
Dynamic Power Management Using Machine Learning 
Gaurav Dhiman 

Department of Computer Science and Engineering 
University of California, San Diego 

gdhiman@cs.ucsd.edu 

Tajana Simunic Rosing 
Department of Computer Science and Engineering 

University of California, San Diego 

tajana@ucsd.edu 

 

ABSTRACT 
Dynamic power management (DPM) work proposed to date 
places inactive components into low power states using a single 
DPM policy. In contrast, we instead dynamically select among a 
set of DPM policies with a machine learning algorithm. We 
leverage the fact that different policies outperform each other 
under different workloads and devices. Our algorithm adapts to 
changes in workloads and guarantees quick convergence to the 
best performing policy for each workload. We performed 
experiments with a policy set representing state of the art DPM 
policies on a hard disk drive and a WLAN card.  Our results 
show that our algorithm adapts really well with changing device 
and workload characteristics and achieves an overall 
performance comparable to the best performing policy at any 
point of time. 
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1. INTRODUCTION 
Power consumption is a key issue in the design of computing 
systems today. While battery driven systems need to meet an 
ever increasing demand for performance with a longer battery 
life, high performance embedded systems contend with the issues 
of heating. Dynamic power management (DPM), defined as the 
selective shutdown of system components that are idle, has 
proven to be an effective technique for reducing system power 
dissipation. An effective DPM policy must maximize power 
savings while keeping performance degradation within 
acceptable limits. Design of such policies has been an active 
research topic. A number of heuristic and stochastic policies have 
been proposed in the past. All these policies tackle the DPM 
problem by selecting an appropriate timeout value after which 
the device can be put to sleep. This timeout can be fixed, 
adaptive or randomized. While simpler DPM policies like 
timeout and predictive policies do it heuristically with no 
performance guarantees, more sophisticated stochastic policies 
guarantee optimality for stationary workloads. Policies can 
outperform each other under different workloads and devices. 

In this paper we propose a novel DPM technique that optimally 

exploits the existing DPM policies to achieve adaptability with 
varying workloads. The premise is to take a set of DPM policies 
and design a control algorithm that selects the best suited one for 
a given idle period. The control algorithm design is critical here 
since it bears the responsibility of effective evaluation and 
selection of policies, which directly determines the overall 
performance of the entire scheme. We employ a machine 
learning algorithm [2] to perform this control activity. The 
machine learning algorithm (referred to as “controller”) has a set 
of DPM policies (referred to as “experts”) to choose from and 
selects an expert which has the best chance to perform well for 
the current idle period. The controller evaluates the performance 
of the experts at the end of each idle period and based on that 
decides which expert should be activated next. It takes into 
account both power savings and performance penalty for this 
calculation. The controller can be employed separately on 
multiple devices in the system with each device having its own 
set of experts.  Our machine learning algorithm will guarantee 
performance that is close to that of the best available expert for 
each device.  

We implemented the controller with a set of experts representing 
state of the art DPM policies, for controlling power consumption 
of a hard disk drive and WLAN card under different workloads. 
We observed that under conditions where experts give mixed 
performance, the machine learning algorithm adapts to select the 
best performing expert at any point of time and delivers an 
overall performance (in terms of power savings and performance 
penalty) better than that of any single expert. Under conditions 
where a single expert consistently performs better than the other, 
the algorithm continuously selects it to achieve comparable 
results. The scheme, however, involves the overhead of 
performance evaluation of experts at the beginning of the active 
period. According to our experimental results the overhead is 
negligible (as low as 0.0001% of the total timeframe) when 
compared to the flexibility and the benefits offered. Thus, the use 
of machine learning algorithm with a carefully selected set of 
experts presents a novel, adaptive and robust DPM mechanism 
that can achieve good performance for a wide range of 
applications.  

2. PREVIOUS WORK 
A lot of research effort has been devoted to explore different 
DPM policies in the past. The existing DPM policies can be 
broadly classified into heuristic and stochastic policies. While 
the heuristic policies are simple to implement they provide no 
guarantees on the power/performance trade-off they offer. 
Stochastic policies are more complex to implement but they do 
guarantee optimality and performance bounds. However, the 
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guarantee is only for stationary workloads and thus stochastic 
policies cannot adapt optimally.  

A simple heuristic policy is a timeout policy, wherein a device is 
put to sleep if it is idle for more than a specified timeout period. 
The timeout period might be fixed [14] or adaptive [3] [4]. For 
instance, in [14], the device is put to sleep if it is idle for more 
than Tbe (break-even time). Tbe is the minimum period for which 
the device should be turned off so that it compensates for the 
overhead associated with shutting down and turning on the 
device and saves energy compared to the case if it remains on. A 
drawback of such policies is that they waste energy while waiting 
for the timeout to expire. Predictive policies predict the duration 
of upcoming idle period as soon as the component goes idle. A 
shutdown decision can be made if the prediction indicates a long 
idle period. Srivastava et al. [5] proposed a policy, which uses a 
regression equation based on the component’s previous active 
and idle periods to predict the current idle period length. In [6], 
Hwang and Wu used exponential average of predicted and actual 
lengths of the previous idle period to predict the current idle 
period length. In [7], Chung et al propose a scheme that uses an 
Adaptive Learning Tree to store a sequence of idle periods and is 
capable of managing multiple low power states. The algorithm 
predicts idle periods using finite state machines and selects the 
best suited low power state. Predictive policies, however, 
perform well only when the requests have a high degree of 
correlation. In summary, heuristic policies tend to be easy to 
implement and in some cases are adaptive. However, they do not 
offer any guarantee on optimality and by in large do not take 
performance overhead into account. 

Stochastic policies take into account both power consumption as 
well as performance penalty. They model the request arrival and 
device power state changes as stochastic processes. Minimizing 
power consumption and delays then become stochastic 
optimization problems. In [8], Paleologo et al assume the arrival 
of requests as a stationary geometric distribution and model 
power management as a discrete-time Markov decision process. 
In [9], the work is extended to handle non-stationary request 
arrival. Continuous Time Markov Decision Process models 
arrival time as exponential distribution and runs the policy on 
event occurrences rather than at discrete time intervals [10]. 
Other proposed models include semi markov decision process 
model (SMDP) [11] and Time Indexed Markov Chain SMDP 
model (TISMDP) [12]. SMDP models transitions to and from 
low power state using uniform distributions, while the request 
arrivals are exponential.  TISMDP models request arrival as a 
pareto distribution while the transition times of the service 
provider between the power states is modeled as a uniform 
distribution. The algorithm has low computation overhead and 
performs well when implemented on real devices [13]. Stochastic 
policies offer optimality for the power/performance tradeoff they 
have been derived for, but they do not keep their optimality 
properties as workloads become non-stationary, thus they have 
limited adaptability. 

The main contribution of our work is that instead of designing a 
new power management policy, we take a set of well-known 
policies, each of which performs well for a given set of 
conditions and design a policy selection mechanism.  The 
primary motivation for this work comes from the observation that 

no single policy fits perfectly all operating conditions. Our 
proposed scheme uses machine learning algorithm that 
guarantees to do nearly as well as the best performing policy on a 
given workload. This approach gives us the power to adapt with 
changing workloads and give an overall performance that is 
better than any single policy can offer. Ren et al. propose a 
similar setup in [16]. They design a hierarchical architecture, 
where the bottom layer is a set of stationary optimal DPM 
policies, precalculated offline from policy optimization in 
Markov decision processes, while the top layer adaptively 
switches among these stationary policies. In comparison, our 
work is more generic in nature since the policy set can comprise 
of any DPM policy rather than just a stationary stochastic policy. 
Moreover, the machine learning algorithm provides theoretical 
guarantee on overall performance converging to that of the best 
performing policy in the policy set. The basic idea of policy 
selection resembles that of hybrid branch predictors employed in 
microprocessors [17] [18]. 

The rest of the paper is organized as follows. Section 3 explains 
our system model. We then explain our experimental setup and 
results in Section 4. Finally we summarize our findings in 
Section 5. 

 

Figure 1. System Model 

3. SYSTEM MODEL 
The system we are modeling, shown in Figure 1, consists of three 
entities: controller (the machine learning algorithm), experts (the 
DPM policies) and the device whose power is being managed. 
The set of experts is collectively referred to as the “working set”.  
An expert can be a fixed timeout policy, an exponential 
predictive policy, a stochastic policy etc. When the device is 
busy, all the experts are inactive and thus are referred to as 
“dormant experts”. When an idle period occurs, the controller 
activates the expert that has the highest probability to perform 
well. This selected expert is referred to as the “operational 
expert”. The operational expert takes control over the device and 
makes the power management decisions for that idle period. For 
instance, in the scenario depicted in Figure 1, Expert3 is the 
operational expert and is managing power for the current idle 
period. After the idle period finishes, the operational expert 
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returns to its default dormant state. This process is repeated for 
all idle periods. Note that for any idle period only one expert can 
be operational. This model can be independently applied to 
multiple devices in the system. Each device will have its own 
controller and working set, and the controller will select the most 
suited expert as the operational expert for the device it is 
controlling. 

3.1 Machine Learning Algorithm for DPM 
The most critical task in our methodology is the evaluation and 
selection of experts. The controller employs a machine learning 
algorithm for this purpose. The algorithm is an adaptation of 
Freund and Schapire’s on-line allocation algorithm [2]. Figure 2 
contains the pseudo-code for the algorithm we use for the 
controller. The controller has N experts to choose from; we 
number these using the integers i = 1,2…..,N. The experts can be 
any DPM policy. The algorithm associates and maintains a 
weight vector wt with the experts, where wt = <wt

1, wt
2,…wt

N> 
consists of weight factors corresponding to each expert. The 
value of weight factor reflects the performance of an expert, with 
a higher value indicating a better performance. All of the weights 
of the initial vector w1 sum to one, as seen in Figure 2. Note that 
the weights need not sum to one after a few idle periods. In our 
implementation, we assign equal weights to all the experts at 
initialization.  

To perform expert selection, the controller maintains a 
probability vector rt, that is obtained by normalizing the weight 
vector as shown below: 

∑ =

=
N

i

t
i

t

w

t

1

wr  

The probability vector, rt = <rt
1, rt

2,…rt
N> where 0≤ rt

i ≤1, 
consists of probability factors associated with each expert for idle 
period ‘t’. At any point of time the best performing expert has 
the highest probability factor amongst all the experts. Thus the 
controller simply selects the expert with the highest probability 
factor as the operational expert for the next idle period. If the 
probability factor of multiple experts is equal, then it randomly 
selects one of them (step 1 in Figure 2). When the idle period 
occurs, the operational expert takes control of the device and 
takes the power management decision (step 2 in Figure 2). 

Once the idle period finishes, the algorithm evaluates the 
performance of all the experts (step 3 in Figure 2). Dormant 
experts are evaluated on the basis of how they would have 
performed had they been selected. The evaluation takes into 
account both the energy savings and the performance delay. We 
evaluate loss with respect to an ideal offline policy that has zero 
delay and maximum possible energy savings. The loss incurred 
by each expert is collectively referred to as the loss vector lt. The 
value of loss factor (lt

i) for each expert is influenced by the 
relative importance of energy savings and performance delay as 
expressed by factor α (0≤α≤1). If lt

ie and lt
ip are the loss factors 

corresponding to energy savings and performance delay for an 
expert ‘i’, then the joint loss factor is given by: 

lt
i = α lt

ie + (1- α) lt
ip 

 

 

Algorithm Controller 

 Parameters: [ ]1,0∈β  

Initial weight    vector [ ]Nw 1,01 ∈ , 

such that 1
1

1 =∑ =

N

i iw ,  

 Do for t = 1,2,3….. 

1. Choose expert with highest probability factor in 
tr . 

∑ =

=
N

i

t
i

t

w

t

1

wr  

2. Idle period starts -> operational expert performs DPM 

3. Idle period ends -> evaluate performance of experts 

4. Set the new weights vector to be  

t
ilt

i
t
i ww β=+1  

Figure 2. Algorithm Controller 

 
In our implementation we determine the energy loss lt

ie by 
comparing the length of the idle period with the sleep time. If it 
is less than Tbe (break-even time, defined in Section 2), then we 
do not save energy and thus lt

ie = 1. For the values of sleep time 
Tsleepi of an expert i greater than Tbe , and idle period, Tidle we use 
the following equation: 

lt
ie = 1 - Tsleepi/Tidle  

Calculation of performance loss, lt
ip, is based on whether the 

device sleeps or not. If the expert makes the device sleep, lt
ip = 1 

since we incur performance delay upon wakeup, otherwise it is 
set to 0. The loss calculation process is the step 3 in Figure 2. 
The final step in the algorithm involves updating the weight 
factors for each expert on the basis of the loss they have incurred: 

t
ilt

i
t
i ww β=+1  

Thus, the weight factors corresponding to experts with higher 
loss factors get reduced while for the experts with lower loss 
factors get increased by this simple multiplicative rule. This 
gives higher probability of selecting the better performing 
experts in the next idle period. The value of β can be set between 
0 and 1.  The criterion for selecting the appropriate value is 
explained in [2]. For our experiments we used β = 0.75. 

Once the weights are updated we are again ready to select the 
operational expert for next idle period by calculating the new 
probability vector rt using step 1 in Figure 2. Note that all 
calculations related to selecting the operational expert are 
performed during the active periods and hence no overhead is 
incurred when the idle period actually occurs. 

3.2 Performance Bound of Controller 
From the previous sub-section we know that lt

i is the loss 
incurred by each expert for the idle period t. Hence, the average 
loss incurred by our scheme for a given idle period ‘t’ is:  
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∑ =

N

i

t
i

t
i lr

1
= rt . lt 

The goal of this algorithm is to minimize its cumulative loss 
relative to the loss suffered by the best expert. That is, the 
controller attempts to minimize the net loss 
  LG – mini Li   

where, 

  ∑
=

=
T

t
GL

1

 rt . lt 

is the total loss incurred by controller on T trials, and 

  ∑
=

=
T

t

t
ii lL

1

 

is individual expert i’s cumulative loss over T trials.  It can be 
shown [2] that net loss of the algorithm is bounded by 

( )NTO ln or that the average net loss per period decreases at 

the rate ( )TNO /)(ln . Thus, as T increases, the difference 

decreases to zero. This guarantees that the performance of the 
machine learning algorithm is close to that of the best performing 
expert for any workload. This is in contrast to single policy based 
solutions which either adapt heuristically to changing workloads 
or guarantee optimality only for stationary workloads. 

4. RESULTS 
In this section we give the results we obtained with our controller 
algorithm on different devices commonly present in a wide range 
of embedded system with varying real workloads. We show how 
the controller performs with an “expert” set representing state of 
the art DPM policies. We use varying workloads and two devices 
to show that our methodology does well under different 
conditions. We also show that we can achieve reasonably good 
results with a working set of simple fixed timeout policies. The 
results indicate that our controller is capable of dynamically 
adapting while delivering sizeable energy savings over a range of 
power/performance tradeoff settings. 

4.1 Experimental Setup 
We performed our experiments using two devices: HP 2200A 
hard disk drive (HDD) and Cisco Aironet 350 series Wireless 
Adapter (WLAN) with workloads having different 
characteristics. For HDD we used traces originally collected in 
[15]. For WLAN we collected traces for different applications by 
running tcpdump on an XScale platform running Linux 2.4.21. 
The characteristics of the workloads selected for the experiments 
are described in Table 1.  This is a broad range of workload 
characteristics. For example, HP-1 and HP-2 traces have very 
different interarrival times in terms of both average value and 
standard deviation (

RIt and 
RItσ respectively). 

We run traces described in Table 1 for both the HDD and WLAN 
and then record the performance in terms of energy savings and 
performance delays for both the individual experts as well as the 
controller. Table 2 lists the power characteristics of both devices. 
Pon and Psleep refer to the power consumed while the devices are 
on and in the sleep state respectively. Ptr is the power consumed 
in transitioning to and from the sleep state while Ttr is the time  

Table 1 Workload characteristics 
 

 

Device 

 

Trace Name 

 

Duration 

(in sec) 

 

RIt  

 
 

RItσ  

HP-1Trace 32311 20.5 29 

HP-2 Trace 35375 5.9 8.4 

 

HDD 

 HP-3 Trace 29994 17.2 2 

Web Surfing 4720 0.16 0.65  

WLAN Telnet 2767 0.16 0.49 

RIt : Average Request Inter-arrival Time (in sec) 
 

 
taken for this transition. Tbe refers to the break even time. The 
power/performance characteristics of the two devices are quite 
different from each other. For instance WLAN has a Tbe that is 
less than half of that for HDD.  For our experiments we assumed 
HDD to be idle after 1s of inactivity and WLAN after 100ms of 
inactivity. Once an idle period is detected, the controller is 
invoked to select the operational expert. 

For our working set we selected fixed timeout, adaptive timeout 
[3], exponential predictive [6] and TISMDP [12] policies, 
representing different classes of state of the art DPM policies.  
While fixed and adaptive timeout policies represent the timeout 
class, exponential predictive policy represents the predictive 
class and TISMDP represents the stochastic class of policies. The 
fixed timeout policy simply waits for the specified timeout before 
switching off the device, while the adaptive timeout policy 
adjusts it by the given factor based on whether a correct 
shutdown decision was made in the previous idle period or not. 
The exponential predictive policy predicts the length of the 
upcoming idle period (In+l ) using the actual (in) and predicted (In) 
lengths of the previous idle period. TISMDP is a stochastic 
policy which provides randomized timeouts optimal for given 
device and workload distributions. Further details are provided 
in the following sections. 

Table 2 HDD and WLAN power characteristics 
 
 

Device Pon Psleep Ptr Ttr Tbe 

HDD 1.6W 0.4W 2.4W 2.5s 1.6s 

WLAN 0.9W 0 W* 3W 0.3s 0.7s 

*WLAN card is turned off 
 

 

4.2 Selection with state of the art policies 

4.2.1 HDD 
We performed experiments on the HDD traces shown in Table 1 
with the working set described in Table 3. The fixed timeout 
employs a timeout equal to seven times the break even time or 
Tbe (see Section 2 for definition). The adaptive timeout policy 
uses the same timeout with an adjustment factor of +0.1Tbe/-
0.1Tbe depending on whether the previous idle period resulted in  
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  Table 3 Working set characteristics 
 
 

Expert Characteristics 

Fixed Timeout Timeout = 7*Tbe 

Adaptive Timeout [3] Initial timeout =  7*Tbe; 

Adjustment = +0.1Tbe/-0.1Tbe 

Exponential Predictive 
[6] 

In+l = a in + (1 – a).In, 

With a = 0.5 

TISMDP [12] Optimized for delay constraint of 3.4% on 
HP-1 

 

 
energy savings or not. Exponential predictive policy is 
implemented as described in [6] while TISMDP policy is 
optimized for 3.4% delay on the HP-1 trace.  The main idea we 
are trying to show is that given a set of experts, the Controller 
always converges to select the best performing expert at that 
time. 

Table 4 shows the results achieved in terms of energy savings 
and performance delay for the individual experts on the HDD 
traces. An oracle policy, which knows the trace in advance and is 
thus an ideal policy, has been added to provide a baseline 
comparison among all the policies. The oracle is not included 
into Controller’s working set. The %energy indicates the amount 
of energy saved relative to the case where we do not have any 
DPM policy while the %delay shows the amount of performance 
delay caused relative to the total timeframe. The results 
highlighted in black show where we get the best energy savings 
while the results highlighted in grey address the case where we 
get the least performance delay. The results for the oracle policy 
indicate the maximum achievable energy savings for all traces. 
We can notice that the predictive policy does really well in terms 
of saving energy. For instance, on HP-1, it achieves around 
66.6% energy savings, which is very close to what achieved by 
the oracle. It does equally well for the other traces as well.   

Table 4 Energy Saving/Performance Delay for experts 

(grey shade indicates least performance delay and black indicates maximum energy savings) 
 
 

HP1 Trace HP2 Trace HP3 Trace Policy 

%delay %energy %delay %energy %delay %energy 

Oracle 0 68.17 0 65.9 0 71.2 

Timeout 4.2 49.9 4.4 46.9 3.3 55 

Ad Timeout 7.7 66.3 8.7 64.7 6 67.7 

TISMDP 3.4 44.8 2.26 36.7 1.8 42.3 

Predictive 8 66.6 9.2 65.2 6.5 68 
 

 

However, predictive policy is also the worst in terms of causing 
performance delay. This is because it is extremely aggressive in 
turning off the HDD and thus incurs a lot of overhead while 
waking up. In contrast TISMDP causes the least performance 
delay and consequently fetches the least energy savings. It can be 
observed in Table 3 that TISMDP was optimized for 3.4% delay 
on HP-1 trace and the results achieved confirm this. However, 
the figures are not the same for HP-2 and HP-3 traces which 
confirms that it is optimal for stationary workloads and does not  

Table 5. Energy Savings/Performance Delay for Controller 
 
 

HP-1 Trace HP-2 Trace HP-3 Trace Preference 

%delay %energy %delay %energy %delay %energy 

Low α 3.5 45 2.61 37.41 2.55 49.5 

Medium α 6.13 60.64 5.86 54.2 4.36 61.02 

High α 7.68 65.5 8.59 64.1 5.69 66.28 
 

 
adapt with changing workloads. Fixed timeout performs 
reasonably well on both the accounts while adaptive timeout is 
quite close to predictive in terms of energy savings. So primarily 
what these results highlight is that different classes of policies, 
depending upon their characteristics, deliver different levels of 
performance. However, depending upon the application 
requirements or user preferences one might want the overall 
performance to be more delay sensitive or more energy sensitive. 
The problem with just having a single DPM policy is that it does 
not offer the flexibility to control this behavior. The Controller 
offers exactly this flexibility. 

Table 5 shows results achieved on the same traces using the 
controller with different energy savings/performance delay (e/p) 
preference settings. As explained in Section 3.1, α value 
indicates the desirable e/p setting. A high value indicates a 
higher preference to energy savings, a low value indicates higher 
preference to performance while a medium value indicates a 
reasonable ratio of both. In our experiments we tested with 
values of α ranging from 0.3 (minimum) to 0.7 (maximum). We 
used values of α around 0.5 for the medium value. From the 
results we can observe that as we increase the value of α, we get 
higher energy savings and for lower values of α, we get low 
performance delays. For instance, on HP-2 trace we get 64.1% 
energy savings for high α, which is quite close to that achieved 
predictive policy. In contrast for low α, we get performance delay 
comparable to that of TISMDP. Remember that we limit the 
values of α between 0.3 and 0.7. For even higher values (close to 
1) we will achieve energy savings even closer to that of 
predictive policy. 
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Figure 3. Selection Frequency of experts for HP-3 trace  

 
Figure 3 shows how the Controller achieves these results taking 
example of HP-3 trace. It shows the frequency of selection of  
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  Table 6 Working set characteristics 
 
 

Expert Characteristics 

Fixed Timeout Timeout = Tbe 

Adaptive Timeout [3] Initial timeout =  Tbe; 

Adjustment = +0.1Tbe/-0.2Tbe 

Exponential Predictive 
[6] 

In+l = a in + (1 – a).In, 

with a = 0.5 

TISMDP [12] Optimized for delay constraint of 8.5% on 
www trace 

 

 
experts according to the selected value of α. We can observe that 
for higher value of α, predictive expert is selected most often 
since it is aggressive in turning off the HDD and thus achieves 
better energy savings. Likewise, for lower values of α, TISMDP 
expert is selected with higher frequency since it is conservative 
in turning off the HDD and thus offers lower performance delays. 
For the medium value of α, we can see that it selects amongst all 
the policies to deliver a performance which offers a reasonable 
e/p tradeoff. Hence, we can see that α factor offers us a simple 
yet powerful control knob to obtain the desired e/p tradeoff. 

4.2.2 WLAN 
We performed similar experiments on WLAN to show that our 
scheme performs well regardless of a device type or workload 
characteristics. Our working set had experts with characteristics 
listed in Table 6. We ran our algorithm on the web surfing, telnet 
and a combined workload, which had the other two workloads 
concatenated (see workload characteristics in Table 1). 
Combined workload allows us to analyze how the Controller 
adjusts with changing workload characteristics. 

Table 7 Energy Saving/Performance Delay for experts 

(grey shade indicates least performance delay and black indicates maximum energy savings) 
 
 

www Trace Telnet Trace Combined Policy 

%delay %energy %delay %energy %delay %energy 

Oracle 0 41.64 0 20.44 0 29.82 

Timeout 10.13 23.47 9.69 4.82 9.98 14.64 

Ad Timeout 11.63 28.72 10.73 4.74 11.46 17.56 

TISMDP 8.5 19.04 7.41 3.37 7.6 10.02 

Predictive 13.6 28.65 7.95 -9.24 11.51 12.9 
 

 
Table 7 shows the results achieved in terms of energy savings 
and performance delay for the individual experts on the WLAN 
traces. As in Table 4, the results in black highlight the case 
where we get the best energy savings while the results in grey 
highlight the case where we get the least performance delay. 
Again, the results for oracle policy indicate the maximum 
achievable energy savings for all the traces. The oracle policy is 
not a part of the working set; it just serves as a baseline. We can 
observe that for WLAN, predictive policy is no longer the best 
performing policy in terms of energy savings. In fact for the 
telnet trace it is so bad that we actually incur negative power 
savings (-9.24%). That means we would have been better off 
without using any DPM policy. TISMDP does really well in 
terms of keeping performance delay low across all the workloads.  

Table 8. Energy Savings/Performance Delay for Controller 
 

www Trace Telnet Trace Combined Preference 

%delay %energy %delay %energy %delay %energy 

Low α 6.48 15.77 4.77 1.57 6.17 9.23 

Medium α 6.78 16.38 5.35 2.69 6.28 10 

High α 10.38 26.58 5.67 3.33 8.9 16.1 
 
 

 
Adaptive timeout expert does really well in terms of energy 
savings and so does the fixed timeout expert. If we compare the 
amount of energy savings for HDD (see Table 4) and WLAN (see 
Table 7), we can observe that in former case the best results are 
quite close to the energy savings of the oracle policy. But for 
WLAN the difference is bigger. In fact for the telnet trace it is 
significantly more. This is primarily due to difference in nature 
of activity on a HDD and WLAN for the traces used. For HDD 
we get long idle periods during which a lot of power can be 
saved by turning it off. In contrast on WLAN, for the traces we 
used, the level of activity is quite high. This effectively translates 
into fewer opportunities to save power and higher probability of 
potential mispredictions. Since predictive policy is extremely 
aggressive in its DPM decisions, it suffers the most. 

Table 8 shows results achieved on the same traces using the 
controller with different values of α. From the results we can 
observe that as we increase the value of α, we get higher energy 
savings and for lower values of α, we get low performance 
delays. For instance, on www trace we get 26.58% energy 
savings for high α, which is quite close to that achieved by 
adaptive timeout. In contrast for low α, we get performance delay 
comparable to that of TISMDP. In fact in case of both the traces, 
it is even lower than that of TISMDP. This is primarily due to 
the fact that none of the experts are outstanding in terms of 
reducing the delay (like TISMDP was for HDD). So at various 
points of time, different experts perform well, and our controller 
adapts to select each expert, hence delivering an excellent overall 
performance. 
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Figure 4. Selection Frequency of experts for combined trace  

 
Figure 4 shows the frequency of selection of experts according to 
the selected value of α for the combined trace. It is interesting to 
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observe the selection statistics for a low value of α and compare 
it with the results achieved for HDD. For HDD (see Figure 3), 
the results were dominated by TISMDP. For WLAN (see Figure 
4) different experts perform well at different instances so the 
Controller continually selects the currently best performing 
expert. 

4.3 Selection with Fixed Timeout Policies 
The goal of DPM policies is to determine if a device should go to 
sleep on a given idle period and how long it should wait before 
doing so. Thus, inherently all DPM policies are a variant of a 
timeout policy. The manner in which this timeout value is 
determined varies from policy to policy. While the adaptive 
timeout policy heuristically adjusts the value of timeout based on 
previous performance, TISMDP employs a randomized timeout. 
For predictive policy the timeout is zero or the entire idle period 
depending upon a positive or a negative prediction of the length 
of the idle period. Based on these observations we next test our 
controller with a working set comprising of multiple simple fixed 
timeout policies with different timeout values.  Such policy set 
should perform reasonably well compared to the state of the art 
policies used in the previous sections. Keeping this in mind, we 
performed experiments on the HDD with a working set of 
experts that had fixed timeouts ranging from Tbe to 180s. A 
timeout of Tbe guarantees that the energy consumption is not be 
greater than a factor of 2 when compared to an ideal offline 
policy [14]. Timeout of 180s is the minimum we can set for a 
HDD on Windows XP. 

Figure 5 illustrates the performance of these individual timeout 
policies against the performance of the controller corresponding 
to the HP-1 trace. The x-axis represents the performance delay as 
a percentage of the total time frame, while y-axis gives the 
percentage of energy savings compared to a case where no DPM 
policy is present (always on case). The grey line in Figure 5 
shows (e/p) points for different fixed timeout experts. The lowest 
point towards the left in the graph (e/p = 20%/0.2%) corresponds 
to the default Windows XP policy with a timeout of 180s, while 
the highest point towards the right (e/p = 65%/7%) corresponds 
to timeout of Tbe[14]. By varying the fixed timeouts we obtain 
significant changes in the e/p ratio. The black line in Figure 3 
shows e/p points for the controller algorithm with three different 
values for α. For high values of α, we get  energy savings as high 
as 65% (around 45% more than the default Windows XP policy) 
while for a low value of α it gives an e/p ratio comparable to the 
policies with large timeouts (around 0.5%). Cleary, α factor 
offers us a simple and powerful control knob to obtain a desired 
e/p tradeoff.  

We now compare results for the set of fixed timeout policies 
shown in Figure 5 with the results obtained in section 4.2.1 
employing a working set representing more sophisticated policies 
(see Tables 4 and 5) for HP-1 trace. We can observe that in 
Figure 5 we get a broader range of e/p points ranging from 
20%/0.2% (timeout = 180s) to 65%/7% (timeout = Tbe) 
compared to 44.8%/3.4% (TISMDP) to 66.6%/8% (predictive) in 
Table 4. The range is smaller in the latter case because of the 
smaller size of the working set and the characteristics of the 
experts chosen (see Table 3). Correspondingly we can notice that 
the e/p points for Controller also closely follow the range offered  

15.00%

25.00%

35.00%

45.00%

55.00%

65.00%

75.00%

0.00% 1.00% 2.00% 3.00% 4.00% 5.00% 6.00% 7.00% 8.00%

% delay

%
en

e
rg

y 
sa

vi
ng

s

Fixed Timeout

Controller

Increasing 'α'

Higher energy savings

Lower delay

 

Figure 5. Energy/Performance delay curve for HP-1 trace 

 
by their respective working sets (see Figure 5 and Table 5). This 
indicates that the performance of the Controller depends directly 
on the performance of the experts comprising the working set. 
For instance in Figure 5, the lowest performance delay offered by 
the working set is around 0.2% and our Controller closely 
achieves that for low α. For section 4.2.1, the lowest delay 
offered by the working set was 3.4% and again our Controller 
closely matched that for low α (see Table 5). This indicates that 
expert selection is extremely critical and we must include experts 
with characteristics matching our e/p requirements in the 
working set. For instance it is a good idea to have both 
conservative and aggressive experts in the working set, since that 
gives Controller a broader range of e/p points to select from 
according to the current user preference (α). We can further 
observe that e/p points achieved by the Controller for high α in 
both Figure 5 and Table 5 are quite similar. Hence the use of 
controller with a working set of fixed timeout policies (with a 
wide range of timeouts) offers a simple adaptive scheme that 
delivers good results with reasonable performance bounds. 

4.4 Advantages and Disadvantages 
Controller provides a flexible scheme where using a simple 
control knob (α) we indicate our desired e/p setting, while the 
Controller takes care of selecting the best performing expert at 
any point in time. The best performing experts vary with 
changing workload and device characteristics (see Table 4 and 
Table 7). The Controller is capable of recognizing these changes 
in workload and adapts accordingly to select the new best 
performing expert. We have shown using experiments on HDD 
and WLAN how Controller adapts to different devices and 
workload characteristics. 

Controller, in the best case, performs as well as the best 
performing expert in the working set. Consequently if the expert 
selection is poor, the Controller cannot improve beyond the best 
available expert. For instance in Table 5, for a low α, we achieve 
low performance delay since TISMDP expert performs well in 
terms of delay and is thus selected the most often. However, if 
we remove TISMDP from the working set, then the results for 
performance delay would increase irrespective of the value of α. 
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Thus expert selection is really critical to achieving good overall 
performance. A big benefit of our work is that now designers can 
focus on optimizing policies for specific workloads. Our 
controller is then able to detect whenever that workload occurs 
and employ the appropriate expert to perform DPM, hence 
achieving the best possible performance.  

Another concern is the controller overhead in terms of both 
energy and time to perform the evaluation of experts.  No 
overhead is caused by our mechanism during the idle time, since 
the operational expert is selected in the active periods (see 
section 3.1).  In our experiments we measured the average 
controller overhead at 0.0001% of the total timeframe for HDD 
and 0.0006% for WLAN. The overhead is higher for WLAN 
since the number of idle periods is greater and thus the controller 
is invoked more often. In either case the overhead is negligible 
relative to the overall timeframe. Some optimizations can be 
performed to further reduce this overhead. For instance, Figures 
3 and 4 show that some experts get selected a lot more frequently 
than others. Hence, if an expert gets selected consecutively for 
more than some preset number of times, then we can assume it 
will be selected in the next idle periods as well, and the 
evaluation of experts can be thus suspended for some time.  

5. CONCLUSION AND FUTURE WORK 
DPM problem is one of selecting an appropriate idle period and 
the timeout value before the device can be shut down. DPM 
policies use different mechanisms to determine the value of 
timeout. However, with changing workloads, it is difficult to 
devise a single policy that can perform consistently well. In this 
paper we have proposed a novel DPM technique that takes a set 
of policies which perform well under different workloads and 
dynamically selects which policy should be active at run time 
using machine learning. Our algorithm guarantees us that its 
performance at any point of time is closest to that of the best 
performing policy.  

We showed through our experiments using a set of various 
policies on HDD and WLAN that different policies perform 
better for different workloads. Our algorithm adapts to select the 
best performing policy each time. Furthermore, it allows us to 
optimally use experts that are best for specific workloads. In this 
way we can provide potentially large power/performance benefits 
in situations where state of the art policies do not consistently 
perform well. 

As part of future work, we plan to further extend this scheme to 
incorporate multiple low power states and dynamic 
voltage/frequency scaling as well. 
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