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ABSTRACT

Statistical static timing analysis (SSTA) is emerging as a solution
for predicting the timing characteristics of digital circuits under
process variability. For computing the statistical max of two arrival
time probability distributions, existing analytical SSTA approaches
use the results given by Clark in [8]. These analytical results are
exact when the two operand arrival time distributions have jointly
Gaussian distributions. Due to the nonlinear max operation, arrival
time distributions are typically skewed. Furthermore, nonlinear de-
pendence of gate delays and non-gaussian process parameters also
make the arrival time distributions asymmetric. Therefore, for com-
puting the max accurately, a new approach is required that accounts
for the inherent skewness in arrival time distributions. In this work,
we present analytical solution for computing the statistical max op-
eration.! First, the skewness in arrival time distribution is modeled
by matching its first three moments to a so-called skewed normal
distribution. Then by extending Clark’s work to handle skewed
normal distributions we derive analytical expressions for comput-
ing the moments of the max. We then show using initial simulations
results that using a skewness based max operation has a significant
potential to improve the accuracy of the statistical max operation in
SSTA while retaining its computational efficiency.

1. INTRODUCTION

Process control precision is worsening with continuous process
scaling due to smaller dimensions, smaller number of doping atoms
and aggressive lithographic techniques. This results in an increase
in process parameters fluctuations, that causes variations in electri-
cal characteristics of transistors and interconnects. These variations
in electrical characteristics of circuit components affect timing and
result in chip operating frequency variation. Traditionally corner
based static timing analysis have been used to guard against yield
loss resulting from these variations; however, with increasing num-
ber of sources of variation, corner based methods are becoming
overly pessimistic and computationally expensive.
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An alternative approach, namely, statistical static timing analysis
(SSTA) has emerged as a possible solution for statistically quan-
tifying the variability in timing performance. Existing SSTA ap-
proaches can be broadly classified into block based SSTA [13, 4, 1,
9, 6, 17] and path based SSTA [14, 2]. A path-based SSTA requires
enumeration of an exponential number of paths, therefore, block-
based SSTA is considered to be a more efficient technique. Among
these, the analytical methods, presented in [3, 6, 17], appeal to be
the more promising approaches for a computationally efficient im-
plementation of SSTA. In [3], the author introduced a linear time
analytical SSTA algorithm assuming uncorrelated normal random
variables for delay distribution. Using a first order parametric de-
lay model, a method for handling correlations in global sources of
variation due to both spatial correlation and path re-convergence
was presented in [6, 17]. Their SSTA algorithm included a PERT-
like topological traversal of a circuit graph, where at each node
the maximum arrival time distribution is computed in terms of the
parametric delay model. For propagating arrival time distributions,
one needs to compute the sum and the maximum of two arrival
time at each node in the circuit graph. The computation of the sum
function is relatively simple; however, the statistical max of two
correlated arrival time variables is non-trivial.

The max operation in existing SSTA approaches is invariably
based on analytical results given in [8]. Clark derived analytical
expressions for finding the moments of the max of two correlated
normal random variables and an expression for computing the cor-
relation of the resulting max with any other jointly normal variable.
The Clark’s max results are exact when the two operand random
variables have a bivariate normal distribution. However, the result
of the max of two normal variables is typically a positively skewed
non normal distribution. Skewness is a statistical parameter used
to describe asymmetry in a random variables probability distribu-
tion. A probability distribution is said to have positive(negative)
skewness if it has a long tail in the positive(negative) direction (see
Figure 1). Both the above mentioned analytical approaches [6, 17],
use these expressions for computing the moments of statistical max
of two arrival time random variables. Unfortunately in SSTA, the
asymmetric non-normal arrival time distributions resulting from the
max operation performed at one node are inputs to the max opera-
tion which is needed to be performed at a downstream node. Addi-
tionally, variations in interconnect and few process parameters also
have asymmetric non-normal distributions [19]. However, existing
analytical SSTA approaches have to approximate the non-normal
arrival time distribution with a normal distribution for applying
Clark’s max. The error of this approximation increases when the
difference of the mean relative to the standard deviation decreases
and it becomes maximum when two means are equal [8]. For a
typical design, there can be several thousand critical paths and the
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Figure 1: Examples for Asymmetric PDFs

means of their output arrival time distributions and arrival time dis-
tributions at common internal nodes will be closely aligned with
each other. Therefore, in such a case Clark’s max based SSTA
methods may result in inadequate accuracy, in particular, for power
optimized designs having a large number of nodes with zero or
small slack. Recently, SSTA algorithms using higher order nonlin-
ear parametric delay models with non gaussian distributions were
proposed in [7, 12, 18, 19]. However, for computing the max op-
eration, these approaches either use numerical techniques and/or
employ the Clark’s max requiring normal approximation. A condi-
tional max based heuristic analytical method was presented in [19]
where the max operations is postponed until the two arrival time
distributions are skewed.

In this work, we extend Clark’s max approach and give analyt-
ical results for computing the approximate maximum of a set of
asymmetric random variables. The problem of computing the max
of a finite set of random variables has been well studied. Several
approaches derived Clark’s results using different methods [11, 5].
In our method, given the first three moments of any asymmetric
distribution, we give analytical expressions to map it to a skewed
normal (explained later) representation having same moments. We
then derive analytical results for computing the moments of the
max of two correlated skewed normal distributions assuming a bi-
variate skew normal distribution. The derivation is similar in spirit
to Clark’s approach, although it is more general since we can com-
pute the moments for a bivariate skewed normal random variables.

The rest of the paper is organized as follows. In Section 2 we
explain the skewed normal distribution and give analytical expres-
sions for computing the parameters of a skewed normal distribution
from the mean, variance and skewness of arrival time distribution.
A bivariate skewed normal distribution and the derivation for the
proposed max operation are given in Section 3. In Section 4, we
give numerical results illustrating the efficacy of the proposed max
operation. Section 5 concludes the paper.

2. MODELING SKEWNESS

Arrival time distributions and circuit delay distributions are typ-
ically skewed, due to the nonlinear max operation and nonlinear
dependence of delay on process parameters. We need an analyti-
cal representation that is flexible enough to capture the skewness
in asymmetric arrival time distributions and at the same time be of
the functional form which allows analytical derivation of the max-
imum operation. After studying several skewed representations, in
[10], we found a general method for introducing skewness into any
unimodal symmetric distribution. Their basic idea is to simply in-
troduce inverse scale factors in the left and the right half real lines
around the mean. Let f(x) be the normal distribution with mean p
and variance o given by

1 x— 1 _=2

f@) = =¢(Z=E), where ¢(z) = %

g

9

Using the method presented in [10], a skewed normal distribu-
tion f,(x) can be computed from the normal distribution f(x), by
scaling its left half and right half by factors ~ and its inverse 1/7,
respectively. This gives us the skewed normal distribution,
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For a skewed normal distribution, we can observe that scaling
variable x corresponds to an inverse scaling of the standard de-
viation o around its mean. Therefore, f-(z) can be alternatively
written as
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Note that the resulting skewed distribution f,(x) has a func-
tional form similar to the original non-skewed distribution f(x). If
the skewness parameter v is greater(less) than unity then f. (z) is
positively(negatively) skewed. For v = 1 we get back the original
symmetric normal distribution. Furthermore, f. (z) is both contin-
uous and differentiable and is completely defined by only three pa-
rameters u, o and . These were the key appealing properties that
motivated us to use this representation for deriving the proposed
max operation.

Existing SSTA approaches model and propagate only the mean
and variance of the arrival time distribution. For improving the ac-
curacy of SSTA algorithm, in addition to the mean and variance,
we wish to propagate the skewness in asymmetric arrival time dis-
tributions. In such an SSTA framework, the input parameters of the
max operation will include mean, variance and skewness of the two
input arrival time distributions and their correlation. We first want
to map the arrival time distribution characterized by its mean, vari-
ance and skewness to a skewed normal distribution f- (z). Let i,
o~ and Sk be the given mean, standard deviation and skewness of
a skewed arrival time distribution and p, o and +y are the three pa-
rameters that define the desired skewed normal distribution f, ().
For finding f, (z), we express the mean, variance and skewness of
the skewed normal distribution as function of its parameters p, o
and ~ and then match these to the p , o and Sk, of a skewed
arrival time distribution to solve for u, o and . The analytical
expressions for mean p, variance 03 and skewness Sk~ of fy(x)
derived in terms of its parameters (1, o and ) are given as follows:
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The skewness of distribution defined by the ratio of the third
centered moment and cubed standard deviation is given by
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Figure 2: The ~ parameter of f. (x) vs. Skewness Sk.,
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Figure 3: Comparison between Skewed Normal distribution
and Normal distribution for a typical Monte Carlos based Ar-
rival Time distribution.
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Fortunately, the skewness Sk, (Eq. 3) is only a function of ~
and is independent of the other two parameters p and o. A plot of
this function is given in Figure 2, where it can be seen that skew-
ness Sk is a well behaved function and it monotonically increases
with . Therefore, for a given Sk, one can efficiently compute ~y
either using pre-computed look-up tables or using numerical meth-
ods with very fast convergence. Using v, o, and p, we can analyt-
ically solve equations 2 and 1 for parameters o and p, respectively.
Thus given mean, variance and skewness of an arrival time dis-
tribution we can easily map it to a skewed normal distribution. In
Figure 3, we show plots of a typical skewed arrival time distribution
approximated by a skewed normal distribution and normal distribu-
tion. It is evident that compared to existing normal approximations,
skewed normal is a much better representation that can accurately
capture the inherent skewness in arrival time distributions.

Sk,

3. SKEWED NORMAL MAX OPERATION

Based on the skewed normal representation explained in the pre-
vious section, we now present the skewed normal max operation.
For analytically expressing the max function of two correlated ar-
rival time random variables X and Y, we need to know their joint
probability distribution function. In [8], the author uses the fol-
lowing bivariate normal distribution for the two operand random
variables.
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Figure 4: Standard deviations of a bivariate Skewed Normal
distribution and seven regions of integration for ux > uy
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Recall that bivariate normal representation being symmetric will
introduce errors in the computation of the recursive max operation
for SSTA purposes. Therefore, similar to the univariate skewed
normal presented in the previous section, we add two inverse scale
parameters yx and vy for random variables X and Y around their
respective means px and py for introducing skewness in the bivari-
ate distribution.
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Due to the correlation p, the normalizing constant term I" dif-
fers from the univariate case. Figure 4 graphically illustrates how
the two indicator functions partition the X, Y plane into 4 quad-
rants having different standard deviations around the mean vector
(px, px). Strictly speaking the arrival time distributions may not
necessarily have a bi-variate skew normals; however, introducing
additional skewness parameters allows us more degrees of freedom
in comparison with [8]. Furthermore, in the absence of skewness



the bi-variate skew-normal representation reduces to the bivariate
normal representation and therefore in this case we get the exact
same results as [8]. For this bivariate skew normal distribution we
now derive results for computing the moments of the max of X and
Y based on the on the original derivation given in [8]. Let v(4) be
the i*" moment of max(X,Y’) given by

v()

/, Z /:(max(x,y))ifw(w,y) dydz

@' fy(z,y) d(z

(z,y)EX>Y

f y' fy () d(z, y)

(z,9)€XY

»Y)

+

As shown in Figure 4 the region X > Y gets further partitioned
into 4 sub-regions x1, x2, 3 and x4 where the sub-script denotes
the standard deviation quadrant and likewise, region X < Y gets
partitioned into sub-regions y1, y2 and y3. Therefore, we can write
the i"™ moment of max(X,Y) as

= Z vy, (4) + Z Vg, (4)

where, v, ;(i))and v, ; (i) are the i moment of max(z, y) in the
4™ quadrant. The complete derivation of v(i) over all the seven
regions is repetitive and tedious. Therefore, in this paper we will
present the key steps encountered while deriving the expression for
moments of sub-region 1. The i moment of max, for Y > X in
the 1% quadrant, is given as follows:
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Using the Lebnitz rule, we compute the partial derivative of vy,1(7)
with respect to ux:
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We first change order of integration variables in the inner integral,
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Now, the inner integral of the first term in the above expression is
in an integrable form. We evaluate this integral and an additional
term due to the integration cancels out the second term and gives
us the following simplified result.
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Similar to [8], we first make the substitution y = "
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Now note that for m = oo, the random variable X >> Y and
therefore, at m = oo all moments vy, 1(7) = 0. Using this obser-
vation one can express vy,1(7) as follows:
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For a given positive integer value of i, the above integral can ex-
pressed in terms of well known special functions. For example the
first moment can be written as
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The special functions erfc(z) and T'(x,y) are commonly en-
countered while integrating univariate and bivariate normal distri-
butions, respectively. Precise numerical tables or accurate closed
form analytical approximations exist for both erfc(x) and T'(x, y).
Efficient analytical solution for computing 7'(x, y) is given in [16].
Thus similar to [8], the moments of the max can be found in a com-
putationally efficiently manner. Likewise, higher moments can also
be found by evaluating the integral given in Equation 4 at higher
values of 4. Using similar manipulations, the moments of max in all
seven regions can be computed. Note that the case when pux = py
we will only have 6 regions instead of 7 as (ux = py) will lie
on the line z = y. For such a case, T'(x,y) can be analytically
integrated by changing the variables to polar coordinates.



3.1 Applying SN Max to SSTA

In this sub-section, we will briefly discuss how the proposed
skew normal max results can be applied to block based SSTA. First
we review how Clark’s max results are currently being used for
computing maz(X,Y’) of two arrival times X and Y. As men-
tioned earlier, X and Y are expressed in terms of a canonical form
[6, 17]. First, the variances and the covariance of X and Y are
computed from the canonical form. Then by substituting the mean,
variance and correlation values into the analytical results given in
[8], the statistics of the max distribution, namely, tightness prob-
ability (i.e. probability of one input being greater than the other
[17]), the mean and the variance of their maximum are computed.
Thereafter, the approximate distribution of the max(X,Y) in canon-
ical form is determined by taking a linear combination of the two
input arrival times weighted by their tightness probability [6, 7,
19]. Finally, the mean and variance of the resulting canonical form
distribution are matched with the analytically computed mean and
variance of the max computed from Clark’s max results.

The focus of the proposed skew normal max operation is to take
into account skewness of X and Y in addition to mean and variance
of the arrival time distribution. Non-linear canonical timing mod-
els (for example, the quadratic timing model) proposed in previous
approaches [7, 12, 18, 19], are inherently skewed, and if X and Y
are expressed in terms of such non-linear canonical forms, then the
skewness of X and Y can also be analytically found in addition
to the variance and covariance. Recall from the discussion in Sec-
tion 2, that the parameters of skew normal approximations of X,
and Y, can be efficiently found from their respective mean, vari-
ance and skewness. Assuming that X, and Y, have a joint skew
normal distribution given in the previous section, the approximate
moments of the maz(X,Y’) can be computed from the analytical
results derived in the previous section. The tightness probability,
mean, variance and skewness of the maximum can be found from
these moments of the max. Thus, given the statistics of two corre-
lated arrival time distribution we can compute the statistics of their
maximum and their respective tightness probability needed for the
statistical maximum algorithm in SSTA. Therefore, these results
can be applied to existing SSTA approaches that rely on [8] for
computing the approximate max(X,Y") in canonical form.

4. NUMERICAL RESULTS

In this section, we will present a comparison between the pro-
posed Skew normal max results and Clark’s max results. Our goal
is to show the usefulness of the proposed max operation in an SSTA
framework. Therefore, to emulate the actual use of these results in
true statistical max algorithm, we generated a test suite consist-
ing of skewed arrival time distributions by running 50,000 Monte
Carlo(MC) simulations on a toy circuit that that mimics the behav-
ior of a real circuit. In this setup, the arrival times at the primary
inputs were assumed to have a correlated multivariate normal dis-
tribution. The the relative mean alignment, the ratio of the variance
and the correlation were swept with in a reasonable range for gen-
erating skewed distributions at the internal nodes. For each max
operation performed at an internal node, the two input operand ar-
rival time distributions and their resulting maximum arrival time
distributions were logged during MC simulations. The statistics
of the operand arrival times were used as an input to the proposed
max function implemented in C++. We implemented the analyti-
cal results presented in [16] for evaluating T(X,Y). For comparison
purposes, we also implemented the 5-parameter Clark’s max re-
sults. The error in the result of both the proposed max operation
and Clark’s max operation was computed relative to the MC simu-
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lation results of the output arrival distribution for each test case.

Now for every test case, we computed the statistical parameters
of the two input arrival time distributions, namely, px~, oX~, SkX~,
Ky, 0., Sky. and p. These 7 statistical parameters were the in-
put to the proposed skewed normal function. Using the moment
matching method presented in Section 2, we first find the para-
meters of skew normal distribution and then using the analytical
max results derived in Section 3, we compute the output moments
of max(X,Y). An example illustrating the efficacy of the max
operation is given in Figure 5, 6 and 7. Given the statistics of
X (1060.55, 58.56,0.56), Y (1045.53,66.73,0.80) and their cor-
relation, the parameters of skewed normal probability distribution
function are first computed. It can be seen from these figures that
the skewed normal distribution accurately represents the MC gener-
ated skewed arrival time distribution as compared to the symmetric
normal for both the inputs. Consequently, as shown in Figure 7 a
skewness based treatment of the input arrival time distribution gives
a max(X,Y") distribution that accurately matches the MC simula-
tion results.

We found that the error in the standard deviation of the max oper-
ation based on a normal assumption increases significantly with in-
crease in skewness of the two input arrival time distributions. This
is illustrated in Figure 8 where, we show a plot of percentage error
in computing the standard deviation of the max(X,Y") as a func-
tion of the skewness in X, Sk. It is evident from this plot that the
proposed skewed normal max operation can significantly improve
the accuracy of existing SSTA approaches.

Furthermore, as mentioned in [8], the error of the max operation
also increases when the difference between px and py., decreases.
We observed a similar trend in our simulation results. In Figure 9
we present error plots of percentage error in standard deviation of

output arrival time as a function of % It is clear from this
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plot that the proposed method exhibits much better robustness to
difference in the mean of input arrival time distribution.

Recall from the discussion in Section 3.1, that while computing
the correlated coefficients of Z = max(X,Y), a linear sum of
the two operand coefficients weighted by their respective tightness
probability is computed. In Figure 10, we show a comparison of
error for this step between the Skew normal max and Clark’s Max
operation. It is evident from this plot that the error in computing
the correlation coefficient using both the max operations is very
similar. This result illustrates the fact that correlated propagation
of canonical forms can be achieved using tightness probabilities
computed from Skew Normal max results.

In addition to the above results, for evaluating the impact of the
proposed skew normal max operation on the bench-mark circuits
we also compared the proposed max operation with Clark’s max
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Figure 9: Comparison of standard deviation ¢,,,,. error (%) as
a function of "
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by comparing them with MC simulations. The benchmark circuits
were synthesized using an industrial 0.13p technology and placed
using Cadence Silicon Ensemble. The 30 /mean of 20% was con-
sidered for channel length and gate length-independent threshold
voltage variations. All variation in VthQ was assumed to be random
(due to random dopant effects), whereas half the variation in chan-
nel length was considered to be correlated. The gates in the library
were characterized for delay using SPICE simulations for differ-
ent values of channel length and Vth0O, which were fit to a linear
canonical form. A grid based spatial correlation model similar to
the one proposed in [6] was used. In the absence of real correlation
data, the correlation coefficient among different squares on the grid
was assumed to be inversely proportional to the distance between
the centers of their grids. MC simulations were performed by gen-
erating correlated and random Gaussian random variables for the
process parameters. and arrival time distributions were logged for
each max operation computed in the circuit. Both the max results
were tested against these MC generated statistics for each max op-
eration computed in the circuit.

Similar to the previous research [6, 17], the maximum error in
mean computed from both Clark and SN Max was found to be less
than 1%; however, as shown in Table 1,for standard deviation as
expected the accuracy of Skew Normal Max was found to be better
than the Clark’s Max. The maximum and average error in standard
deviation computed using both Clark and the proposed Skew Nor-
mal max over all max operations performed in the circuit is listed in
Table 1. Note that in most of the cases the proposed skew normal
max operation has better accuracy in standard deviation than the
Clark’s max approach. Interestingly, although the maximum error
in Clark’s standard deviation is on the high side but the average er-
ror is comparable to the Skew Normal max. This result suggests
that it for an efficient implementation in an SSTA algorithm one
can selectively use the proposed skew normal max operation where
necessary. On the other hand, due to the linear canonical form and
normal distributions of process parameters our current results only
modeled the skewness introduced due to the nonlinear max opera-
tion. Therefore, we believe for more realistic nonlinear delay mod-
els and non gaussian process parameters, due to additional inherent
skewness further improvement over Clark’s max can be achieved.

Additional investigation of the sources of error in the proposed
max operation revealed that most of the maximum error cases for
the Skew Normal max occurred when the correlation was relatively
high (typically > 0.9). Because of the systematic nature of this
error we believe it will be possible to reduce it further. However,
this requires a more detailed study which is the subject of our on-
going research. Nevertheless, to the best of our knowledge, this



is the first work that analytical addresses the problem of comput-
ing the maximum of non-normal distributions in SSTA. We believe
that the proposed work appeals to be a promising new direction for
improving the accuracy of max operation in SSTA algorithms.

Table 1: Comparison of Maximum and average error of stan-
dard deviation between Clark’s max and SN Max over all the
max operations

Max. % Error in SD Avg. Error in SD

Circuit | #Gates | Clark | Skew Normal | Clark | Skew Normal
c432 257 2.800 1.153 0.054 0.051
c499 545 1.334 1.685 0.067 0.066
c880 501 2.345 -0.780 0.054 0.066
c1908 604 2.588 2.090 0.078 0.070
2670 781 1.209 0.688 0.048 0.047
3540 1164 | 3.489 2.222 0.064 0.068
c5315 1693 | 6.736 2.589 0.064 0.063
c7552 2153 | 3.694 3.063 0.085 0.078
i2 193 0.776 0.561 0.044 0.041
i4 265 1.072 -0.773 0.156 0.137
i5 424 1.834 0.912 0.145 0.091
i6 462 0.977 -0.651 0.090 0.066
i7 770 1.086 0.879 0.099 0.087
i8 1014 | 1.795 1.151 0.072 0.059
i10 2483 | 2.583 1.486 0.050 0.049

S. CONCLUSION

In this work we present an analytical approach that extends Clark’s
max results to skew normal distributions for computing the statisti-
cal maximum of two skewed arrival time distributions. An efficient
method is presented to approximate the arrival time distribution us-
ing skew normal representation. This done by matching the mean,
the variance and the skewness of arrival time distributions to that
of the skew normal approximation. Using this method we then de-
rived analytical results for computing the approximate moments of
the maximum of the arrival time distribution assuming their joint
PDF as a bi-variate skew normal distribution. From these moments
the tightness probability, mean,variance and skewness of the max-
imum can be computed and therefore the presented results can be
applied in existing SSTA algorithms that work on Clark’s results.
Our numerical results show that the proposed max operation can
improve the accuracy of existing SSTA approaches. Furthermore,
the skewness based proposed max function can be used to augment
existing SSTA framework to propagate three moments.
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