
Dynamic Power Management Using Machine Learning
Gaurav Dhiman

Department of Computer Science and Engineering
University of California, San Diego

gdhiman@cs.ucsd.edu

Tajana Simunic Rosing
Department of Computer Science and Engineering

University of California, San Diego

tajana@ucsd.edu

ABSTRACT
Dynamic power management (DPM) work proposed to date
places inactive components into low power states using a single
DPM policy. In contrast, we instead dynamically select among a
set of DPM policies with a machine learning algorithm. We
leverage the fact that different policies outperform each other
under different workloads and devices. Our algorithm adapts to
changes in workloads and guarantees quick convergence to the
best performing policy for each workload. We performed
experiments with a policy set representing state of the art DPM
policies on a hard disk drive and a WLAN card. Our results
show that our algorithm adapts really well with changing device
and workload characteristics and achieves an overall
performance comparable to the best performing policy at any
point of time.

Keywords
Dynamic Power Management, Machine Learning

1. INTRODUCTION
Power consumption is a key issue in the design of computing
systems today. While battery driven systems need to meet an
ever increasing demand for performance with a longer battery
life, high performance embedded systems contend with the issues
of heating. Dynamic power management (DPM), defined as the
selective shutdown of system components that are idle, has
proven to be an effective technique for reducing system power
dissipation. An effective DPM policy must maximize power
savings while keeping performance degradation within
acceptable limits. Design of such policies has been an active
research topic. A number of heuristic and stochastic policies have
been proposed in the past. All these policies tackle the DPM
problem by selecting an appropriate timeout value after which
the device can be put to sleep. This timeout can be fixed,
adaptive or randomized. While simpler DPM policies like
timeout and predictive policies do it heuristically with no
performance guarantees, more sophisticated stochastic policies
guarantee optimality for stationary workloads. Policies can
outperform each other under different workloads and devices.

In this paper we propose a novel DPM technique that optimally

exploits the existing DPM policies to achieve adaptability with
varying workloads. The premise is to take a set of DPM policies
and design a control algorithm that selects the best suited one for
a given idle period. The control algorithm design is critical here
since it bears the responsibility of effective evaluation and
selection of policies, which directly determines the overall
performance of the entire scheme. We employ a machine
learning algorithm [2] to perform this control activity. The
machine learning algorithm (referred to as “controller”) has a set
of DPM policies (referred to as “experts”) to choose from and
selects an expert which has the best chance to perform well for
the current idle period. The controller evaluates the performance
of the experts at the end of each idle period and based on that
decides which expert should be activated next. It takes into
account both power savings and performance penalty for this
calculation. The controller can be employed separately on
multiple devices in the system with each device having its own
set of experts. Our machine learning algorithm will guarantee
performance that is close to that of the best available expert for
each device.

We implemented the controller with a set of experts representing
state of the art DPM policies, for controlling power consumption
of a hard disk drive and WLAN card under different workloads.
We observed that under conditions where experts give mixed
performance, the machine learning algorithm adapts to select the
best performing expert at any point of time and delivers an
overall performance (in terms of power savings and performance
penalty) better than that of any single expert. Under conditions
where a single expert consistently performs better than the other,
the algorithm continuously selects it to achieve comparable
results. The scheme, however, involves the overhead of
performance evaluation of experts at the beginning of the active
period. According to our experimental results the overhead is
negligible (as low as 0.0001% of the total timeframe) when
compared to the flexibility and the benefits offered. Thus, the use
of machine learning algorithm with a carefully selected set of
experts presents a novel, adaptive and robust DPM mechanism
that can achieve good performance for a wide range of
applications.

2. PREVIOUS WORK
A lot of research effort has been devoted to explore different
DPM policies in the past. The existing DPM policies can be
broadly classified into heuristic and stochastic policies. While
the heuristic policies are simple to implement they provide no
guarantees on the power/performance trade-off they offer.
Stochastic policies are more complex to implement but they do
guarantee optimality and performance bounds. However, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD'06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011...$5.00

747

guarantee is only for stationary workloads and thus stochastic
policies cannot adapt optimally.

A simple heuristic policy is a timeout policy, wherein a device is
put to sleep if it is idle for more than a specified timeout period.
The timeout period might be fixed [14] or adaptive [3] [4]. For
instance, in [14], the device is put to sleep if it is idle for more
than Tbe (break-even time). Tbe is the minimum period for which
the device should be turned off so that it compensates for the
overhead associated with shutting down and turning on the
device and saves energy compared to the case if it remains on. A
drawback of such policies is that they waste energy while waiting
for the timeout to expire. Predictive policies predict the duration
of upcoming idle period as soon as the component goes idle. A
shutdown decision can be made if the prediction indicates a long
idle period. Srivastava et al. [5] proposed a policy, which uses a
regression equation based on the component’s previous active
and idle periods to predict the current idle period length. In [6],
Hwang and Wu used exponential average of predicted and actual
lengths of the previous idle period to predict the current idle
period length. In [7], Chung et al propose a scheme that uses an
Adaptive Learning Tree to store a sequence of idle periods and is
capable of managing multiple low power states. The algorithm
predicts idle periods using finite state machines and selects the
best suited low power state. Predictive policies, however,
perform well only when the requests have a high degree of
correlation. In summary, heuristic policies tend to be easy to
implement and in some cases are adaptive. However, they do not
offer any guarantee on optimality and by in large do not take
performance overhead into account.

Stochastic policies take into account both power consumption as
well as performance penalty. They model the request arrival and
device power state changes as stochastic processes. Minimizing
power consumption and delays then become stochastic
optimization problems. In [8], Paleologo et al assume the arrival
of requests as a stationary geometric distribution and model
power management as a discrete-time Markov decision process.
In [9], the work is extended to handle non-stationary request
arrival. Continuous Time Markov Decision Process models
arrival time as exponential distribution and runs the policy on
event occurrences rather than at discrete time intervals [10].
Other proposed models include semi markov decision process
model (SMDP) [11] and Time Indexed Markov Chain SMDP
model (TISMDP) [12]. SMDP models transitions to and from
low power state using uniform distributions, while the request
arrivals are exponential. TISMDP models request arrival as a
pareto distribution while the transition times of the service
provider between the power states is modeled as a uniform
distribution. The algorithm has low computation overhead and
performs well when implemented on real devices [13]. Stochastic
policies offer optimality for the power/performance tradeoff they
have been derived for, but they do not keep their optimality
properties as workloads become non-stationary, thus they have
limited adaptability.

The main contribution of our work is that instead of designing a
new power management policy, we take a set of well-known
policies, each of which performs well for a given set of
conditions and design a policy selection mechanism. The
primary motivation for this work comes from the observation that

no single policy fits perfectly all operating conditions. Our
proposed scheme uses machine learning algorithm that
guarantees to do nearly as well as the best performing policy on a
given workload. This approach gives us the power to adapt with
changing workloads and give an overall performance that is
better than any single policy can offer. Ren et al. propose a
similar setup in [16]. They design a hierarchical architecture,
where the bottom layer is a set of stationary optimal DPM
policies, precalculated offline from policy optimization in
Markov decision processes, while the top layer adaptively
switches among these stationary policies. In comparison, our
work is more generic in nature since the policy set can comprise
of any DPM policy rather than just a stationary stochastic policy.
Moreover, the machine learning algorithm provides theoretical
guarantee on overall performance converging to that of the best
performing policy in the policy set. The basic idea of policy
selection resembles that of hybrid branch predictors employed in
microprocessors [17] [18].

The rest of the paper is organized as follows. Section 3 explains
our system model. We then explain our experimental setup and
results in Section 4. Finally we summarize our findings in
Section 5.

Figure 1. System Model

3. SYSTEM MODEL
The system we are modeling, shown in Figure 1, consists of three
entities: controller (the machine learning algorithm), experts (the
DPM policies) and the device whose power is being managed.
The set of experts is collectively referred to as the “working set”.
An expert can be a fixed timeout policy, an exponential
predictive policy, a stochastic policy etc. When the device is
busy, all the experts are inactive and thus are referred to as
“dormant experts”. When an idle period occurs, the controller
activates the expert that has the highest probability to perform
well. This selected expert is referred to as the “operational
expert”. The operational expert takes control over the device and
makes the power management decisions for that idle period. For
instance, in the scenario depicted in Figure 1, Expert3 is the
operational expert and is managing power for the current idle
period. After the idle period finishes, the operational expert

 Expert1

Working Set

Controller Device

:Operational Expert

:Dormant Experts

Expert selection

Expert2 Expert3 ExpertN

748

returns to its default dormant state. This process is repeated for
all idle periods. Note that for any idle period only one expert can
be operational. This model can be independently applied to
multiple devices in the system. Each device will have its own
controller and working set, and the controller will select the most
suited expert as the operational expert for the device it is
controlling.

3.1 Machine Learning Algorithm for DPM
The most critical task in our methodology is the evaluation and
selection of experts. The controller employs a machine learning
algorithm for this purpose. The algorithm is an adaptation of
Freund and Schapire’s on-line allocation algorithm [2]. Figure 2
contains the pseudo-code for the algorithm we use for the
controller. The controller has N experts to choose from; we
number these using the integers i = 1,2…..,N. The experts can be
any DPM policy. The algorithm associates and maintains a
weight vector wt with the experts, where wt = <wt

1, wt
2,…wt

N>
consists of weight factors corresponding to each expert. The
value of weight factor reflects the performance of an expert, with
a higher value indicating a better performance. All of the weights
of the initial vector w1 sum to one, as seen in Figure 2. Note that
the weights need not sum to one after a few idle periods. In our
implementation, we assign equal weights to all the experts at
initialization.

To perform expert selection, the controller maintains a
probability vector rt, that is obtained by normalizing the weight
vector as shown below:

∑ =

=
N

i

t
i

t

w

t

1

wr

The probability vector, rt = <rt
1, rt

2,…rt
N> where 0≤ rt

i ≤1,
consists of probability factors associated with each expert for idle
period ‘t’. At any point of time the best performing expert has
the highest probability factor amongst all the experts. Thus the
controller simply selects the expert with the highest probability
factor as the operational expert for the next idle period. If the
probability factor of multiple experts is equal, then it randomly
selects one of them (step 1 in Figure 2). When the idle period
occurs, the operational expert takes control of the device and
takes the power management decision (step 2 in Figure 2).

Once the idle period finishes, the algorithm evaluates the
performance of all the experts (step 3 in Figure 2). Dormant
experts are evaluated on the basis of how they would have
performed had they been selected. The evaluation takes into
account both the energy savings and the performance delay. We
evaluate loss with respect to an ideal offline policy that has zero
delay and maximum possible energy savings. The loss incurred
by each expert is collectively referred to as the loss vector lt. The
value of loss factor (lt

i) for each expert is influenced by the
relative importance of energy savings and performance delay as
expressed by factor α (0≤α≤1). If lt

ie and lt
ip are the loss factors

corresponding to energy savings and performance delay for an
expert ‘i’, then the joint loss factor is given by:

lt
i = α lt

ie + (1- α) lt
ip

Algorithm Controller

 Parameters: []1,0∈β

Initial weight vector []Nw 1,01 ∈ ,

such that 1
1

1 =∑ =

N

i iw ,

 Do for t = 1,2,3…..

1. Choose expert with highest probability factor in
tr .

∑ =

=
N

i

t
i

t

w

t

1

wr

2. Idle period starts -> operational expert performs DPM

3. Idle period ends -> evaluate performance of experts

4. Set the new weights vector to be

t
ilt

i
t
i ww β=+1

Figure 2. Algorithm Controller

In our implementation we determine the energy loss lt

ie by
comparing the length of the idle period with the sleep time. If it
is less than Tbe (break-even time, defined in Section 2), then we
do not save energy and thus lt

ie = 1. For the values of sleep time
Tsleepi of an expert i greater than Tbe , and idle period, Tidle we use
the following equation:

lt
ie = 1 - Tsleepi/Tidle

Calculation of performance loss, lt
ip, is based on whether the

device sleeps or not. If the expert makes the device sleep, lt
ip = 1

since we incur performance delay upon wakeup, otherwise it is
set to 0. The loss calculation process is the step 3 in Figure 2.
The final step in the algorithm involves updating the weight
factors for each expert on the basis of the loss they have incurred:

t
ilt

i
t
i ww β=+1

Thus, the weight factors corresponding to experts with higher
loss factors get reduced while for the experts with lower loss
factors get increased by this simple multiplicative rule. This
gives higher probability of selecting the better performing
experts in the next idle period. The value of β can be set between
0 and 1. The criterion for selecting the appropriate value is
explained in [2]. For our experiments we used β = 0.75.

Once the weights are updated we are again ready to select the
operational expert for next idle period by calculating the new
probability vector rt using step 1 in Figure 2. Note that all
calculations related to selecting the operational expert are
performed during the active periods and hence no overhead is
incurred when the idle period actually occurs.

3.2 Performance Bound of Controller
From the previous sub-section we know that lt

i is the loss
incurred by each expert for the idle period t. Hence, the average
loss incurred by our scheme for a given idle period ‘t’ is:

749

∑ =

N

i

t
i

t
i lr

1
= rt . lt

The goal of this algorithm is to minimize its cumulative loss
relative to the loss suffered by the best expert. That is, the
controller attempts to minimize the net loss
 LG – mini Li

where,

 ∑
=

=
T

t
GL

1

 rt . lt

is the total loss incurred by controller on T trials, and

 ∑
=

=
T

t

t
ii lL

1

is individual expert i’s cumulative loss over T trials. It can be
shown [2] that net loss of the algorithm is bounded by

()NTO ln or that the average net loss per period decreases at

the rate ()TNO /)(ln . Thus, as T increases, the difference

decreases to zero. This guarantees that the performance of the
machine learning algorithm is close to that of the best performing
expert for any workload. This is in contrast to single policy based
solutions which either adapt heuristically to changing workloads
or guarantee optimality only for stationary workloads.

4. RESULTS
In this section we give the results we obtained with our controller
algorithm on different devices commonly present in a wide range
of embedded system with varying real workloads. We show how
the controller performs with an “expert” set representing state of
the art DPM policies. We use varying workloads and two devices
to show that our methodology does well under different
conditions. We also show that we can achieve reasonably good
results with a working set of simple fixed timeout policies. The
results indicate that our controller is capable of dynamically
adapting while delivering sizeable energy savings over a range of
power/performance tradeoff settings.

4.1 Experimental Setup
We performed our experiments using two devices: HP 2200A
hard disk drive (HDD) and Cisco Aironet 350 series Wireless
Adapter (WLAN) with workloads having different
characteristics. For HDD we used traces originally collected in
[15]. For WLAN we collected traces for different applications by
running tcpdump on an XScale platform running Linux 2.4.21.
The characteristics of the workloads selected for the experiments
are described in Table 1. This is a broad range of workload
characteristics. For example, HP-1 and HP-2 traces have very
different interarrival times in terms of both average value and
standard deviation (

RIt and
RItσ respectively).

We run traces described in Table 1 for both the HDD and WLAN
and then record the performance in terms of energy savings and
performance delays for both the individual experts as well as the
controller. Table 2 lists the power characteristics of both devices.
Pon and Psleep refer to the power consumed while the devices are
on and in the sleep state respectively. Ptr is the power consumed
in transitioning to and from the sleep state while Ttr is the time

Table 1 Workload characteristics

Device

Trace Name

Duration

(in sec)

RIt

RItσ

HP-1Trace 32311 20.5 29

HP-2 Trace 35375 5.9 8.4

HDD

 HP-3 Trace 29994 17.2 2

Web Surfing 4720 0.16 0.65

WLAN Telnet 2767 0.16 0.49

RIt : Average Request Inter-arrival Time (in sec)

taken for this transition. Tbe refers to the break even time. The
power/performance characteristics of the two devices are quite
different from each other. For instance WLAN has a Tbe that is
less than half of that for HDD. For our experiments we assumed
HDD to be idle after 1s of inactivity and WLAN after 100ms of
inactivity. Once an idle period is detected, the controller is
invoked to select the operational expert.

For our working set we selected fixed timeout, adaptive timeout
[3], exponential predictive [6] and TISMDP [12] policies,
representing different classes of state of the art DPM policies.
While fixed and adaptive timeout policies represent the timeout
class, exponential predictive policy represents the predictive
class and TISMDP represents the stochastic class of policies. The
fixed timeout policy simply waits for the specified timeout before
switching off the device, while the adaptive timeout policy
adjusts it by the given factor based on whether a correct
shutdown decision was made in the previous idle period or not.
The exponential predictive policy predicts the length of the
upcoming idle period (In+l) using the actual (in) and predicted (In)
lengths of the previous idle period. TISMDP is a stochastic
policy which provides randomized timeouts optimal for given
device and workload distributions. Further details are provided
in the following sections.

Table 2 HDD and WLAN power characteristics

Device Pon Psleep Ptr Ttr Tbe

HDD 1.6W 0.4W 2.4W 2.5s 1.6s

WLAN 0.9W 0 W* 3W 0.3s 0.7s

*WLAN card is turned off

4.2 Selection with state of the art policies

4.2.1 HDD
We performed experiments on the HDD traces shown in Table 1
with the working set described in Table 3. The fixed timeout
employs a timeout equal to seven times the break even time or
Tbe (see Section 2 for definition). The adaptive timeout policy
uses the same timeout with an adjustment factor of +0.1Tbe/-
0.1Tbe depending on whether the previous idle period resulted in

750

 Table 3 Working set characteristics

Expert Characteristics

Fixed Timeout Timeout = 7*Tbe

Adaptive Timeout [3] Initial timeout = 7*Tbe;

Adjustment = +0.1Tbe/-0.1Tbe

Exponential Predictive
[6]

In+l = a in + (1 – a).In,

With a = 0.5

TISMDP [12] Optimized for delay constraint of 3.4% on
HP-1

energy savings or not. Exponential predictive policy is
implemented as described in [6] while TISMDP policy is
optimized for 3.4% delay on the HP-1 trace. The main idea we
are trying to show is that given a set of experts, the Controller
always converges to select the best performing expert at that
time.

Table 4 shows the results achieved in terms of energy savings
and performance delay for the individual experts on the HDD
traces. An oracle policy, which knows the trace in advance and is
thus an ideal policy, has been added to provide a baseline
comparison among all the policies. The oracle is not included
into Controller’s working set. The %energy indicates the amount
of energy saved relative to the case where we do not have any
DPM policy while the %delay shows the amount of performance
delay caused relative to the total timeframe. The results
highlighted in black show where we get the best energy savings
while the results highlighted in grey address the case where we
get the least performance delay. The results for the oracle policy
indicate the maximum achievable energy savings for all traces.
We can notice that the predictive policy does really well in terms
of saving energy. For instance, on HP-1, it achieves around
66.6% energy savings, which is very close to what achieved by
the oracle. It does equally well for the other traces as well.

Table 4 Energy Saving/Performance Delay for experts

(grey shade indicates least performance delay and black indicates maximum energy savings)

HP1 Trace HP2 Trace HP3 Trace Policy

%delay %energy %delay %energy %delay %energy

Oracle 0 68.17 0 65.9 0 71.2

Timeout 4.2 49.9 4.4 46.9 3.3 55

Ad Timeout 7.7 66.3 8.7 64.7 6 67.7

TISMDP 3.4 44.8 2.26 36.7 1.8 42.3

Predictive 8 66.6 9.2 65.2 6.5 68

However, predictive policy is also the worst in terms of causing
performance delay. This is because it is extremely aggressive in
turning off the HDD and thus incurs a lot of overhead while
waking up. In contrast TISMDP causes the least performance
delay and consequently fetches the least energy savings. It can be
observed in Table 3 that TISMDP was optimized for 3.4% delay
on HP-1 trace and the results achieved confirm this. However,
the figures are not the same for HP-2 and HP-3 traces which
confirms that it is optimal for stationary workloads and does not

Table 5. Energy Savings/Performance Delay for Controller

HP-1 Trace HP-2 Trace HP-3 Trace Preference

%delay %energy %delay %energy %delay %energy

Low α 3.5 45 2.61 37.41 2.55 49.5

Medium α 6.13 60.64 5.86 54.2 4.36 61.02

High α 7.68 65.5 8.59 64.1 5.69 66.28

adapt with changing workloads. Fixed timeout performs
reasonably well on both the accounts while adaptive timeout is
quite close to predictive in terms of energy savings. So primarily
what these results highlight is that different classes of policies,
depending upon their characteristics, deliver different levels of
performance. However, depending upon the application
requirements or user preferences one might want the overall
performance to be more delay sensitive or more energy sensitive.
The problem with just having a single DPM policy is that it does
not offer the flexibility to control this behavior. The Controller
offers exactly this flexibility.

Table 5 shows results achieved on the same traces using the
controller with different energy savings/performance delay (e/p)
preference settings. As explained in Section 3.1, α value
indicates the desirable e/p setting. A high value indicates a
higher preference to energy savings, a low value indicates higher
preference to performance while a medium value indicates a
reasonable ratio of both. In our experiments we tested with
values of α ranging from 0.3 (minimum) to 0.7 (maximum). We
used values of α around 0.5 for the medium value. From the
results we can observe that as we increase the value of α, we get
higher energy savings and for lower values of α, we get low
performance delays. For instance, on HP-2 trace we get 64.1%
energy savings for high α, which is quite close to that achieved
predictive policy. In contrast for low α, we get performance delay
comparable to that of TISMDP. Remember that we limit the
values of α between 0.3 and 0.7. For even higher values (close to
1) we will achieve energy savings even closer to that of
predictive policy.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

Fixed Timeout Predictive TISMDP Ad Timeout

F
re

q
u

en
cy

 o
f

se
le

ct
io

n

Low α

Medium α

High α

Figure 3. Selection Frequency of experts for HP-3 trace

Figure 3 shows how the Controller achieves these results taking
example of HP-3 trace. It shows the frequency of selection of

751

 Table 6 Working set characteristics

Expert Characteristics

Fixed Timeout Timeout = Tbe

Adaptive Timeout [3] Initial timeout = Tbe;

Adjustment = +0.1Tbe/-0.2Tbe

Exponential Predictive
[6]

In+l = a in + (1 – a).In,

with a = 0.5

TISMDP [12] Optimized for delay constraint of 8.5% on
www trace

experts according to the selected value of α. We can observe that
for higher value of α, predictive expert is selected most often
since it is aggressive in turning off the HDD and thus achieves
better energy savings. Likewise, for lower values of α, TISMDP
expert is selected with higher frequency since it is conservative
in turning off the HDD and thus offers lower performance delays.
For the medium value of α, we can see that it selects amongst all
the policies to deliver a performance which offers a reasonable
e/p tradeoff. Hence, we can see that α factor offers us a simple
yet powerful control knob to obtain the desired e/p tradeoff.

4.2.2 WLAN
We performed similar experiments on WLAN to show that our
scheme performs well regardless of a device type or workload
characteristics. Our working set had experts with characteristics
listed in Table 6. We ran our algorithm on the web surfing, telnet
and a combined workload, which had the other two workloads
concatenated (see workload characteristics in Table 1).
Combined workload allows us to analyze how the Controller
adjusts with changing workload characteristics.

Table 7 Energy Saving/Performance Delay for experts

(grey shade indicates least performance delay and black indicates maximum energy savings)

www Trace Telnet Trace Combined Policy

%delay %energy %delay %energy %delay %energy

Oracle 0 41.64 0 20.44 0 29.82

Timeout 10.13 23.47 9.69 4.82 9.98 14.64

Ad Timeout 11.63 28.72 10.73 4.74 11.46 17.56

TISMDP 8.5 19.04 7.41 3.37 7.6 10.02

Predictive 13.6 28.65 7.95 -9.24 11.51 12.9

Table 7 shows the results achieved in terms of energy savings
and performance delay for the individual experts on the WLAN
traces. As in Table 4, the results in black highlight the case
where we get the best energy savings while the results in grey
highlight the case where we get the least performance delay.
Again, the results for oracle policy indicate the maximum
achievable energy savings for all the traces. The oracle policy is
not a part of the working set; it just serves as a baseline. We can
observe that for WLAN, predictive policy is no longer the best
performing policy in terms of energy savings. In fact for the
telnet trace it is so bad that we actually incur negative power
savings (-9.24%). That means we would have been better off
without using any DPM policy. TISMDP does really well in
terms of keeping performance delay low across all the workloads.

Table 8. Energy Savings/Performance Delay for Controller

www Trace Telnet Trace Combined Preference

%delay %energy %delay %energy %delay %energy

Low α 6.48 15.77 4.77 1.57 6.17 9.23

Medium α 6.78 16.38 5.35 2.69 6.28 10

High α 10.38 26.58 5.67 3.33 8.9 16.1

Adaptive timeout expert does really well in terms of energy
savings and so does the fixed timeout expert. If we compare the
amount of energy savings for HDD (see Table 4) and WLAN (see
Table 7), we can observe that in former case the best results are
quite close to the energy savings of the oracle policy. But for
WLAN the difference is bigger. In fact for the telnet trace it is
significantly more. This is primarily due to difference in nature
of activity on a HDD and WLAN for the traces used. For HDD
we get long idle periods during which a lot of power can be
saved by turning it off. In contrast on WLAN, for the traces we
used, the level of activity is quite high. This effectively translates
into fewer opportunities to save power and higher probability of
potential mispredictions. Since predictive policy is extremely
aggressive in its DPM decisions, it suffers the most.

Table 8 shows results achieved on the same traces using the
controller with different values of α. From the results we can
observe that as we increase the value of α, we get higher energy
savings and for lower values of α, we get low performance
delays. For instance, on www trace we get 26.58% energy
savings for high α, which is quite close to that achieved by
adaptive timeout. In contrast for low α, we get performance delay
comparable to that of TISMDP. In fact in case of both the traces,
it is even lower than that of TISMDP. This is primarily due to
the fact that none of the experts are outstanding in terms of
reducing the delay (like TISMDP was for HDD). So at various
points of time, different experts perform well, and our controller
adapts to select each expert, hence delivering an excellent overall
performance.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

Fixed Timeout Predictive TISMDP Ad Timeout

F
re

q
ue

nc
y

o
f S

el
ec

tio
n

Low α
Medium α
High α

Figure 4. Selection Frequency of experts for combined trace

Figure 4 shows the frequency of selection of experts according to
the selected value of α for the combined trace. It is interesting to

752

observe the selection statistics for a low value of α and compare
it with the results achieved for HDD. For HDD (see Figure 3),
the results were dominated by TISMDP. For WLAN (see Figure
4) different experts perform well at different instances so the
Controller continually selects the currently best performing
expert.

4.3 Selection with Fixed Timeout Policies
The goal of DPM policies is to determine if a device should go to
sleep on a given idle period and how long it should wait before
doing so. Thus, inherently all DPM policies are a variant of a
timeout policy. The manner in which this timeout value is
determined varies from policy to policy. While the adaptive
timeout policy heuristically adjusts the value of timeout based on
previous performance, TISMDP employs a randomized timeout.
For predictive policy the timeout is zero or the entire idle period
depending upon a positive or a negative prediction of the length
of the idle period. Based on these observations we next test our
controller with a working set comprising of multiple simple fixed
timeout policies with different timeout values. Such policy set
should perform reasonably well compared to the state of the art
policies used in the previous sections. Keeping this in mind, we
performed experiments on the HDD with a working set of
experts that had fixed timeouts ranging from Tbe to 180s. A
timeout of Tbe guarantees that the energy consumption is not be
greater than a factor of 2 when compared to an ideal offline
policy [14]. Timeout of 180s is the minimum we can set for a
HDD on Windows XP.

Figure 5 illustrates the performance of these individual timeout
policies against the performance of the controller corresponding
to the HP-1 trace. The x-axis represents the performance delay as
a percentage of the total time frame, while y-axis gives the
percentage of energy savings compared to a case where no DPM
policy is present (always on case). The grey line in Figure 5
shows (e/p) points for different fixed timeout experts. The lowest
point towards the left in the graph (e/p = 20%/0.2%) corresponds
to the default Windows XP policy with a timeout of 180s, while
the highest point towards the right (e/p = 65%/7%) corresponds
to timeout of Tbe[14]. By varying the fixed timeouts we obtain
significant changes in the e/p ratio. The black line in Figure 3
shows e/p points for the controller algorithm with three different
values for α. For high values of α, we get energy savings as high
as 65% (around 45% more than the default Windows XP policy)
while for a low value of α it gives an e/p ratio comparable to the
policies with large timeouts (around 0.5%). Cleary, α factor
offers us a simple and powerful control knob to obtain a desired
e/p tradeoff.

We now compare results for the set of fixed timeout policies
shown in Figure 5 with the results obtained in section 4.2.1
employing a working set representing more sophisticated policies
(see Tables 4 and 5) for HP-1 trace. We can observe that in
Figure 5 we get a broader range of e/p points ranging from
20%/0.2% (timeout = 180s) to 65%/7% (timeout = Tbe)
compared to 44.8%/3.4% (TISMDP) to 66.6%/8% (predictive) in
Table 4. The range is smaller in the latter case because of the
smaller size of the working set and the characteristics of the
experts chosen (see Table 3). Correspondingly we can notice that
the e/p points for Controller also closely follow the range offered

15.00%

25.00%

35.00%

45.00%

55.00%

65.00%

75.00%

0.00% 1.00% 2.00% 3.00% 4.00% 5.00% 6.00% 7.00% 8.00%

% delay

%
en

e
rg

y
sa

vi
ng

s

Fixed Timeout

Controller

Increasing 'α'

Higher energy savings

Lower delay

Figure 5. Energy/Performance delay curve for HP-1 trace

by their respective working sets (see Figure 5 and Table 5). This
indicates that the performance of the Controller depends directly
on the performance of the experts comprising the working set.
For instance in Figure 5, the lowest performance delay offered by
the working set is around 0.2% and our Controller closely
achieves that for low α. For section 4.2.1, the lowest delay
offered by the working set was 3.4% and again our Controller
closely matched that for low α (see Table 5). This indicates that
expert selection is extremely critical and we must include experts
with characteristics matching our e/p requirements in the
working set. For instance it is a good idea to have both
conservative and aggressive experts in the working set, since that
gives Controller a broader range of e/p points to select from
according to the current user preference (α). We can further
observe that e/p points achieved by the Controller for high α in
both Figure 5 and Table 5 are quite similar. Hence the use of
controller with a working set of fixed timeout policies (with a
wide range of timeouts) offers a simple adaptive scheme that
delivers good results with reasonable performance bounds.

4.4 Advantages and Disadvantages
Controller provides a flexible scheme where using a simple
control knob (α) we indicate our desired e/p setting, while the
Controller takes care of selecting the best performing expert at
any point in time. The best performing experts vary with
changing workload and device characteristics (see Table 4 and
Table 7). The Controller is capable of recognizing these changes
in workload and adapts accordingly to select the new best
performing expert. We have shown using experiments on HDD
and WLAN how Controller adapts to different devices and
workload characteristics.

Controller, in the best case, performs as well as the best
performing expert in the working set. Consequently if the expert
selection is poor, the Controller cannot improve beyond the best
available expert. For instance in Table 5, for a low α, we achieve
low performance delay since TISMDP expert performs well in
terms of delay and is thus selected the most often. However, if
we remove TISMDP from the working set, then the results for
performance delay would increase irrespective of the value of α.

753

Thus expert selection is really critical to achieving good overall
performance. A big benefit of our work is that now designers can
focus on optimizing policies for specific workloads. Our
controller is then able to detect whenever that workload occurs
and employ the appropriate expert to perform DPM, hence
achieving the best possible performance.

Another concern is the controller overhead in terms of both
energy and time to perform the evaluation of experts. No
overhead is caused by our mechanism during the idle time, since
the operational expert is selected in the active periods (see
section 3.1). In our experiments we measured the average
controller overhead at 0.0001% of the total timeframe for HDD
and 0.0006% for WLAN. The overhead is higher for WLAN
since the number of idle periods is greater and thus the controller
is invoked more often. In either case the overhead is negligible
relative to the overall timeframe. Some optimizations can be
performed to further reduce this overhead. For instance, Figures
3 and 4 show that some experts get selected a lot more frequently
than others. Hence, if an expert gets selected consecutively for
more than some preset number of times, then we can assume it
will be selected in the next idle periods as well, and the
evaluation of experts can be thus suspended for some time.

5. CONCLUSION AND FUTURE WORK
DPM problem is one of selecting an appropriate idle period and
the timeout value before the device can be shut down. DPM
policies use different mechanisms to determine the value of
timeout. However, with changing workloads, it is difficult to
devise a single policy that can perform consistently well. In this
paper we have proposed a novel DPM technique that takes a set
of policies which perform well under different workloads and
dynamically selects which policy should be active at run time
using machine learning. Our algorithm guarantees us that its
performance at any point of time is closest to that of the best
performing policy.

We showed through our experiments using a set of various
policies on HDD and WLAN that different policies perform
better for different workloads. Our algorithm adapts to select the
best performing policy each time. Furthermore, it allows us to
optimally use experts that are best for specific workloads. In this
way we can provide potentially large power/performance benefits
in situations where state of the art policies do not consistently
perform well.

As part of future work, we plan to further extend this scheme to
incorporate multiple low power states and dynamic
voltage/frequency scaling as well.

6. REFERENCES
[1] L. Benini and G. De Micheli, Dynamic Power Management:Design

Techniques and CAD Tools, Kluwer Academic Publishers, 1997.

[2] Yoav Freund and Robert E. Schapire. A decision-theoretic
generalization of on-line learning and an application to boosting.

Journal of Computer and System Sciences, 55(1):119–139, August
1997.

[3] F. Douglis, P. Krishnan, and B. Bershad. Adaptive Disk Spin-Down
Policies for Mobile Computers. In Computing Systems, volume 8,
pages 381–413, 1995.

[4] R. Golding, P. Bosch, and J. Wilkes. Idleness is not Sloth. In USENIX
Winter Conference, pages 201–212, 1995.

[5] M. B. Srivastava, A. P. Chandrakasan, and R.W. Brodersen. Predictive
System Shutdown and Other Architecture Techniques for Energy
Efficient Programmable Computation. IEEE Transactions on VLSI
Systems, 4(1):42–55, March 1996.

[6] C.-H. Hwang and A. C. Wu. A Predictive System Shutdown Method
for Energy Saving of Event-Driven Computation. In International
Conference on Computer-Aided Design, pages 28–32, 1997.

[7] E.-Y. Chung, L. Benini, and G. D. Micheli. Dynamic power
management using adaptive learning tree. In International Conference
on Computer-Aided Design, pages 274–279, 1999.

[8] G. A. Paleologo, L. Benini, A. Bogliolo, and G. D. Micheli. Policy
Optimization for Dynamic Power Management. In Design Automation
Conference, pages 182–187, 1998.

[9] E.-Y. Chung, L. Benini, A. Bogliolo, and G. D. Micheli. Dynamic
Power Management for Non-Stationary Service Requests. In Design
Automation and Test in Europe, pages 77–81, 1999.

[10] Q. Qiu and M. Pedram. Dynamic Power Management Based on
Continuous-Time Markov Decision Processes. In Design Automation
Conference, pages 555–561, 1999.

[11] T. Simunic, L. Benini, and G. D. Micheli. Event-Driven Power
Management of Portable Systems. In International Symposium on
System Synthesis, pages 18–23, 1999.

[12] T. Simunic, L. Benini, and G. D. Micheli. Dynamic Power
Management of Laptop Hard Disk. In Design Automation and Test in
Europe, 2000.

[13] Yung-Hsiang Lu, Eui-Young Chung, Tajana Simunic, Luca Benini,
and Giovanni De Micheli. Quantitative Comparison of Power
Management Algorithms. In Design Automation and Test in Europe,
pages 20–26, 2000.

[14] A. Karlin, M. Manesse, L. McGeoch and S. Owicki. Competitive
Randomized Algorithms for Nonuniform Problems. In Algorithmica,
pp. 542-571, 1994.

[15] C. Ruemmler and J. Wilkes. UNIX disk access patterns. In
Proceedings of the Winter 1993 USENIX Conference, 1993.

[16] Z.Ren, Krogh, B.H and Marculescu, R.. Hierarchical adaptive
dynamic power management. In Design Automation and Test in
Europe, pages 136-141, 2004.

[17] S. McFarling. Combining Branch Predictors. WRL Technical Note
TN-36, Digital Equipment Corporation, June 1993.

[18] P,-Y. Chang, E. Hao, and Y.N. Patt. Alternative Implementations of
Hybrid Branch Predictors. 28th ACM/IEEE International Symposium
on Microarchitecture, Nov. 1995.

754

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

