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Abstract
The main challenge in BDD-based symbolic reachability analysis
is represented by the sizes of the intermediate decision diagrams
obtained during image computations. Methods proposed to miti-
gate this problem fall broadly into two categories: Search strate-
gies that depart from breadth-first search, and efficient techniques
for image computation. In this paper we present an algorithm that
belongs to the latter category. It exploits define-use information
along executable paths extracted from the control-flow graph of the
model being analyzed; this information enables an effective con-
straining of the transition relation and a decomposition of the image
computation process that often leads to much smaller intermediate
BDDs. Our experiments confirm that this reduction in the size of
the representation of state sets translates in significant decreases in
CPU and memory requirements.

1. Introduction
Symbolic algorithms for reachability analysis have played a sig-

nificant part in increasing the ability of model checkers to deal with
large designs. Two main flavors of symbolic algorithms are cur-
rently in use for finite-state systems: BDD-based [17, 7] and SAT-
based [1], each with its distinctive strengths and weaknesses. In
particular, BDD-based algorithms compute and store the character-
istic functions of sets of states. These characteristic functions are
represented by Binary Decision Diagrams [3], which are canonical
representations of Boolean functions.

One premise behind the symbolic approach is that the representa-
tions of the characteristic functions have sizes that are not strongly
correlated to the cardinalities of the sets they represent. In partic-
ular, very large sets may have very concise descriptions. There is
however, a flip side to that coin: Even if the set of all states reach-
able from the initial states of a model may have a very compact rep-
resentation, subsets that are manipulated during reachability analy-
sis may not enjoy that property and may cause a model checker to
run out of memory or spend inordinate amounts of time.

The problem is further compounded by the fact that interme-
diate results may be sets of transitions rather than sets of states.
The BDDs for them are often an order of magnitude larger than
those for the state sets. Specifically, symbolic reachability analy-
sis usually consists of a sequence of steps called image computa-
tions. If each step operates on the new states reached at the previous
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step, the result is a symbolic breadth-first search (BFS) of the state
space. BFS is indeed the most common search strategy with BDDs.
Each step determines the successors of a set of states according to
a given transition relation. This transition relation is often repre-
sented as the implicit conjunction of a set of BDDs [31, 4], and the
computation of successors proceeds by a sequence of conjunctions
and quantifications. The largest BDDs manipulated by a symbolic
reachability analysis algorithm are often the results obtained half-
way through this sequence of operations.

Considerable attention has been devoted to this problem, and so-
lutions have been proposed along two main lines of attack.1 On
the one hand, one can introduce flexibility in the search strategy by
abandoning a strict BFS strategy. Instead, the states to be explored
are chosen so as to keep their representation manageable [26, 5,
27, 10, 34]. The other approach, which this paper, in particular, is
concerned with, applies disjunctive decomposition to image com-
putation [6, 23, 22, 12, 18, 19, 9].

While the overall search strategy may still be BFS, the focus is on
reducing the size of the intermediate BDDs of image computation.
Partitioning affects the sizes of all BDDs involved in the computa-
tion: the set of states whose image is computed, the transition re-
lation, and, often more pronouncedly, the intermediate results. The
large impact on intermediate BDDs can be understood by consider-
ing that the commonly used conjunctive partitioning applied to the
transition relation is often effective in containing the size of its rep-
resentation. However, if a good quantification schedule cannot be
found [11], the explosion in BDD size that has been prevented by
conjunctive partitioning in the transition relation is only postponed
to the image computation stage.

The methods proposed for disjunctive partitioning can be clas-
sified according to the criteria that guide the decomposition of the
computation. One approach is to identify state variables that lead to
an orthonormal decomposition of the characteristic functions such
that the sizes of the components are heuristically minimized [6, 23,
25, 12]. Another approach looks at the dependencies in the transi-
tion relation and partitions either with the intent of breaking such
dependencies [22] or to restrict them inside the component blocks
[18, 20].

This paper presents a new approach to disjunctive partitioning
and image computation that relies on program analysis, and in par-
ticular on control flow information extracted from the Register Trans-
fer Level (RTL) description of a hardware model.2 By analyzing
the RTL description we leverage the natural seapration of control
and data present in the source code. As observed in [34], paths in
the Control Flow Graph (CFG) of a model help one identify the
1Approaches based on functional dependencies [16, 32] are also
effective in some cases.
2Though the general ideas discussed in this paper can be applied
to software as well as hardware model checking, the discussion is
here limited to the latter. Specifically, we use Verilog [30] as our
input language.
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modes of operation of a model. The enabling conditions of these
paths can then be used to constrain the transition relation of a model
so as to achieve a disjunctive partitioning. The simplifications that
occur in the transition relation as a result of the restriction to one
mode of operation are often conducive to great simplification of the
BDDs because they naturally tend to reduce dependencies among
variables [27]. It is therefore often possible to achieve dramatic
decreases in time and memory resources required for reachability
analysis.

As an extreme case, consider a model with two n-bit registers.
At each execution step, the contents of one register are copied to
the other register while being rotated by an amount specified by a
primary input. The contents of the first register are also updated
with the value of a primary input. Because of the rotation, each bit
of the second register depends on every bit of the first register. The
transition relation cannot be represented as a single BDD even for
small values of n and, what is more important, image computation
according to the standard algorithm quickly runs out of memory
as n increases. However, if the image computation is decomposed
according to the rotation amount, then in each part every bit of the
second register depends on exactly one bit of the first. This greatly
simplifies the computation.

A key piece of information derived from the analysis of the con-
trol flow of the program concerns the definitions and uses of vari-
ables. It is not uncommon for most variables to be neither used
nor defined along a given path. When the transition relation is re-
stricted to that path, the variables that are not defined are known to
retain their values. Our image computation algorithm exploits this
knowledge to reduce the intermediate BDDs and alleviate the cost
of variable substitutions.

Since the CFG is not a canonical representation of a model, the
effectiveness of the approach we propose depends to some extent
on how the model is described at the RTL. Its effectiveness also
varies from model to model. Certain models are bound to remain
intractable in spite of disjunctive partitioning in image computa-
tion because they are inherently unsuitable for breadth-first analy-
sis. For yet other models, any attempt at exactly representing the set
of reachable states as a BDD are doomed to failure. For instance, if
the set of reachable states does not have a concise BDD representa-
tion under any variable order, changing the search strategy can only
lead to more states being reached within the given computational
resources. Notwithstanding these limitations, disjunctive partition-
ing based on control-flow information achieves remarkable results
in many cases. Our preliminary experimental results show that it
significantly extends the applicability of symbolic model checkers.

The use of control-flow information to speed up model checking
was advocated in [9, 34]; the latter uses the control flow graph to
guide symbolic guided search. The approach of [9] is based on
disjunctive decomposition and breadth-first search, but no use is
made of information about definitions and usages of variables to
optimize image computation.

2. Preliminaries
2.1 Binary Decision Diagrams

Binary Decision Diagrams (BDDs [3]) are a graphical represen-
tation of Boolean functions. A BDD is derived from a binary deci-
sion tree by merging isomorphic subgraphs and eliminating redun-
dant nodes. For a given variable order, this derivation results in a
canonical representation. As a consequence, equivalence tests are
efficient, and, thanks to recourse to memoization, the algorithms
that operate on BDDs are fast. Large sets can be manipulated via
their characteristic functions, which in turn can be represented by

BDDs. BDDs are used to represent sets of states and transitions in
symbolic model checking.

2.2 Symbolic Reachability Analysis
We consider symbolic reachability analysis of transition systems

with finite sets of states Q and inputs W defined by a transition
relation T ⊆ Q × W × Q and initial state set I ⊆ Q. A triple
(q1, w, q2) is in T if and only if the transition system can proceed
from q1 to q2 when the input is w; in this case q2 is a successor
of q1. State q is reachable from state q′ if there exists a sequence
of states q1, . . . , qn such that q = q1, q′ = qn, and for 1 < i ≤
n, qi+1 is a successor of qi. The reachability analysis problem
consists of finding all states that are reachable from some state in
I . For S ⊆ Q, let EY S denote all states that are successors of
some state in S. Then reachability can be computed as a fixpoint:

µZ . I ∪ EY Z .

Let Z0 = I and, for i ≥ 0, Zi+1 = I ∪ EY Zi be the iterates of
the computation. Then Zi contains the states that can be reached
in at most i steps from states in I . Hence, the fixpoint computation
corresponds to breadth-first search (BFS) of the transition system
starting from the initial states. In symbolic model checking, tran-
sition relations and sets of states are represented by their charac-
teristic functions, which can be manipulated in various forms. In
this paper we assume that (reduced, ordered) BDDs are used for
this purpose. Success with symbolic computations depends on the
algorithm’s ability to keep the BDDs small. Several factors affect
the size of BDDs, including the variable orders. In this paper, how-
ever, we focus on the impact on the BDD sizes of the procedure
employed for the computation of EY Z—the so-called image com-
putation.

We assume that the transition relation T is complete, that is,

∀q1 ∈ Q. ∀w ∈ W . ∃q2 ∈ Q.(q1, w, q2) ∈ T ,

and that it is represented by a predicate T (x,w, y), where x is a
vector of current state variables, w is a vector of primary inputs,
and y is a vector of next state variables. All variables are binary.
Without loss of generality, we assume a binary encoding for the
states and the inputs, so that the x and y variables range over the
encoding of the states and the w variables range over the encodings
of the inputs. In what follows we do not distinguish states and
inputs from their encodings. T (x,w, y) is true when the valuations
of x, w, and y correspond to a transition in T .

The transition relation predicate is often represented in a con-
junctively decomposed form:

T (x,w, y) =
^

i

Ti(y
i
, w, x) ,

where each Ti defines a subvector yi of the next state variables
such that {yi} is a partition of y. (More general definitions of con-
junctive partitioning are possible, but will not be considered in this
paper.)

Image computation with a conjunctively partitioned transition
relation consists of evaluating

Zi+1(y) = ∃x,w .
^

i

Ti(y
i
, w, x) ∧ Zi(x) ,

where quantification of variable vectors is shorthand for the quan-
tification of all the variables in the vector,

∃x . f = ∃x1 . ∃x2 . · · · . f ,

and Zi(x) is the characteristic function of the states whose succes-
sors are sought. For the result Zi+i(y) to be employed in the next
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image computation, it must be converted to Zi+i(x) by variable
substitution. It should be noted that this substitution, harmless as it
may seem, can be problematic, especially with regard to BDD vari-
able reordering [13]. Finally, it should be noted that variables are
in practice quantified as soon as possible [11, 21], as this normally
helps in keeping the BDDs sizes under control. A variable can be
quantified as soon as it appears only in one conjunct. Current BDD
packages in fact provide operations that quantify variables while
conjoining two BDDs.3

Two elementary properties of images that will be useful in de-
scribing the algorithm are that the image of the empty set is the
empty set, and that image computation distributes over disjunction,
that is:

∃x, w . T (y,w, x) ∧ (A(x)∨ B(x)) =

(∃x,w . T (y,w, x) ∧ A(x)) ∨ (∃x,w . T (y,w, x) ∧ B(x)) .

Distributivity is the foundation for disjunctive partitioning.

2.3 Control Flow Graph (CFG)
Many program analysis techniques work on graphs derived from

the program text. Among these, the CFG is a directed graph that
represents the flow of control of a program (hardware or behav-
ioral model). Each node represents an assignment or branching
statement Si in a program P . Each directed arc represents flow
of control from one node to another. A CFG can be extracted in
a single pass traversal over P . In our implementation we create
one CFG for each Verilog always block. The set of CFG paths
in a program P consisting of multiple always blocks is simply the
Cartesian product of the set of paths computed from each always
block CFG. In the rest of the paper we will refer to CFG paths as
the set of paths in P computed by taking the Cartesian product of
the paths of the program CFG(s)(which may contain a single or
multiple always block).

Definition 1 (Control Flow Graph (CFG)) A control flow graph
CFG is a directed graph G = (V, E), where: (1) V is a finite set of
nodes including two distinguished nodes of type entry and exit. All
other nodes are of one of two types: assignment and decision. (2)
E ⊂ V ×V is a control flow relation, whose elements are directed
edges.

We assume that the flow relation obeys restrictions. Specifically,
we assume that the arcs can be partitioned into forward arcs (Efwd)
and back arcs (Ebwd) so that the forward arcs form a DAG in which
all nodes are reachable from the entry node. We also assume that
the exit node is reachable from all nodes in the CFG. Furthermore,
each back edge goes from a node to another that dominates it.
These assumptions imply reducibility of the CFG. Intuitively, the
different types of nodes map to the basic types of statements, and
in fact we shall call the CFG nodes statements. The edges in E
represent the transfer of control between statements.

Definition 2 (Def/Use Graph) A def/use graph GDU is a struc-
ture 〈CFG, Σ, D, U〉 where Σ is a set of variables (registers) in
a program P , D : VCFG 7→ δ(Σ) and U : VCFG 7→ θ(Σ) are
functions mapping nodes V of CFG, i.e, VCFG to the set of vari-
ables defined (δ) or used (θ) in the statements corresponding to the
nodes V , respectively.

3In all our experiments, we use early quantification, though for
some models, like the two-register one discussed in the introduc-
tion, it is ineffective.

Table 1: Control Flow Analysis

CFG PATH Path Path Path
Path Predicate Defines Uses Inerts

1 rst ∧ ¬state ∧ a = 0 a,b,c,state — —
2 rst ∧ ¬state ∧ a 6= 0 a,b,c,state — —
3 rst ∧ state ∧ c < 4095 a,b,c,state — —
4 rst ∧ state ∧ c ≥ 4095 a,b,c,state — —
5 ¬rst ∧ ¬state ∧ a = 0 a,state — b,c
6 ¬rst ∧ ¬state ∧ a 6= 0 b,state a c
7 ¬rst ∧ state ∧ c < 4095 c,state — a,b
8 ¬rst ∧ state ∧ c ≥ 4095 state c a,b

Definition 3 A path π is a list of nodes (v1 . . . vk) such that v1 is
the entry node, and ∀i, 1 ≤ i ≤ k − 1, (vi, vi+1) ∈ Efwd. A path
π represents one clock cycle of a Verilog always block.

The naive approach to determining the paths in a program P
would be to enumerate all possible paths in the programs CFG.
This would result in the worst case in up to 2n paths, where n is
the number of decisions in the program text. However, we employ
a BDD-based traversal algorithm to compute each path’s enabling
predicate. (Decision node predicates are represented by BDDs.)
The path enabling predicate is simply the conjunction of the pred-
icates along the path. This algorithm has the characteristic that as
false paths are identified (a path whose path predicate is false), they
are eliminated from subsequent iterations thus decreasing the num-
ber of paths that need to be checked for falsehood in subsequent
steps. Data-flow information is not considered while determining
falsehood, thus some infeasible paths could possibly be missed.
Our algorithm performs better in practice, however, it is still ex-
ponential in the worst case. We compute the set of path enabling
predicates while parsing the program text without having to build
the program CFG(s).

3. Algorithm
Given a model in an RTL language (Verilog in our case), our

algorithm uses the path information in the CFG of the RTL de-
scription to speed up image computation, and hence reachability
analysis.

The information about each path of the CFG that is used includes
the path enabling predicate, which is the conjunction of the guards
(the conditional expressions controlling program flow) along the
path itself, and the set of variables that are defined and used along
the path. The path enabling predicates depend on both state vari-
ables and primary inputs. Since the transition relation is complete,
the projection of their union over the state space covers the entire
space. Therefore they can be used for disjunctive partitioning of
the image computations. Figure 1 shows a simple Verilog example
description, while the corresponding CFG is shown in Fig. 2. The
CFG in Fig. 2 shows only the edges in Efwd. We omit the back
edges Ebwd for clarity.

For the same example, Table 1 lists the paths of the CFG and for
each of them reports the path enabling predicate, and classifies the
state variables as defines, uses, and inerts. The table refers to vari-
ables that are bit vectors to avoid clutter; the translation to binary
variables is straightforward.

For our purposes, a path in the CFG is an alternating sequence
of nodes and arcs of the CFG that connects the entry node to the
exit node. The path enabling predicate is the conjunction of all the
conditionals that are true along the path. A variable of the CFG
is defined along a path if it is the target of at least one assignment
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module example(clock,rst,indat);
input clock;
input[31:0] indat;
input rst;

reg state;
reg[31:0] a,b,c;

initial begin
state=0;a=0; b=0; c=0;

end

always @ (posedge clock) begin
P1: if (rst) begin
S1..S4: a = 0; b = 0; c = 0; state=0;

end
P2: if (!state) begin
P3: if (a == 0)
S5: a=indat;

else
S6: b=a;

end else begin
P4: if (c < 4095)
S7: c = c+1;

end
S8: state = ˜state;

end
endmodule

Figure 1: Example Verilog model

entry

P1

S1-S4

P2

P4P3

S5 S6 S7

S8

exit

Figure 2: CFG for the Verilog model of Fig. 1

Reachability(S0, CFG, T )
R = N = S0

while (N 6= 0) {
J = 0
foreach π ∈ PATHS(CFG) {

Nπ = N ∧ ∃ inputs . PATH COND(π)
if (Nπ 6= 0) {

Tπ = T∧ PATH COND(π)
img = IMAGE(Tπ , Nπ)
J = J∨ img

}
}
N = J ∧ ¬R

R = R ∨ N
}
return R

Figure 3: Symbolic reachability algorithm with disjunctive image
partitioning based on CFG paths

along the path. We denote the x variables defined along path π
by Dx(π). A variable is used along a path if it is not defined and
it appears on the right-hand side of an assignment or in a condi-
tional along the path. We denote the variables used along path π
by Ux(π). Variables that are neither defined nor used along a path
are called inert for that path; the variables inert along path π are
denoted by Ix(π).

The pseudocode of the symbolic reachability algorithm is shown
in Fig. 3. It is similar to the standard symbolic BFS algorithm,
except for the fact that the image computations are decomposed
according to the paths of the CFG. For each path, the enabling con-
dition is conjoined with the transition relation to produce a con-
strained relation Tπ .

The states whose image must be computed are also conjoined
with the path enabling predicate. Oftentimes the conjunction is
false, and the corresponding image computation is skipped.

The correctness of the algorithm of Fig. 3 follows from the fact
that image computation distributes over disjunction and that the dis-
junction of all the enabling predicates is the tautologous predicate.
Some standard optimizations of symbolic BFS are omitted for clar-
ity from Fig. 3. For instance, the choice of the next state frontier
from the interval [N, R]. These optimizations can be applied with
no adverse effect on the correctness of the algorithm.

If the CFG has many paths, it is possible for the inner loop of
Fig. 3 to execute too many times. In such a case it is difficult
to recover the overhead due to the many invocations of the image
computation; it is often more efficient to revert to non-decomposed
computation. The pseudocode does not show this option, which is
however included in the algorithm that we implemented.4

The increased efficiency of the algorithm of Fig. 3 over standard
symbolic breadth-first analysis comes from two sources. On the
one hand, the partitioning of the image computation task decreases
dependencies in the transition relation and simplifies in general the
BDDs. On the other hand, the classification of variables into de-
fines, uses, and inerts affords a more efficient computation of each
part of the image as we now describe.

4The threshold for reverting to non-decomposed computation is a
user-specified parameter. In our experiments we chose a value of
7500 paths, which was more than enough for all our designs.
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For path π, the computation of procedure IMAGE amounts to

img(Dy(π), Uy(π), Iy(π)) = ∃Dx(π) . ∃Ux(π) . ∃Ix(π) . ∃w .

Tπ(x, w, y) ∧ Nπ(Dx(π), Ux(π), Ix(π)) , (1)

followed by the substitution of the y variables by the corresponding
x variables in the result. We now observe that

Tπ(x, w, y) = T
′

π(Dx(π), Ux(π), w, Dy(π))

∧
^

xi∈Ux(π)∪Ix(π)

(yi ↔ xi) ,

because the values of the variables not defined along π are not af-
fected by its execution. Substituting into (1), and taking into ac-
count that

∃a . f(a) ∧ (a ↔ b) = f(b) ,

we get

img(Dy(π), Uy(π), Iy(π)) = ∃Dx(π) . ∃w .

T
′

π(Dx(π), Uy(π), w, Dy(π)) ∧ Nπ(Dx(π), Uy(π), Iy(π)) ,
(2)

whence, by variable renaming,

img(Dy(π), Ux(π), Ix(π)) = ∃Dx(π) . ∃w .

T
′

π(Dx(π), Ux(π), w, Dy(π)) ∧ Nπ(Dx(π), Ux(π), Ix(π)) .
(3)

The advantage of (3) over (1) is twofold. On the one hand, the
terms of the transition relation corresponding to used and defined
variables have been removed. This lowers the number of variables
that can be involved in the intermediate results and greatly helps
in the reduction of the sizes of the intermediate BDDs. On the
other hand, the result of image computation must be eventually ex-
pressed in terms of current state variables. Hence, the next state
variables must be substituted. In (3) substitution is required only
for the defines of the path. The main advantage comes from the
simplification of the transition relation, but both can be significant.

In many cases, a further optimization is advantageous. Let us
define

N
0
π(Ux(π), Ix(π)) = ∃Dx(π) . Nπ(Dx(π), Ux(π), Ix(π))

N
1(Dx(π), Ux(π), Ix(π)) = Nπ(Dx(π), Ux(π), Ix(π))

↓ N
0
π(Ux(π), Ix(π)) ,

where ‘↓’ denotes the constrain operator [7]. Since the constrain
operator is such that f ∧g = f ∧ (g ↓ f), it is immediately verified
that

Nπ = N
0
π ∧ N

1
π .

Since N0
π does not depend on any of the variables to be quantified

in (3), we obtain

img(Dy(π), Ux(π), Ix(π)) = N
0
π(Ux(π), Ix(π)) ∧ ∃Dx(π) .

∃w . T
′

π(Dx(π), Ux(π), w, Dy(π))

∧ N
1
π(Dx(π), Ux(π), Ix(π)) . (4)

The transformation of (3) into (4) reduces the intermediate BDDs
and is advantageous when the conjunctive decomposition of Nπ

into N0
π and N1

π can be obtained cheaply. This is usually the case
when the defines along path π are a small fraction of the state vari-
ables. (Not only the quantification tends then to be inexpensive, but
the BDD for N1

π is often very small.)

Table 2: Experimental results for reachability analysis

Circuits FFs Reachable CFG Times in seconds
States Paths New BFS

BFS
blackjack 104 2.443e+07 25 226.86 220.2
Palu 37 2.205e+09 19 118.39 1133.7
CRC 32 4.295e+09 4 Mem. out Mem. out
BPB 36 6.872e+10 289 51.0 100.0
Rotator 64 1.845e+19 32 4.37 Mem. out
Vsa 66 1.625e+14 27 445.0 1943.36
B04 66 5.650e+15 27 250.36 4678.99
FIFOs 142 — 20 Timeout 62.53
Spinner 65 3.659e+19 32 4.54 Mem. out
twoQ 66 1.300e+17 63 1179.01 2304.87

Table 3: Peak Live Nodes
Circuits FFs Reachable Size in Kbytes

States New BFS
BFS

blackjack 104 2.443e+07 9365 8810
Palu 37 2.205e+09 25520 47517
CRC 32 4.295e+09 — —
BPB 36 6.872e+10 2538 1884
Rotator 64 1.845e+19 18 —
Vsa 66 1.625e+14 15733 29348
B04 66 5.650e+15 14715 32287
FIFOs 142 — — 3437
Spinner 65 3.659e+19 68 —
twoQ 66 1.300e+17 20889 27666

Constrain is not the only operator that may be applied to the
computation of N1

π . For instance, the restrict operator [8] is a pop-
ular alternative because it often produces smaller BDDs. However,
when the second operand to restrict is obtained by quantifying vari-
ables from the first operand, restrict gives no advantage over con-
strain.5 Other so-called generalized cofactor algorithms (e.g., those
of [28, 14] or the squeeze algorithm available in the CUDD pack-
age [29]) may produce smaller BDDs than constrain, but tend to be
slower.

4. Experimental Results
We implemented our algorithm in VIS 2.1 [2]. We show exper-

imental results on certain benchmarks from the VIS Verilog suite
[33] that are known to be hard for BFS reachability analysis. In
addition, we show results for some small or medium sized circuits
where BFS reachability analysis does very well. Our experiments
were run on a 2.0 GHz Pentium M machine with 2 GB of RAM run-
ning Linux. Each experiment was allotted a 7200 s time limit and
the data segment size was limited to 1 GB (e.g., ulimit -d 1000000).
Our results are compared to the standard BFS reachability algo-
rithm implemented in VIS. The extraction time to retrieve control
flow information needed by our algorithm was negligible compared
to the time to complete reachability analysis and thus will be omit-
ted.

We used ten circuits in our experiments. Blackjack is a model
5Restrict differs from constrain in that it applies local quantification
to its second operand. When the second operand is obtained from
the first by quantification, local quantification is never triggered.
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of a blackjack card game keeping track of the cards dealt to a
player and a dealer. Palu is an elementary pipelined ALU with
the ability to stall. The pipeline consists of an ALU and a regis-
ter file. At each clock cycle the pipeline starts the execution of
an instruction, which completes in three cycles. CRC computes
a 32-bit cyclic redundancy code of a stream of bytes. BPB is a
branch prediction buffer that predicts whether a branch should be
taken depending on the correctness of the previous predictions. Ro-
tator and Spinner consist of a barrel shifter sandwiched between
registers. Vsa is a simple non-pipelined microprocessor that ex-
ecutes 12-bit instructions—ALU operations, loads, stores, condi-
tional branches—in five stages: fetch, decode, execute, memory
access, and write-back. It has four registers, with one always set
to zero. B04 is a Verilog translation of the original b04 circuit
from the ITC99 benchmark set [15]. It computes the minimum
and maximum of a set of numbers. FIFOs is a model to check the
equivalence of two different FIFO implementations: 1) a shift reg-
ister FIFO and 2) a Ring buffer FIFO. Table 2 compares standard
BFS reachability analysis in which the image computation algo-
rithm is the one of [24] with our new BFS algorithm. Columns 1,
2, and 3 give the name of the circuit, number of flip-flops (state
variables) and number of reachable states of the circuit. Column 4
gives the number of CFG paths (from start node to end node) gener-
ated from the circuit’s control structure. Columns 5, and 6 compare
run times for reachability analysis for new BFS and standard BFS,
respectively. Table 3 shows the peak live nodes during reachabil-
ity analysis for both the new and standard BFS. These numbers
are indicative of the sizes of the BDDs encountered during image
computation. The disjunctive decomposition has an inherent over-
head in terms of BDD nodes because it instantiates two transition
relations simultaneously. This, for smaller examples, may lead to
more BDD nodes being allocated than in ordinary BFS. However,
the many cases in which the latter runs out of memory demonstrate
the efficiency of our technique.

5. Conclusions
In this paper we have presented a new approach to the disjunc-

tive decomposition of image computations based on control flow
information extracted from the Register Transfer Level Description
of the model. Paths in the Control Flow graph define a partition
of the state and input space that often leads to dramatic decreases
in the sizes of the intermediate BDDs built during image computa-
tions. The results we have presented are for the case of breadth-first
reachability analysis, but the approach based on control-flow infor-
mation extends also to other search strategies.

It is interesting, in particular, to compare the approach to sym-
bolic reachability proposed in this paper to the one of [34], in which
program analysis techniques are used to derive hints for guided
search. Both approaches use paths in the CFG to constrain the
transition relation. In [34], unlike here, the search strategy is not
breadth-first. In some cases, as for CRC in Sect. 4, this allows
reachability to complete even though BFS fails. In other occasions,
as for B04, guided search encounters difficulties when the com-
plete transition relation is restored, because the image of a large
BDD must be computed. This problem is avoided with breadth-
first search. The exploitation of the information on defines and uses
along the various paths is the main novelty of this paper. Though
we have demonstrated its advantages in the more common and con-
trolled context of breadth-first search, it can be easily extended to
the guided search approach. Producing shortest witnesses to reach-
ability of a given state is also easier in the case of BFS analysis.

Comparing our approach to other techniques based on BFS and
disjunctive partitioning of the image computations, we observe that

the most effective techniques devised so far are in our experience
those that attempt to break dependencies in the transition relation.
In that respect, use of the CFG information is quite effective, and
allows, in addition, simplifications of the computation that are not
possible without the knowledge of which variables are left unchanged
by a constrained partition relation. Such information is easily ex-
tracted from the CFG.

It is possible in principle to cluster several paths of the CFG and
partition the image computation according to the clusters. This is
a potentially profitable approach that we have not yet investigated.
We also plan to study the benefits of our technique in the context of
preimage computation (computation of the predecessors of a set of
states) which is required by popular model checking algorithms.
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