address when a
branch is not taken.

DEFINITION 3 (FIRING SEMANTICS). The dynamic behavior
of a marked GN is determined by its firing rules. The execution of
a transition t can be described as follows:

• Guard selection. A guard gi ∈ G(t) is selected nondetermin-
istically first in the initial marking, m0, and then each time
t fires. The guard selection is trivial for simple transitions,
since they only have one guard. For non simple transitions
any guard gi ∈ G(t) can be selected. The selected guard of
a transition t is persistent, i.e., never changes between the
firings of t.

• Enabling. If the guard gi ∈ G(t) has been selected for the
next firing of t, then the transition t becomes enabled when
every place p ∈ gi has a token (m(p) > 0).

• Firing. A transition t enabled at marking m can fire leading
to another marking m′ such that

m′(p) =

{
m(p)−1 if p ∈ •t \ t•

m(p)+1 if p ∈ t• \ •t
m(p) otherwise

449

Every transition locally changes the marking of the net. Dif-
ferent transitions may fire concurrently and simultaneously
(if enough positive tokens are present in their common preset
places).

• Single-server semantics. No multiple-instances of the same
transition can fire simultaneously. Therefore, a guard selec-
tion is produced for each transition firing.

The persistence of the guards is an accurate abstraction of the
conditions for early evaluations (e.g. mux select signals) using
non-determinism. The single-server semantics is an abstraction for
those systems that communicate through channels using FIFOs.

DEFINITION 4 (REACHABILITY). The set of reachable mark-
ings, R, of a given GN is the set of markings that can be generated
from the initial marking, m0, by iteratively applying the firing rules.

Note that, in general, the set of reachable markings can be infinite
due to the infinite accumulation of positive or negative tokens.

In this paper, we will only consider the subclass of GNs with-
out choice places. It corresponds to the subclass of marked graphs
(MG) in Petri nets extended to handle early evaluation with nega-
tive marking. This subclass is sufficient for modeling a wide class
of systems with early evaluation. It also satisfies some properties
that simplify their analysis.

DEFINITION 5 (GMG). A Multi-guarded Marked Graph
(GMG) is a strongly connected GN with |•p| = |p•| = 1 ∀p ∈ P.

Places can be omitted in drawings of GMG as shown in figure 2.

2.1 State equation and place invariants
Let C be the n×m incidence matrix of the GN with rows corre-

sponding to n places and columns to m transitions.

Ci j =

{
−1 if t j ∈ p•i \

•pi

+1 if t j ∈
•pi \ p•i

0 otherwise

DEFINITION 6 (P-INVARIANT). A P-invariant or place invari-
ant is a vector, s, of n nonnegative integers such that

s ·C = 0 (1)

Similarly to classical MGs [9], it can be shown that every minimal
P-invariant of a GMG corresponds to a minimal cycle. Intuitively,
an invariant represents a set of places in which the weighted sum of
tokens is invariant in any reachable marking.

In the GMG shown in figure 2, the three minimal P-invariants
correspond to the three cycles. The total sum of tokens (positive-
negative) is invariant for each cycle: 3 for the left and middle loops,
and to 2 for the right loop.

As in classical Petri nets, the state equation

m = m0 +C ·σ (2)

gives a necessary condition for the reachability of marking m, where
σ is the firing count vector: the j’s component corresponds to the
number of times transition t j has fired.

2.2 Timed GMG

In Petri nets, transitions usually represent the events or actions
of the system. To model latencies or delays of the system events,
a positive real number δ(t) is associated with every transition t of
the GMG. For modeling synchronous systems δ(t) is typically re-
stricted to be a positive integer (or rational) indicating the number
of clock cycles it takes to complete the action. Notice that the fir-
ing of GMG transitions is persistent, i.e., a transition cannot be
disabled by the firing of another transition. Therefore, a transition
t that becomes enabled at time τ will fire at time τ+δ(t). It can be
shown that more general delay models are possible for the GMG,

most notably it is possible to have probabilistic distributions of de-
lays associated with every transition to model variable latency units
or delay variations. This however goes beyond the scope of this pa-
per.

The performance evaluation of the model requires some a priori
information about probabilities for selecting guards. These proba-
bilities can be obtained from statistical analysis or simulation. It is
assumed here that selection of guards for different transitions are
independent events and hence probabilities of the guards of differ-
ent transitions are uncorrelated.

DEFINITION 7 (TGMG). A Timed Multi-Guarded Marked

Graph (TGMG) is a tuple N = 〈P,T,F,G,m0,δ,α〉 where:

• 〈P,T,F,G,m0〉 is a marked GMG.

• δ : T → ℜ+ ∪0 assigns a nonnegative delay to every transi-
tion.

• α is a function that assigns a strictly positive probability
to each guard such that for every guarded transition t:

∑g∈G(t) α(g) = 1.

The firing semantics of the TGMG is derived from the previ-
ously described semantics of the GMG. It slightly differs in a few
aspects:

• Guard selection for every transition is still non-deterministic,
but respects probabilities in the infinite executions.

• Firing of transition t takes δ(t) time units, from the time it be-
comes enabled until the firing is completed. With the single-
server semantics, no multiple instances of the same transition
can be firing simultaneously.

DEFINITION 8 (STEADY STATE THROUGHPUT). The steady

state throughput, T h(N), of a TGMG is defined as:

T h(N) = limτ→∞
σ(τ)

τ

where τ represents the time and σ(τ) is the firing count vector at
time τ.

Some authors say that the firing process is “weakly ergodic” if the
above limit exists [3]. In the next section, we show that the above

limit exists for any TGMG. Note that T h(N) is defined as a vec-
tor. Potentially, different transitions, represented by components of

T h(N), can have different throughputs. We will show later that in
any TGMG all transitions have the same throughput.

2.3 Properties of GMG

DEFINITION 9 (BOUNDEDNESS). A place, p, of a GN is said
to be bounded if there exist two integer numbers, l and u, such that
l ≤ m(p) ≤ u for every reachable marking m. A place is k-bounded
if −k ≤ m(p) ≤ k. A GN is bounded if all its places are bounded.

A special case of k-boundedness is 1-boundedness (also called safe-
ness) when no more than one positive or negative token can be held
in a place.

DEFINITION 10 (DEADLOCK-FREEDOM AND LIVENESS). A
GN is deadlock-free iff for every reachable marking m there exists
a transition t enabled at m. A GN is live iff for every transition t
and every reachable marking m, there exists a reachable marking
m′ from m such that t is enabled in m′.

The following two properties hold for GMGs.

PROPERTY 1. A GMG is live iff it is deadlock-free.

450

Proof:
(⇒)
By definition any live GMG is deadlock-free.
(⇐)
Let us assume that there exists a GMG that is deadlock-free but it
is not live. So, there exists a reachable marking m at which a given
set of transitions are deadlocked but the rest can fire indefinitely.
This would mean that the live transitions do never require tokens
produced by the deadlocked transitions. This cannot be true since
the net is strongly connected and all guards can be selected. 2

PROPERTY 2. A GMG is deadlock-free iff for each P-invariant
the sum of markings in its corresponding places is positive.

Proof:
(⇐)
Assume a deadlock is reached, i.e., a marking m has been reached at
which every transition is disabled. Clearly, at m every transition has
at least one preset place, p, with a non-positive marking, m(p)≤ 0.
Given that the GMG is a strongly connected GN, such set of non-
positive places contains at least one cycle that corresponds to a P-
invariant.
(⇒)
Assume there is a P-invariant such that the sum of markings in
its corresponding places is not positive. Let us denote as Q the
cycle that corresponds to such P-invariant. Since any guard can be
selected with a non-zero probability, a marking m will be eventually
reached in which every transition that belongs to the cycle Q selects
a guard with a place in Q. Therefore, in m every transition t ∈ Q
waits for a positive token in a place, p∈ •t, contained in Q (i.e., p∈
Q) in order to get enabled. Let us assume for a moment that every
transition t ∈ Q can eventually fire from m. This would mean that
a positive token has travelled all along Q through the preset places
of all the transitions in Q. This would however require the sum
of markings in Q to be positive due to the above made assumption
that all t ∈ Q selected guards with places from Q. We have reached
a contradiction. Therefore, at least one transition will deadlock
forever starting from marking m. By property 1, the rest of the
transitions will also eventually deadlock. 2

In this paper we are only interested in live GMGs. Liveness of
a GMG can be checked in polynomial time using an extension of
Commoner’s theorem [5]: a marked graph is live iff every cycle is
marked.

Let us consider the TGMG in figure 3. The guards of transition
t1 are pa with probability α and pb with probability 1−α. Let us
first assume that the delays of both transitions are equal to 1. In the
initial marking (pa, pb, pc) = (1,1,0), t1 is enabled and will fire
leading to marking (1,0,1). In this marking, t2 is enabled, while
t1 is enabled with probability α or disabled with probability 1−α.
Figure 3 (left-bottom) shows a reachability graph with the probabil-
ities of transitions between markings. The process of transitioning
between markings in the TGMG can be described with a Markov
chain whose transition graph corresponds to the reachability graph
of the TGMG.

Let us change the delay of transition t2 and assume that δ(t2) = 2
and δ(t1) = 1. A surprising property of GMGs is that, although all
the places are covered by P-invariants, the set of reachable mark-
ings can be infinite since the net is not bounded. The graph on the
right of the figure 3 represents the potential evolutions of the mark-
ing for places pb and pc (pa is always 1). Each transition arc corre-
sponds to one time unit. From the initial marking (pb, pc) = (1,0),
t1 fires in 1 time unit leading to marking (0,1). In this marking, t2
is enabled whereas t1 is enabled with probability α (in case pa is
selected as guard). Regardless the selection of t1’s guard, t2 will
complete the firing in 2 time units, thus leading to the initial state
in case pb is selected (with probability 1− α) or leading to the
state (−1,2) in case pa is selected (with probability α). Although,
the larger the marking of pc the smaller the probability of being
reached, it is not possible to define neither an upper bound for pc

nor a lower bound for pb.

pb pc

pa

α

1−α

t1

t2

(1 0 1)

(1 1 0)

(pa,pb,pc)

α t1,t2

1−αt2t1

t1

t2

t2

t2

t2

α t1

(−4 5) (−4 5)

(−3 4)

(−3 4)

α t1, t2

(−2 3)

α t1

(−2 3)

α t1,t2

(−1 2)

α t1

(−1 2)

α t1,t2

(0 1)

α t1

(−2 3)

(−2 3)

(−1 2)

t2

(−1 2)

(0 1)

t2

(0 1)

t2

(−3 4)

(1 0)

(pb,pc)

1−α

1−α

1−α

1−α

1−α

1−α

1−α

1−α

α t1, t2
t2

Figure 3: A TGMG and its Markov chain for the bounded
(δ(t1) = δ(t2) = 1) and unbounded case (δ(t1) = 1,δ(t2) = 2).

The following theorem states however that the unique steady
state throughput exists even for the unbounded TGMGs.

THEOREM 3. The limit limτ→∞
σ(τ)

τ exists for any TGMG.

Proof: If the net is not live it will deadlock (property 1) and hence
the steady state throughput of all transitions will be 0. Otherwise,
for a given transition t, the expression σ∆

∆ (where σ∆ is the firing

count vector during interval ∆) is upper bounded by 1
δ(t)

and lower

bounded by 0 for every ∆ > 0. The limit would not exist if στ
τ could

oscillate indefinitely between two values u and l, where u > l. Let
us assume that such an oscillation is possible. Thus, during a given

time interval ∆1, the selected guards make
σ∆1
∆1

be greater than u,

and during a given time interval ∆2, the selected guards make
σ∆2
∆2

be less than l. Since σ∆
∆ is upper and lower bounded for any ∆ > 0,

the only way to keep the oscillations between u and l is by growing
the intervals ∆1 and ∆2 as time passes. However, the probability of

selecting the guards that make
σ∆1
∆1

> u tends to 0 as ∆1 increases.

Hence, the probability of oscillating indefinitely is 0. 2

As in classical MGs, the steady state throughput of a TGMG can
be characterized by a single scalar number.

THEOREM 4. The steady state throughput of all transitions of
a TGMG is the same.

Proof: Let us assume that two transitions t1 and t2 exist such that
T h(t1) < T h(t2). This would mean that in the steady state t2 does
not require tokens produced by t1, and in turn, the tokens produced
by the transitions that are in a directed path that starts at t1. This
implies that either t1 and t2 are not connected or some guards have
probability 0. Contradiction. 2

This fact eases the performance evaluation of a TGMG: to
compute the throughput of the system it is enough to compute the
throughput of one transition. Notice that theorem 4 would not hold
if some guard probabilities are equal to zero. Guards with zero
probability might result in disconnected graph components with
different throughputs. As an example, consider α = β = 0 in the ex-
ample of figure 2: Cycles (1) and (3) would become disconnected
with throughputs 3/7 and 2/5 respectively.

Theorem 4 indicates that all transitions of a TGMG fire, on av-
erage, the same number of times in an infinite execution of the sys-
tem. Therefore, the evolution of the marking will exhibit a repet-

451

itive behavior, what implies the existence of average marking of
every place.

THEOREM 5. For every TGMG, there exists a limit

m = limτ→∞
1

τ

Z τ

0
m(ξ)dξ

where m is a vector with components m(p) representing the average
marking of individual places.

3. ANALYSIS WITH MARKOV CHAINS
Due to the stochastic nature of selecting guards a TGMG can

be viewed as a continuous time stochastic process. As we have
mentioned before the evolution of the TGMG therefore can be ex-
pressed as a continuous time Markov chain with a transition graph
isomorphic to the reachability graph of the TGMG. Deriving a
Markov chain out of the TGMG is a variation of standard for the
stochastic Petri Nets technique [1,8] and therefore is illustrated here
by example.

Figure 4 shows a TGMG (delays of all transitions assumed to
be 1) and the associated transition graph of a Markov chain. Each
arc in the Markov chain corresponds to one time unit. For sim-
plicity, the transitions of the TGMG are named a,b,c,d and places
ab,ba,ac,cd,da using pairs of names of preset-postset transitions.
The states of this graph S1,S2,S3 are the reachable markings. The
matrix-like shape depicted at each state correspond to the marking
at each state (see graphical explanation in figure 4). Arcs are la-
beled with probabilities to be taken (omitted if probability is 1) and
a set of firing transitions.

1 0

1 0

1

1−α

a

d c
cd

ac

abba

da

α

b

Marking matrix−like representation:

0 1

1 1

0

0 1

0 1

1α

1−α

b,c,d

S2S1 S3

a,b,cb,c

a,d

m(da) m(ac)

m(ba) m(ab)

m(cd)

Figure 4: A TGMG and its associated Markov chain.

The average time spent at each state (marking) at the steady state
can be obtained by solving the set of linear equations correspond-
ing to the Markov chain. Let Z1,Z2,Z3 be the probabilities to be
in the corresponding states S1,S2,S3 during the steady state. One
can write a set of equations corresponding to the transitions of the
Markov chain:

Z2 = Z1

Z3 = (1−α) ·Z2

Z1 +Z2 +Z3 = 1

The solution is:

Z1 = Z2 =
1

3−α
,Z3 =

1−α

3−α

Transition a is fired with probability 1 from S1 and with prob-
ability 1−α from S2. Therefore, the steady state throughput of
transition a is:

T h(a) = Z1 +(1−α) ·Z2 =
2−α

3−α

Theorem 4 states that the rest of transitions have the same
throughput. Notice that the computed throughput tends to 1/2 (the
throughput of the upper cycle) as α approaches 1, and to 2/3 (the
throughput of the lower cycle) as α approaches 0.

For a standard MG, it is known that the throughput can be ob-
tained as a minimal throughput of its cycles, or equivalently as an
inverse to the maximal cycle time among all the cycles. It is impor-
tant to note that extending either of these techniques to the TGMG
by averaging the cycle throughputs (or cycle times) does not yield
correct results. Computing the throughput as an average of individ-
ual cycle throughputs gives:

1

2
·α+

2

3
· (1−α) =

4−α

6

Computing it as an inverse to an average cycle time gives:

1

2 ·α+ 3
2 · (1−α)

=
2

3+α

Neither of these expressions is equal to the exact throughput ex-
pression above computed with Markov chains.

The use of Markov chains allows one to compute the exact
throughput of any bounded TGMG. However, it requires an ex-
haustive exploration of the reachability graph that is exponentially
larger than the size of the bounded TGMG.

4. A BOUND ON TGMG THROUGHPUT
Let us first consider the sub-class of TGMG in which all guards

are singleton sets, i.e., each guard contains only one place: g ∈
G(t) |g| = 1. All examples considered in this paper so far, except
the one in figure 1, belong to this sub-class. Nets from this class
are easier for analysis since tokens within guards do not interfere
with each other. We will later show how to transform any TGMG
to an equivalent singleton form.

Let t be a transition of a TGMG, δ(t) its delay, and prob(en(t))
be the probability of t being enabled during the steady state com-
putation. prob(en(t)) can be thought as the average proportion of
time during which t is enabled. Since transitions have deterministic
delays and operate under the single server semantics, the following
equation holds:

δ(t) ·T h(t) = prob(en(t)) (3)

Let us denote the average marking of place p in the steady state
as m(p). Equation 3 can be used to obtain the following theo-
rem that gives an upper bound for the steady state throughput of
a TGMG with singleton guards and simple transitions.

THEOREM 6. Let N be a TGMG such that every transition t
is simple or has singleton guards.

(A) Let t be a guarded transition with singleton guards. Let α(p)
be the probability of the singleton guard g = {p} ∈ G(t). Then:

T h(t) ≤
∑p∈•t α(p) ·m(p)

δ(t)

(B) Let t be a simple transition. Then:

T h(t) ≤
min

p∈•t m(p)

δ(t)

See the Appendix for a sketch of the proof of theorem 6. For the
following two sub-classes the throughput bound of theorem 6 is the
exact system throughput.

COROLLARY 7. (A) Let N be a 1-bounded TGMG with sin-
gleton guards for all its transitions. Let t be one of the transitions,
then:

T h(t) =
∑p∈•t α(p) ·m(p)

δ(t)

452

(B) Let N be a 1-bounded TGMG with simple transitions only
(i.e., a timed MG). Let t be one of the transitions, then:

T h(t) =
min

p∈•t m(p)

δ(t)

Notice that simple transitions with only one preset place are a
particular case of transitions with singleton guards. Thus, they fulfil
both condition (A) and (B) of corollary 7.

4.1 Reduction to singleton form
Figure 5 shows a fragment of a TGMG with a guarded transi-

tion t whose guards G(t) = {{a,b},{b,c}} are not singletons. An
equivalent TGMG has a guarded transition with singleton guards.
Two new simple transitions, t1 and t2, with zero delay are intro-
duced. They combine together the guards {a,b} and {b,c} of the
original transition t. Note that place b is duplicated. It can be
proven that this transformation can transform any TGMG to a sin-
gleton form without changing its throughput.

t1 t2

cba

p2p1

b

1−αα

a cb

t

1−αα

δ=0 δ=0

ta tb tc

ta tb tc

t

Figure 5: Reduction to singleton form.

5. LP FORMULATION
Let us consider a TGMG such that every transition t is simple

or has singleton guards. According to theorem 6, the steady state
throughput of each guarded transition t must satisfy the following
inequality:

δ(t) ·T h(t) ≤ ∑
p∈•t

α(p) ·m(p)

and each simple transition t must fulfill:

δ(t) ·T h(t) ≤ m(p)

for every preset place p ∈ •t.
On the other hand, the average steady state marking m is neces-

sarily a solution of the state equation:

m = m0 +C ·σ, σ ≥ 0

One can combine the above constraints on the throughput and
on the average marking, to build a Linear Programming Problem
(LP) that maximizes a parameter φ, corresponding to the TGMG
throughput (one scalar variable suffices since the throughput of all
transitions is the same):

Maximize φ :

δ(t) ·φ ≤ ∑
p∈•t

α(p) · m̂(p), for every t ∈ •T1

δ(t) ·φ ≤ m̂(p) for every p ∈ •T2

m̂ = m0 +C ·σ

φ ≤ min
t∈T

1/δ(t)

(4)

Where T1 is the set of transitions with singleton guards, and T2 is
the set of simple transitions. Transitions with only one preset place

can be included either in T1 or in T2. The vector σ represents the
firing count vector that drives the system from the initial marking,
m0, to the estimated average marking m̂. The constraint σ ≥ 0 has
been dropped since for any positive σ there are as well partially
negative σ’s that deliver the same maximal value of φ (this is due
to the fact that C is not a full rank matrix). The last constraint
φ ≤ mint∈T 1/δ(t) ensures a single server semantics (i.e., that more
than one copy of the same transition cannot fire at the same time).
This constraint is redundant for 1-bounded TGMG. It can be shown
that the solution of the LP (4) always exists.

p3

p4p5 p6

t2

t3

t4

t5

p9 p8

t6t7

p7

p3

p4p5 p6

t2

t3

t4

t5

p9 p8

t6t7

p7

p2 p2

p1 p1 t1t1

1/5

3/4

1/4

4/5

1/5

3/4

1/4

4/5σ

Initial marking Steady state (average marking)

Figure 6: Reaching an average marking

Figure 6 illustrates how the LP problem (4) works on a particular
system. Transition t2 has two guards {p2} and {p5} with probabil-
ities 1/5 and 4/5. Transition t5 has also two guards {p5} and {p9}
with probabilities 1/4 and 3/4. In the figure, the higher the blank
level in a place the higher its occupancy, i.e., a fully black place cor-
responds to a marking of 1. The estimated average marking given
by the LP is m̂ = (0.6,−0.2,0.6,0.6,0.0,0.6,0.8,0.6,0.8). One of
the possible firing count vectors driving the system from m0 to m̂
is σ = (0.4,0.6,0,1,1,1.4,1.8). It is interesting to notice that the
average marking of p2 is negative. However, this does not imply
that m(p2) is always negative in the steady state. In fact, it must
become positive to enable transition t2 when the selected guard is
{p2}.

The solution of the LP problem (4) returns an upper bound on
the throughput for the TGMG.

THEOREM 8. Let N be a TGMG with singleton guards. Let
φ be the solution of LP problem (4). Then the throughput of every
transition t satisfies the upper bound: T h(t) ≤ φ.

This theorem enables an efficient method for finding an upper
bound on the throughput of a TGMG. The bound can be found in
polynomial time (since LP is polynomial). Moreover, corollary 7
defines two sub-classes of TGMG for which the solution of the LP
problem is guaranteed to be exact.

Example of LP model
Consider again the 1-bounded TGMG from figure 4 (delays of all
transitions assumed to be 1). The associated LP problem is:

Maximize φ:
φ ≤ ab for transition b
φ ≤ ac for transition c
φ ≤ cd for transition d
φ ≤ α ·ba+(1−α) ·da for transition a

ba = 1+b−a for place ba
da = 1+d −a for place da
ab = a−b for place ab
ac = a−c for place ac
cd = 1+c−d for place cd

The solution to this problem is

φ =
2−α

3−α

453

δ

B

MDF Eα

1−α

β

1−β

W

δ = 0.2 δ = 0.4 δ = 0.8
β = 0.2 β = 0.3 β = 0.2 β = 0.3 β = 0.2 β = 0.3

α = 0.1 0.823 0.820 0.714 0.714 0.556 0.555
α = 0.2 0.795 0.792 0.712 0.711 0.556 0.555
α = 0.3 0.754 0.751 0.705 0.702 0.556 0.555

Figure 7: Analysis of elastic DLX with early evaluation and variable latency.

which corresponds exactly to the solution we have obtained with
Markov chain analysis. The solution obtained by the LP is nec-
essarily the exact throughput since condition (A) of corollary 7 is
fulfilled. For α = 0.5 the throughput is 0.6 with average marking
m(ab) = 0.6, m(ac) = 0.6, m(cd) = 0.6, m(ba) = 0.4, m(da) = 0.8.

6. EXPERIMENTAL RESULTS

6.1 Modeling of an elastic DLX
The paper [4] shows the idea of latency-tolerant, aka synchronous

elastic, systems without early evaluation using different versions of
a DLX microprocessor. Figure 7 shows a GMG model of an elastic

DLX with two early evaluation stages 1. The model contains tran-
sitions named F,D,E,M,W corresponding to the five basic stages
of the pipeline: Fetch, Decode, Execute, Memory, and Write-back.

Transition B models a bubble in the bypass network due to an as-
sumed long wire delay. This bubble leads to a stall in the execution
when bypass of the result from the previously executed instruction
is needed by the next instruction.

The probability of the data dependency between instructions is
given by α. The E stage is modeled as a guarded transition that
takes results either from the decode stage (probability 1−α) or the
bypass (probability α).

The Write-back stage is modeled by another guarded transition,
W , that takes results either from the memory stage in case of ex-
ecuting a Load memory operation or directly from the execution
stage in case of other instructions. β stands for the probability of
Load instructions.

We also assume that the memory stage, M, has a variable latency.
This is typical for a memory sub-system. E.g., if M models only
the first level cache, then it would have small latency in case of a
hit, and a long latency in case of a miss. The average latency of M
is equal to 1+δ. The latency of the rest of transitions is 1.

Under a regular MG model with AND-causality (without the
guarded transitions), the throughput of the system would be de-
termined by the most stringent bypass cycle and would be equal
to 0.5. The throughput for a system with early evaluation is much
higher and is captured in the table shown in figure7 for a few values
of α,β and δ.

6.2 Random graphs with early evaluation
To illustrate the impact of early evaluation and validate the cor-

rectness of the approach for estimating throughput on TGMGs,
we performed some experiments on sequential circuits from the
MCNC benchmarks.

The circuits were decomposed into 2-input gates and then trans-
formed into TGMGs as follows: (1) The largest strongly connected
component from the graph was extracted, (2) each edge was as-
signed a token with probability 0.75, (3) each node was configured
as a 2-input mux with probability 0.25 (i.e., 1 out of 4 nodes was
a mux, on average), (3) the probability of each input channel of a

1A correct modeling of elastic systems, in general, requires rep-
resenting both forward flow and backward flow (stall propagation)
that can be done with pipelined MG. Although it is easy to model
the backward flow with GMG, for simplicity, we represent only the
forward flow here.

Circuit Throughput
Name Nodes Edges MG Sim LP ∆Th Err
s27 22 32 0.333 0.333 0.333 0% 0%
s208 12 15 0.500 0.571 0.594 14% 4%
s298 5434 10040 0.091 0.120 0.129 32% 8%
s349 73 114 0.333 0.333 0.333 0% 0%
s382 28 46 0.250 0.284 0.294 14% 4%
s386 121 204 0.400 0.400 0.400 0% 0%
s400 30 50 0.400 0.438 0.470 10% 1%
s444 34 58 0.200 0.261 0.287 31% 7%
s510 367 671 0.167 0.167 0.167 0% 0%
s526 46 67 0.333 0.333 0.333 0% 0%
s641 89 138 0.333 0.393 0.432 18% 3%
s713 104 167 0.250 0.333 0.333 33% 12%
s820 424 738 0.143 0.201 0.230 41% 7%
s832 474 819 0.286 0.310 0.342 8% 1%
s953 156 259 0.286 0.295 0.333 3% 5%
s1423 396 711 0.100 0.184 0.189 84% 21%
s1488 564 1003 0.188 0.236 0.271 26% 3%
s1494 564 1000 0.154 0.222 0.277 44% 3%
s5378 736 1320 0.235 0.250 0.250 6% 3%
s9234 867 1658 0.200 0.219 0.248 10% 2%

Table 1: Experimental results with sequential circuits.

mux was generated randomly, (4) all nodes were assumed to have
unit delay and (5) complementary arcs were included to guarantee
the graph to be 1-bounded (see [9] for details on how to make a
graph 1-bounded).

Table 1 reports the characteristics and the results obtained for
the circuits. The column MG reports the throughput of the sys-
tem without early evaluation. The column LP reports the upper
bound of the estimated throughput with early evaluation using the
LP model. Finally, the column Sim reports the results obtained by

simulation2.
The first observation is that early evaluation has a tangible im-

pact in the performance of the system. This is reported in the col-
umn ∆Th, calculated as (Sim-MG)/MG. In one of the examples
(s1423) the improvement in throughput was 84%. In some other
cases, the early evaluation had no impact, due to the fact that the
most stringent cycle of the graph had no muxes.

Considering MG and LP as lower and upper bounds, respec-
tively, for the throughput with early evaluation, we report the col-

umn Err calculated as |Sim − T̂ h|/Sim, where T̂ h is throughput
estimated as the mid point of the interval [MG,LP]. In most cases,
the error was smaller than 5%. Only in a couple of cases in which
early evaluation had a significant impact (s713 and s1423), the
error was larger. In these cases, the simulation reported a through-
put close to the upper bound.

The CPU required to obtain T̂ h using the LP model was always
smaller than 2 seconds, and about two orders of magnitude faster

than the simulation3.

25000 cycles of simulation were run for each example, guarantee-
ing results with very small standard deviation.
3Only in the largest case, s298, the LP model required about 2
minutes to be solved. All the LPs were solved by a PC Pentium IV
2.4 Ghz using the GLPK (GNU Linear Programming Kit).

454

7. CONCLUSIONS
Tolerance to variable delays not only makes systems more elas-

tic, but opens the opportunity to incorporate new execution schemes.
One of these schemes is early evaluation, that can contribute to
improve the performance of latency-insensitive and asynchronous
systems.

This paper proposes an analytical method to estimate the perfor-
mance of systems with early evaluation. The method calculates an
upper bound of the throughput that is guaranteed to be exact for
single-guarded 1-bounded TGMGs and for MGs. The experiments
show that it often calculates the exact result even for the general
class of the TGMGs.

A surprising fact is that the upper bound can even be calculated
for unbounded systems that can accumulate an infinite amount of
positive and negative tokens.

The efficiency of the analytical model suggests that it could be
used for a fast architectural exploration by detecting the units (e.g.
multiplexors) that are the bottlenecks of the system and, thus, can-
didates to be executed in early-evaluation mode.

8. REFERENCES
[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and

G. Franceschinis. Modelling with Generalized Stochastic
Petri Nets. Wiley, 1995.

[2] C. Brej and J. Garside. Early output logic using anti-tokens.
In Int. Workshop on Logic Synthesis, pages 302–309, May
2003.

[3] J. Campos, G. Chiola, and M. Silva. Ergodicity and
throughput bounds of Petri nets with unique consistent firing
count vector. IEEE Transactions on Software Engineering,
17(2):117–125, February 1991.

[4] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli.
Theory of latency-insensitive design. IEEE Transactions on
Computer-Aided Design, 20(9):1059–1076, Sept. 2001.

[5] F. Commoner, A. W. Holt, S. Even, and A. Pnueli. Marked
directed graphs. Journal of Computer and System Sciences,
5:511–523, 1971.

[6] A. Dasdan and R. K. Gupta. Faster maximum and minimum
mean cycle algorithms for system performance analysis.
IEEE Transactions on Computer-Aided Design,
17(10):889–899, 1998.

[7] R. Karp. A characterization of the minimum cycle mean in a
digraph. Discrete Mathematics, 23:309–311, 1978.

[8] M. K. Molloy. Performance Analysis Using Stochastic Petri
Nets. IEEE Trans. on Computers, 31(9):913–917, 1982.

[9] T. Murata. Petri Nets: Properties, analysis and applications.
Proceedings of the IEEE, pages 541–580, Apr. 1989.

[10] R. Reese, M. Thornton, C. Traver, and D. Hemmendinger.
Early evaluation for performance enhancement in phased
logic. IEEE Transactions on Computer-Aided Design,
24(4):532–550, Apr. 2005.

[11] J. Sparsø and S. Furber, editors. Principles of Asynchronous
Circuit Design: A Systems Perspective. Kluwer Academic
Publishers, 2001.

[12] A. Yakovlev, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and M. Pietkiewicz-Koutny. On the models for asynchronous
circuit behaviour with OR causality. Formal Methods in
System Design, 9(3):189–233, 1996.

APPENDIX

Sketch of the proof of theorem 6
Part A.
Let us consider a small fragment of a TGMG shown in Figure 8.

Let the guards of t1 be G(t) = {{a},{b}} and the probabilities of
their selection be α and β. Let us assume that the delays of all tran-
sitions are the same and that t2 is not enabled. Thus, from marking

m(a) = 1, m(b) = 0, two transitions of the corresponding Markov
chain are possible:

• Guard {a} is selected, transition t1 is enabled and fired lead-
ing to a new marking m′(a) = 0, m′(b) =−1 with a negatively
marked place b.

• Guard {b} is selected, transition t1 is not enabled and hence
the marking remains the same m′(a) = 1, m′(b) = 0 one time
unit later. Due to persistence in guard selection, transition t1
will not get enabled until t2 delivers a token into place b.

(1,0)

t1

t2

α

β

t1
α

β

(0,−1)

(1,0)

(a,b)

b

a

Figure 8: Evolution of guarded transition t1.

Thus:

α

β
=

prob(m′(a) = 0∧m′(b) = −1)

prob(m′(a) = 1∧m′(b) = 0)

This reasoning can be applied recursively to the next states (0,−1)
and (1,0) implying the following lemma:

LEMMA 9. Let t be a transition with two singleton guards, then:

α · prob(not ena) = β ·m(b)−

where prob(not ena) is the steady state probability for transition t
not to be enabled due to the selection of the guard {b} and m(b) ≤
0; and m(b)− is the average negative marking of place b, i.e.,

m(b)− = prob(m(b) = −1)+2 · prob(m(b) = −2)+ . . .

The following theorem can be obtained from lemma 9:

THEOREM 10. If transition t has two singleton guards, then:

δ(t) ·T h(t) = α ·

(
m(a)−

∞

∑
i=2

(i−1)Prob(m(a) = i)

)
+

β ·

(
m(b)−

∞

∑
i=2

(i−1)Prob(m(b) = i)

)

Proof: We first establish the logical expression for prob(enab(t)).
This expression is transformed into an arithmetic formula that in-
cludes terms with m(b)− and prob(not ena). After regrouping the
terms of the expression, lemma 9 and equation 3 yield the proof. 2

Theorem 10 can be generalized for an arbitrary number of single-
ton guards and for transitions with different delays. Theorem 6(A)
trivially follows from this generalization.

Part B.
Let t be a simple transition. Then:

prob(enab(t)) = prob
(^

p∈•t

m(p) ≥ 1
)
≤ min

p∈•t
m(p)

The application of equation 3 yields:

T h(t) ≤
min

p∈•t m(p)

δ(t)

455

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

