
On the Interplay of Dynamic Voltage Scaling and Dynamic
Power Management in Real-Time Embedded Applications∗

Vinay Devadas, Hakan Aydin
Dept. of Computer Science, George Mason University

Fairfax, VA, USA
{vdevadas,aydin}@cs.gmu.edu

ABSTRACT
Dynamic Voltage Scaling (DVS) and Dynamic Power Man-
agement (DPM) are two popular techniques commonly em-
ployed to save energy in real-time embedded systems. DVS
policies aim at reducing the CPU energy, while DPM-based
solutions involve putting the system components (e.g. mem-
ory or I/O devices) to low-power/sleep states at run-time,
when sufficiently long idle intervals can be predicted. De-
spite numerous research papers that tackled the energy min-
imization problem using DVS or DPM separately, the inter-
actions of these two popular techniques are not yet well un-
derstood. In this paper, we undertake an exact analysis of
the problem for a real-time embedded application running on
a DVS-enabled CPU and using potentially multiple devices.
Specifically, by adopting a generalized system-level energy
model and taking into account the non-trivial time/energy
overheads involved in device transitions, we characterize the
variations in different components of the system energy as a
function of the CPU processing speed. Then, we propose a
provably optimal algorithm to determine the optimal CPU
speed as well as device state transition decisions to minimize
the system-level energy. Our algorithm runs in O(m log m)
time, where m is the number of devices used by the ap-
plication. The evaluations with realistic system parameters
indicate that our solution, which combines DVS and DPM
optimally, can lead to substantial energy savings when com-
pared to previous solutions.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—Scheduling ;
D.4.7 [Operating Systems]: Organization and Design—Real
time systems and embedded systems

General Terms
Algorithms, Performance

Keywords
Real-Time Systems, Energy Management, Dynamic Voltage Scal-

ing, Dynamic Power Management

∗This work is supported by US National Science Foundation
grants CNS-072047 and CNS-546244 (CAREER Award)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-468-3/08/10 ...$5.00.

1. INTRODUCTION
Many embedded devices are usually battery-operated and

hence, have limited energy supply. Due to the growing de-
mand for smaller devices with longer battery life, energy
management has become one of the major goals in embed-
ded systems research. Over the past decade, the research
community has made significant progress in the area of low-
power system design [7, 10]. On the industry side, the Ad-
vanced Configuration and Power Interface (ACPI) standard,
which was introduced in 1997, has moved power management
to the operating system level by providing system calls for
predictive shutdown of system components. Many applica-
tions running on power-limited systems (such as embedded
controllers) are subject to timing constraints. As a result,
the real-time and energy-aware operation is a highly desir-
able and sometimes critical feature of an embedded system.

Dynamic Voltage Scaling (DVS) [19] is a popular and
widely-used technique for power management in real-time
embedded systems. With DVS, the processor can operate
at different frequency (speed) levels. Since the CPU power
consumption increases in convex fashion with the frequency,
DVS helps to significantly reduce the CPU dynamic energy
consumption. In real-time systems, preserving the tempo-
ral correctness (the system feasibility) is of paramount im-
portance. Hence, in DVS settings, utmost care must be
exercised to avoid deadline misses. The problem of mini-
mizing the energy consumption while satisfying the timing
constraints is known as the Real-Time DVS (RT-DVS) prob-
lem. The RT-DVS problem has been extensively studied in
recent past for various task/system models [2, 11, 12, 14].

Dynamic Power Management (DPM) is another commonly
used energy management technique, aiming at reducing off-
chip device energy consumption. Typical off-chip devices
have an active state in which they process requests and at
least one low-power sleep state. DPM deals with transi-
tioning devices to low-power states when not in use so as
to reduce the device energy consumption. Memory modules
and I/O devices which consume significant energy have been
the primary targets of DPM. However, non-trivial time and
energy overheads are associated with each device state tran-
sition. As a consequence, transitioning devices to low-power
states is energy-efficient only when the device idle interval is
guaranteed to be greater than a certain threshold (typically
called the device break-even time).

One of the primary difficulties associated with the use of
DPM is to decide when to switch a device to a low-power
state. DPM techniques can be classified as stochastic, pre-
dictive and timeout-based [3]. In real-time systems, the pre-

99

dictive DPM techniques are commonly used. The predictive
techniques involve making accurate predictions about the
next usage time of idle devices. As such, predicting the next
device usage time is of critical importance in real-time sys-
tems. Under-estimations may lead to inefficient energy man-
agement (as devices would not be put to low-power states)
and over-predictions may lead to potential deadline misses
(due to the non-trivial transition delays). Several offline and
online solutions have been proposed for real-time DPM un-
der different task/device settings [5, 6, 18, 16, 17].

While DVS and DPM are popular techniques targeting
energy minimization in CPU and external devices respec-
tively, a comprehensive system-level energy management pol-
icy is likely to use both DVS and DPM. However, integrating
DVS and DPM in a single framework poses several chal-
lenges. With DVS, low processor frequencies lead to low
CPU dynamic energy consumption figures. However, this
also results in elongated task execution times and shortened
device idle intervals. This not only forces devices to remain
in active state for longer periods but also limits the possibil-
ity of transitioning devices to sleep states (as shortened idle
intervals will tend to be smaller than the device break-even
times). On the other hand, running the processor at higher
frequencies reduces the device energy and creates more op-
portunities for transitioning devices to sleep states, at the
cost of increased CPU energy and transition energy. Thus,
there is an intriguing trade-off spectrum covering the bene-
fit/cost spaces of DVS and DPM techniques.

Recently, there have been a few research efforts address-
ing system-wide energy consumption issues for real-time em-
bedded systems. In [8], the concept of critical speed (or,
energy-efficient speed) was introduced. This stems from the
observation that lowering the processor speed below a cer-
tain threshold can have negative effects on the system-wide
energy consumption. The energy-efficient speed is calculated
by considering both the device energy and CPU energy con-
sumed during task executions. Each task can potentially
have a unique energy-efficient speed, depending on the de-
vices it uses during its execution. In [8], the authors pro-
vide a single policy to manage both processor leakage energy
and device energy. In [24], the authors propose a dynamic
task scheduling algorithm using the concept of critical speed
which minimizes the system-wide energy consumption.

In [1], the authors consider a generalized power model
taking into account several factors such as on-chip/off-chip
workload ratios, effective switching capacitance and frequency-
dependent and frequency-independent power components.
For this generalized power model, the authors show how to
derive the task-level energy-efficient speeds and propose an
O(n3) algorithm to optimally solve the system-wide energy
minimization problem for periodic hard real-time tasks. In
[22], the authors address the energy minimization problem
assuming a DVS processor with limited number of speed val-
ues. Recently, other research groups addressed the CPU and
memory energy minimization problems [15, 23].

While the concept of critical speed helps mitigate the
negative impacts of DVS on the system-wide energy, one
major drawback of most system-level real-time energy man-
agement research efforts is that they either assume negligi-
ble device transition overheads or provide no DPM policies.
In fact, most of these studies often make the assumption
that the device will be transitioned to the low-power state
whenever it is not in use. However, this is not the case

due to the non-trivial time/energy device transition over-
heads. A recent research effort that combines both DVS and
DPM in the same framework is given in [4], where the au-
thors propose a practical system-level energy management
heuristic called SYS-EDF for periodic real-time tasks and
discrete model DVS capable processor. SYS-EDF is a combi-
nation of a DPM policy Conservative Energy-EfficientDevice
Scheduling (CEEDS) and a DVS scheme based on energy-
efficientscaling.

Despite all these efforts, an extremely important but
mostly unexplored issue is the analysis of exact inter-
play of DVS and DPM in real-time embedded sys-
tems. Obviously, a straightforward integration of a DVS
scheme using critical speed and a DPM heuristic (such as
SYS-EDF) does not exploit this interplay fully. We contend
that it is imperative to formally characterize this interplay to
devise optimal energy management systems in the presence
of both DVS and DPM features.

Contributions of this research effort:

• In this paper, we address the problem of exact charac-
terization of system-level energy consumption on a real-
time embedded environment with both DVS and DPM
features. This characterization allows us to perform a
formal analysis of the interplay between DVS and DPM
for a real-time application that uses several devices.
By using the results from this analysis, we propose a
O(m log m)-time algorithm (where m is the number of
devices used by the application) to determine the opti-
mal processor speed and device transitioning decisions
to minimize the system-wide energy consumption. To
the best of our knowledge, this is the first research ef-
fort to not only investigate the exact interplay between
DVS and DPM, but to also provide a provably optimal
solution to the system-level energy management prob-
lem by taking into account DVS/DPM-related issues
and device transition overheads.

• We show that our optimal scheme, designed by consid-
ering the DVS/DPM interplay and device transition
overheads, yields significant energy gains when com-
pared to the existing sub-optimal approaches. Our ex-
perimental results are obtained using real device and
CPU specifications, as well as real energy consumption
figures.

The remaining of the paper is organized as follows. In
Section 2, we give the system model and assumptions. In
Section 3, we illustrate the non-trivial challenges in the anal-
ysis of the interplay between DVS and DPM, by focusing on
the simple case where the real-time application uses only one
device. In Section 4, we solve the general case of the problem
for multiple devices. We conclude in Section 5.

2. SYSTEM MODEL AND ASSUMPTIONS

2.1 Application Model
We consider a real-time embedded application that is

invoked periodically with a period of d, at time instants
k ·d (k ∈ Z). At each invocation, the application must com-
plete its execution within the time interval [k · d, (k + 1) · d],
which is referred to as a frame. This embedded application
model is also known as a frame-based system in the literature
[13, 20].

100

The system is equipped with a DVS-enabled CPU where
the processing frequency f can be adjusted up to a maximum
frequency fmax. We normalize the frequency values with
respect to fmax. The worst-case execution time (WCET) of
the application under maximum frequency fmax is denoted
by c. We assume that the application’s execution time scales
linearly with processor frequency; that is, at frequency f the
WCET of the application is WCET (f) = c

f
.

The base utilization of the real-time application is de-
noted by U = c

d
≤ 1. The slack refers to the unused CPU

time between the completion time of the application and
the beginning of the next frame, at each invocation. For-
mally, the slack of the application at frequency f is given by
δ(f) = d − c

f
.

2.2 Device Model
The real-time embedded application is assumed to use a

set of m devices denoted by D = {D1 . . . Dm} during its exe-
cution. Each device is assumed to have (at least) two states:
an active state and a sleep (low-power) state. Following [5,
6, 18, 16, 17] we assume inter-task device scheduling. Un-
der inter-task device scheduling approach, all devices needed
by the real-time application must be in active state at the
beginning of each frame and they should remain in active
state until the application completes its execution in that
frame. A device can be put to sleep state when the appli-
cation completes its execution (i.e. during the slack period).
These assumptions are realistic given that the device state
transitions typically involve non-trivial costs and it is fairly
difficult to predict when a running application will re-request
a specific device during execution [5, 6, 18, 16, 17].

The following parameters are associated with each device
Di:

• P i
a: The device power consumption in active state.

• P i
s : The device power consumption in sleep state.

• T i
sd and T i

wu: The device state transition times (from
active to sleep and from sleep to active, respectively).

• Ei
sd and Ei

wu: The corresponding device transition en-
ergy overheads.

Given that devices are associated with non-zero transition
costs, the device break-even time Bi denotes the minimum
length of idle period which justifies a device transition from
active to sleep state. Let T i

sw = T i
sd + T i

wu. We denote by
Bi

actual the minimum idle interval length during which keep-
ing Di in active state consumes the same amount of energy
as transitioning Di from active to sleep and back from sleep

to active. Thus, Bi
actual =

Ei
sd+Ei

wu−T i
sw .P i

s

P i
a−P i

s
. In other words,

Bi
actual characterizes the minimum idle interval length for

energy-efficient device state transitions. Further, the device
idle interval should be long enough to allow at least two de-
vice transitions: one from active to sleep and another from
sleep to active, implying that device break-even times cannot
be shorter than T i

sw. Hence, the device break-even time Bi

is given as [4, 5]:

Bi = max(Bi
actual, T

i
sw)

= max(
Ei

sd + Ei
wu − T i

sw · P i
s

P i
a − P i

s

, T i
sd + T i

wu)

Observe that the devices become idle at the end of task exe-
cution and remain so until the beginning of the next frame.
In each frame, a device Di can be transitioned to sleep state
at the end of task execution, only if δ(f) ≥ Bi, where f is
the processor frequency at which the application is executed.
Further, if the slack at the maximum frequency δ(fmax) is
smaller than Bi, then Di will be forced to remain in active
state throughout the frame (since lower frequencies can only
reduce its slack time). Since this work explores the combined
effects of DPM and DVS, we will assume that δ(fmax) > Bi,
for all devices1.

2.3 Energy Model
Since the embedded application is invoked in periodic

fashion, we concentrate on the energy consumption over a
single frame. The system energy E can be divided into static
energy (Es) and dynamic energy (E(f)):

E = Es + E(f)

The static energy, Es, is due to the static power which is
required for purposes such as keeping the system clock run-
ning, maintaining the basic circuits and keeping the devices
in sleep states. Since the static power can only be eliminated
by completely turning off the entire system, we assume that
the static energy is not manageable. As such, we focus on
minimizing the dynamic energy consumption E(f) which is
a function of the processor frequency and includes the sys-
tem components such as CPU, the main memory and I/O
devices.

At the end of task execution in each frame, depending on
the system slack, the devices can either be transitioned to
sleep state or kept in active state. Let DA denote the set of
devices kept in active state throughout the frame. Devices
in D−DA are transitioned to sleep state. It is assumed that
each device Dj ∈ (D − DA) is re-activated T j

wu time units
before the start of the next frame, to allow timely execution.
Also, let Pind =

P
i|Di∈D

P i
a denote the total active power of

the application’s devices. Given this notation, the dynamic
system energy consumption at frequency f over the duration
of a frame is given as:

E(f) = (af3+Pind)
c

f
+

X
i|Di∈DA

P i
a·δ(f)+

X
i|Di∈(D−DA)

(Ei
sd+Ei

wu)

The processor power consumption is modeled as a convex
function af3, where ’a’ is the switching capacitance. At fre-
quency f , the application executes for c

f
units, during which

the processor consumes af3. c
f

energy. Pind
c
f

represents the
total device energy consumption during the execution of the
application.

P
i|Di∈DA

P i
a ·δ(f) represents the total energy con-

sumed over the slack period by devices remaining in active
states.

P
i|Di∈D−DA

(Ei
sd + Ei

wu) represents the transition en-

ergy overhead for devices that are transitioned to sleep state
during the slack period. We note that this component of the
system energy representing device transition overheads was
not considered in previous system-level energy management
papers [1, 8, 24].

1If this condition is not satisfied for a given device Di, then Di

cannot be managed and its energy consumption can be considered
as part of the static energy. The framework of the paper is still
applicable to the remaining devices.

101

3. SINGLE-DEVICE MODEL
In this section, we consider a simplified model where the

real-time application uses a single device. Using this sim-
ple model, we illustrate several non-trivial observations that
lead us to the characterization of the exact interplay be-
tween DVS and DPM. We also provide an O(1) algorithm
to calculate the speed that optimizes system-wide energy
while taking into account the DVS/DPM interplay and de-
vice transition overheads. In Section 4, we will extend these
results to the general case with multiple devices.

B0

���������
���������
���������
���������

���������
���������
���������
���������

d−Bc0
0 d

Figure 1: The break-even time and the impact of
DVS

The exact characterization of the trade-offs between DVS
and DPM is critical for system-wide energy minimization.
Consider a real-time application with WCET of c units and
frame length of d units, using a device D0 with break-even
time B0. By adjusting the processor frequency, the com-
pletion time of the task can be anywhere from c to d (Fig-
ure 1). This frequency assignment has obviously serious con-
sequences for the applicability of DPM, and hence for overall
system energy. Let us denote the frequency which produces
a slack of exactly B0 units by f∗ = c

d−B0
. Note that to tran-

sition D0, the processor has to run the real-time frame-based
application at a frequency no less than f∗.

Energy

Region 1 Region 2

f=1f=f*f=U
Frequency

E

E

P d

U c2

a

f=U f=f* f=1

Region 1 Region 2

Energy

c

Frequency

f
f

E()

E()f

(b)(a)

wuP c+E +Esda

f

cpu

device

E system

opt2

opt1

opt1
opt2

Figure 2: System Energy Consumption as a function
of Processor Frequency

Figure 2(a) shows the variations in device energy con-
sumption (Edevice) and CPU energy consumption (Ecpu) as
a function of the processor frequency.2Note that Edevice also

2For the purpose of presentation, Figure 2 is drawn assuming
device break-even time B = Bactual. The formal analysis does
not make such an assumption. Further, the device sleep power
consumption P i

s can only be eliminated by completely turning off
the device. Consequently, we assume that the transition costs
associated with completely turning off devices are significant and
devices cannot be completely turned off. As a result, a device
Di will always consume power at the rate of at least P i

s . In this
and upcoming figures/discussions, without loss of generality, we
assume P i

s = 0, P i
a = P i

a −P i
s , Ei

sd = Ei
sd − (P i

s ·T i
sd) and Ei

wu =

includes device transition costs, when applicable. To start
with, Ecpu increases with increasing frequency in a quadratic
manner. However, Edevice follows different patterns in two
different regions. In Region 1 where U ≤ f < f∗, the device
D0 cannot be transitioned (because the slack is smaller than
B0) and it is forced to remain in active state throughout the
frame. As such, Edevice = Pa d is constant in Region 1. In
Region 2 where f∗ ≤ f ≤ fmax, the device can be tran-
sitioned to sleep state. Further, as the frequency increases
beyond f∗ in Region 2, the slack and hence, the length of the
device sleep interval, increases. Thus, in Region 2, Edevice

decreases with increasing frequency.
Figure 2(b) shows the variation of the system energy con-

sumption, Esystem = Edevice +Ecpu, as a function of the fre-
quency. We can see that Esystem exhibits varying trends in
Regions 1 and 2. While Esystem increases in Region 1 with
increasing frequency, the local minimal of Esystem in Region
2 can lie anywhere in the range [f∗, fmax].

It is worthwhile to compare these trends to the results of
prior energy management studies. Region 1 is the spectrum
where the dynamic CPU power dominates. In fact, this was
precisely the assumption of the early RT-DVS papers [2,
11], which effectively ignored Region 2. Consequently, in
Region 1, the minimum frequency that guarantees system
feasibility (f = U) is optimal. Region 2 is somewhat similar
to the spectrum assumed by the recent system-level energy
management papers [1, 8, 24], which considered the CPU
and device energy figures at the same time. But, these pa-
pers neither accounted for energy transition overheads nor
addressed the question of whether DPM is justifiable at run-
time, given the length of idle intervals. As a result, these ap-
proaches ignored Region 1. We can see that one really needs
to consider both regions to analyze (and get full benefits of)
DVS and DPM, simultaneously.

The local optimal frequencies that minimizes Esystem in
Regions 1 and 2 are well defined. However, there is no a
priori reason why global optimal frequency that minimizes
Esystem should lie in Region 1 or Region 2. Depending on
the relative power consumption rates of the device and CPU,
the execution time of the application and the relative posi-
tions of U and f∗, the global optimal may be in either Region
1 or Region 2. In fact, fopt2, which optimizes Ecpu + Edevice

and transitions the device to sleep state (by incurring the
transition energy) may possibly consume more system-wide
energy compared to the frequency fopt1, which minimizes
Ecpu and avoids device transition costs, without paying spe-
cial attention to Edevice. As such, exact evaluation and com-
parison of the local optimal values in Regions 1 and 2 is nec-
essary in order to determine the global optimal.

3.1 System Energy Minimization in Region 2
While the local optimal in Region 1 is straightforward

to find, the one in Region 2 requires some elaboration. In
Region 2, all frequency values support energy-efficient device
transitions and the device will be transitioned at the end
of task execution. Thus, in Region 2 the system energy
consumption can be expressed as:

Ē(f) = (af3 + P 0
a)

c

f
+ (E0

sd + E0
wu)

Ei
wu − (P i

s · T i
wu), for all devices. Thus, all power consumption

rates for a particular device, Di, are given in excess of P i
s . Notice

that such a transformation changes neither the original value of
Bi nor the analysis in the upcoming sections.

102

Observe that Ē(f) is a strictly convex function. (E0
sd +

E0
wu) appears as a constant in Ē(f) and hence, the frequency

that minimizes Ē(f) can be found by setting its derivative
to zero. This gives:

fee = (
P 0

a

2a
)1/3

This is, as expected, numerically equal to the energy-efficient
speed value given in [1], that did not consider neither the
transition energy, nor the DPM issues.

Remark 1. An energy-efficient device state transition as
assumed by the operation in Region 2 may not be possi-
ble by using the frequency fee, if fee lies outside the range
[f∗, fmax].

Remark 2. Even when fee is in the range [f∗, fmax], in
order to find the global optimal frequency, one still needs to
compare the minimum energy consumption in Region 2 which
incurs a transition overhead against the minimum energy
consumption in Region 1 which does not incur a transition
overhead. This will be fully analyzed in Section 3.2.

The convex nature of Ē(f) justifies the following two ba-
sic properties for any ε > 0.

Property 1. ∀f, f > fee, Ē(fee) ≤ Ē(f) ≤ Ē(f + ε)

Property 2. ∀f, f < fee, Ē(fee) ≤ Ē(f) ≤ Ē(f − ε)

Let f̄ denote the frequency that minimizes system energy
in Region 2. We determine f̄ by considering 3 possible cases.

• Case 1: f∗ ≤ fee ≤ fmax

In this case, D0 can be transitioned to sleep state at
f = fee as δ(fee) ≥ B0. Also there is no other fre-
quency which can transition D0 and yield better sys-
tem energy consumption in Region 2. Thus, f̄ = fee.

• Case 2: fee > fmax

From Property 2, the system energy in Region 2 is
minimized when f = fmax. Thus, f̄ = fmax.

• Case 3: fee < f∗

This implies δ(fee) < B0 and D0 cannot be transi-
tioned in energy-efficient fashion at f = fee. Thus, in
an effort to transition the device we have to increase
frequency beyond fee and towards f∗, which represents
the first instance when the device can be transitioned.
From Property 1, we can find that the system energy
in Region 2 is minimized when f = f∗. Hence, f̄ = f∗.

Based on the analysis above, we can write:

f̄ = max(f∗, min(fee, fmax))

Note that, this formulation covers the three cases examined
for energy minimization in Region 2 and also restricts f̄ to
the range [f∗, fmax]. Since B0 < d, f∗ > U and it follows
that f̄ > U . Thus, f̄ preserves the system feasibility as well.

3.2 Finding the Global Optimal
In the previous discussions, we showed that f = U and

f = f̄ are the local optimal values in Regions 1 and 2, re-
spectively. However, there is no a priori reason for global
optimal frequency that minimizes system energy across Re-
gions 1 and 2 to lie in one region as opposed to the other. To

determine the global optimal, it is essential to consider the
local optimal values in both Regions 1 and 2 and compare
them.

Recall that f̄ ≥ U . Let Et = E0
sd + E0

wu. By run-
ning the application at f = f̄ as opposed to f = U , the
CPU energy consumption increases by ΔEcpu = ac (f̄2−U2)
and the device energy consumption decreases by ΔEdevice =
cP 0

a (1
U

− 1
f̄
) − Et. Running the task at f = f̄ and transi-

tioning the device is better compared to running the task at
f = U and keeping the device active throughout the frame,
only if the increase in CPU energy, ΔEcpu, is overshadowed
by the decrease in device energy, ΔEdevice.

Given frequencies f̄ and U where 0 ≤ U ≤ f̄ ≤ fmax, let
φ(f̄ , U) denote the net change in system energy when the
application is run at f = f̄ as opposed to f = U . Hence:

φ(f̄ , U) = ΔEcpu−ΔEdevice = ac(f̄2−U2)−P 0
a c(

1

U
− 1

f̄
)+Et

If φ(f̄ , U) < 0 then ΔEcpu < ΔEdevice and the energy is
minimized at fopt = f̄ . On the other hand, if φ(f̄ , U) >
0 then ΔEcpu > ΔEdevice and the energy is minimized at
fopt = U .

 10

 15

 20

 25

 30

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
n

e
rg

y
E

(f
)

Frequency (f)

Case 1: B0 = 20
Case 2: B0 = 10

Figure 3: Example illustrating the position of global
optimal.

Now, we illustrate this analysis through an example, which
also shows that that the global optimal can lie in either Re-
gion 1 or Region 2 depending on the power characteristics
of the devices and the CPU. Consider a real-time applica-
tion with c = 10 and d = 42. Let D0 have the parameters
P 0

a = 0.5, E0
sd = E0

wu = 5 and T 0
sd = T 0

wu = 10. Re-
call that all power figures are given in excess of device sleep
power. Assume switching capacitance a = 1. From the
data, we can find that B0 = 20 and fee = 0.63. Observe
that δ(fee) > B0. Hence, it turns out that the device can
be effectively put to sleep state and run at f = fee. How-
ever, we obtain E(U = 10

42
) = 21.57 and E(fee) = 21.91.

This shows that, for the given settings, despite the fact that
the device can be transitioned at fee, from the system energy
point of view it is better to keep D0 in active state through-
out the frame and run the application at f = U . This is
shown through Case 1 of Figure 3. In the same example,
by changing E0

sd = E0
wu = 1.25 and T 0

sd = T 0
wu = 5, we get

B0 = 10. With these new parameters, one can verify that
E(fee) < E(U) as shown in Case 2 of Figure 3.

The O(1) algorithm for computing the processor frequency
that minimizes the system-wide energy for the single-device
model is given below.

103

• Set fee = (
P0

a
2a

)1/3

• Set f∗ = c
d−B0

• f̄ = max(f∗, min(fee, fmax))

• if φ(f̄ , U) < 0 then fopt = f̄ else fopt = U

Figure 4: Algorithm for Single-Device System.

A final observation is in order about the relative order-
ing of B0

actual and T 0
sw, whose maximum was defined as the

break-even time B0. If B0 = B0
actual, since δ(f∗) = B0 =

B0
actual, the following inequality holds:

E(U) ≤ E(f∗) ≤ E(f∗ + ε)

This implies that, if f̄ = f∗, we know for sure f = U is the
global optimal and a comparison between E(U) and E(f̄ =
f∗) is not required. However, the above inequality may not
hold when B0 = T 0

sw > B0
actual. In this case, nothing can

be said about the relative ordering of E(U) and E(f∗), as
illustrated by the following example.

Let c = 5, d = 19, P 0
a = 0.25, T 0

sd = T 0
wu = 5, E0

sd =
E0

wu = 0.625. For the given data, B0 = T 0
sw = 10 and

f∗ = 5
9
. Assume a = 1. We can verify E(f∗) = 5.04 <

E(U) = 5.096. By changing E0
sd = E0

wu = 1 we can verify
that B0 and f∗ still remain the same. However, in these new
settings, E(f∗) > E(U).

3.3 Experimental Evaluation
In this section, we perform an experimental evaluation

using the actual device specifications taken from [5]. The
CPU power consumption rate at the maximum processing
frequency is modeled after Intel XScale [21]. We consider a
real-time application with a frame length of 44ms. The ap-
plication is assumed to use IBM Microdrive during its execu-
tion. Based on the device characteristics of IBM Microdrive
[5], its break-even time can be computed as 24ms. Observe
that if the worst-case execution time c of the real-time appli-
cation at the maximum speed is greater than 20ms, then the
device can never be transitioned to sleep state as there is not
enough slack to justify it. Thus, when c > 20, the problem
of system-wide energy minimization reduces to minimizing
CPU energy only and running the CPU at f = U is optimal.
Hence, we only vary c from 2-20ms in steps of 2ms. For each
distinct utilization value, we compare three schemes.

• OPT: Optimal scheme from Section 3.2.

• Aggressive Slow-Down (AG-SD): Run the processor at
the lowest frequency f = c

d
= U that can still meet the

deadline. In this scheme, the devices are never transi-
tioned to sleep state. The frequency f = U minimizes
the CPU dynamic energy consumption only [2, 11].

• Device-Aware Slow-Down (DA-SD): This scheme is based
on the concept of energy-efficient speed [1, 8, 24] and
is adopted from [1], where the authors propose an op-
timal solution to the system-wide energy minimization
problem ignoring DPM issues and device transition
overheads. The energy-efficient speed (denoted by fee)
is computed as the speed that minimizes the system
energy, by considering only CPU energy and device
active energy consumption. Since fee can be less than
the system utilization, to preserve the feasibility, we

execute the task at f = max(U,fee). If the device can
be transitioned at f = fee we do so; else the device
remains in active state throughout the frame.

-4

-3

-2

-1

 0

 1

 2 4 6 8 10 12 14 16 18 20

φ
()

c

φ

(a) φ() as a function of c

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14 16 18 20

N
o
rm

a
li
z
e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

c

OPT
AG-SD
DA-SD

(b) Relative performance of
OPT, AG-SD and DA-SD as a
function of c

Figure 5: Effect of the worst-case execution time, c.

We consider the effect of varying worst-case execution
time. Figure 5(a) shows the variation of φ(f̄ , U) with in-
creasing c. The results are normalized with respect to φ(f̄ , U)
for c = 20. Recall from Section 3.2 that f̄ represents the can-
didate local optimal frequency in Region 2 to be compared
with U , which is the local optimal in Region 1. φ(f̄ , U) rep-
resents the net change in system energy. Figure 5(b) shows
the relative ordering of the three schemes as a function of
c. The values are normalized with respect to AG-SD when
c = 20. Observe that for c ≤ 18, φ(f̄ , U) is negative, imply-
ing that the gain in device energy consumption, ΔEdevice,
overshadows the loss in CPU energy, ΔEcpu. Hence, the
system energy benefits from running the processor at speeds
higher than U and f = f̄ is optimal in this region. On
the other hand, for c > 18, ΔEcpu starts to overshadow
ΔEdevice. Consequently, running at speeds higher than U
starts to hurt system energy resulting in positive φ(f̄ , U)
values. Hence, f = U is the optimal in this spectrum.

It can be seen that in the interval where c ≤ 12, OPT
follows DA-SD as φ(f̄ = fee, U) is negative. Similarly, for
c ≥ 18, OPT follows AG-SD as φ(f̄ , U) is positive. For
12 < c < 18 it can be seen that OPT follows neither AG-SD
nor DA-SD. During this period f̄ = f∗ and φ(f̄ = f∗, U)
is negative. Thus, OPT represents E(f∗) which is optimal
in this spectrum. Notice that for this example, the optimal
frequency that minimizes the system-wide energy, changes
from fopt = fee to fopt = f∗ and finally to fopt = U with
increasing utilization values. As fopt transitions from fee to
f∗, the device can no longer be put to sleep state af f = fee.
Thus, running at f = fee consumes more system energy
compared to f = U , explaining the sharp increase in DA-SD
at c = 14. The optimal frequency f∗ when 12 < c < 18
is found by neither AG-SD nor DA-SD. The energy opti-
mal scheme, OPT, along with finding f∗ also overcomes the
bad performances of AG-SD and DA-SD at low and high
utilization values respectively.

We emphasize that there is an interval where fopt is nei-
ther U nor fee, but f∗, in the above results. Thus, the
optimal scheme (OPT) is more than just determining at ev-
ery point the better frequency in the set {U, fee}. In fact,
there are regions where both of these well-known frequencies
fail to minimize the system-wide energy consumption.

104

4. MULTIPLE-DEVICE MODEL
In this section, we generalize our solution to the case of

multiple devices. A real-time application characterized by
a worst-case execution time of c (under fmax) and a frame
length of d is assumed to use m different devices {D1 . . . Dm}
during the span of its execution. Each device Di, has its own
parameters (P i

a, P i
s , Ei

sd, Ei
wu, T i

sd, T i
wu) and is associated

with a break-even time denoted by Bi. First, we formally
define the problem.

Problem Statement: Given a frame-based real-time
application using m different devices, determine the CPU
speed and device transitioning decisions so as to minimize
the system-wide energy consumption.

Since each device can be put to sleep state at the end
of the execution, or remain in active state until the end of
the frame, at first, it seems that there are 2m possibilities
that need to be examined. If true, this would imply an
exponential-time algorithm. By careful analysis, we estab-
lish some important properties of the optimal solution, which
enables us to develop an O(m log m)-time algorithm.

B1
B2

Bm
Bm−1

���������
���������
���������
���������

���������
���������
���������
���������

d−B d−B d−B d−B d

I I II

c

m m−1 1 0

0
2m−1m 1

Figure 6: The ordering of the break-even times

Let Ropt and DSopt denote the response time of the real-
time application and the set of devices that will be tran-
sitioned to sleep state at the end of task execution in the
optimal solution, respectively. We know that Ropt ∈ [c, d].
Without loss of generality, the break-even times are arranged
in non-decreasing order, i.e. 0 < B1 < . . . < Bm < d − c.
With this ordering, we can divide [c, d] into m + 1 intervals
{[c, (d − Bm)] . . . [(d − Bi+1), (d − Bi)] . . . [(d − B1), d]} de-
noted by {Im . . . I0}, respectively. The intervals I0 to Im

are shown in Figure 6. Ropt belongs to exactly one of these
m + 1 intervals3.

For convenience, we divide our analysis into two steps
that eventually will lead to an O(m log m)-time algorithm.

• Step1: For each of these intervals, assuming that Ropt

lies in that interval, we determine DSopt which helps
to evaluate the exact system-wide energy consumption
function. Once we have the exact form of system-wide
energy in an interval, we show how it can be minimized.

• Step2: Based on the analysis in Step1, we narrow down
our analysis to at most m + 2 cases that have to be
examined before we determine the optimal solution.

We now elaborate on these two steps and present our full
analysis. By ordering the devices in non-decreasing order
of break-even times, Step1 can be addressed as follows. If

3If two devices have the same break-even time or if Bm = d − c
then we will have less than m + 1 intervals. The same analysis
can then be performed on this reduced interval set.

Ropt belongs to interval Ii, then devices {Di+1 . . . Dm} can-
not be transitioned as the idle time is smaller than their
break-even times. However, all devices {D1 . . . Di} can and
should be transitioned. This is because if any device in the
set {D1 . . . Di} is not transitioned to sleep state at the end of
task execution, then by transitioning that device, we would
effectively reduce device energy consumption and hence ob-
tain a schedule with reduced system energy consumption.
Based on this, one can quickly infer that if Ropt ∈ Im, all
m devices will be transitioned. Similarly, if Ropt ∈ I0, then
none of the devices will be transitioned.

Based on the interval to which Ropt belongs, we can ex-
actly characterize the devices that should be transitioned to
sleep states at the end of task execution. With this infor-
mation, we can exactly formulate the system energy con-
sumption function when Ropt ∈ Ii. The number of devices
transitioned to sleep states and hence the exact form of the
system energy consumption remains the same as Ropt varies
within a given interval and changes only when Ropt tran-
sitions between intervals. Let Ei(f) represent the system
energy consumption when Ropt ∈ Ii. Specifically,

Ei(f) = (af3 +

iX
j=1

P j
a)

c

f
+

mX
j=i+1

P j
a d +

iX
j=1

(Ej
sd + Ej

wu)

Notice that in the formulation of Ei(f), devices {D1 . . . Di}
are transitioned while devices {Di+1 . . . Dm} are kept in ac-
tive state throughout the frame. For uniformity, let us denote
the lower and upper limits of interval Ii by LLi and ULi re-
spectively. That is, LL0 = d − B1, UL0 = d, LLm = c,
ULm = d − Bm, LLi = d − Bi+1 and ULi = d − Bi,
∀ i = 1 . . . m−1. We can formalize the problem of minimiza-
tion of Ei by enforcing that the response time of the task
falls in interval Ii. This leads to the following constrained
convex optimization problem for Ii denoted by OPTi.

minimize Ei(f) (1)

subject to − c

f
+ LLi ≤ 0 (2)

c

f
− ULi ≤ 0 (3)

Constraints (2) and (3) make sure the response time of the
application does not fall outside the range of interval Ii to
which Ropt is assumed to belong.

Proposition 1. If the frequency f is the solution to the
optimization problem OPTi, then, U ≤ f ≤ fmax

Proof. If f > fmax, from both (2) and (3) it follows
that the response time at f > fmax is in the range [LLi,
ULi]. Since c = LLm, this implies c

fmax+ε
≥ c, which is a

contradiction. Similarly. if f < U , from both (2) and (3) it
follows that the response time at f < U is in the range [LLi,
ULi]. Now, since UL0 = d, this implies c

U−ε
≤ d, which is

again a contradiction.

Let fi =
3

s
iP

j=1
P

j
a

2a
. By observing that fi is the value that

sets the derivative of Ei(f) to zero, we get the following.

Proposition 2. If fi satisfies the conditions (2) and (3)
then it is the solution to the optimization problem OPTi.

Observe that when Ii = Im, we get fm = 3
q

Pind
2a

=

fee, the traditional energy-efficient speed for a task using

105

m devices while ignoring DPM issues [1]. Assuming that
fee satisfies the response time constraints for interval Im, an
interesting observation at this point is that fee is only the
local optimal solution for the interval Im.

If fi does not satisfy the constraints of the optimization
problem then we proceed to find the optimal solution that
satisfies the constraints.

Lemma 1. If fi does not satisfy conditions (2) and (3)
then, the optimal solution to OPTi is either f = c

LLi
or

f = c
ULi

.

The proof of Lemma 1 is presented in Appendix.

While Lemma 1 solves Step1 of the analysis, the following
Corollary connects Step1 and Step2.

Corollary 1. If ∀i, i = 0 . . . m, fi /∈ Ii then in the
optimal solution for m devices, Ropt ∈ {c, (d−Bm), . . . , (d−
B1), d}.

Corollary 1 states that if for all the (m + 1) intervals, Ii,
i = 0 . . . m, fi does not satisfy the conditions (2) and (3) of
the optimization problem OPTi, then in the optimal solution
the response time of the application is limited to the set
{c, (d−Bm), . . . , (d−B1), d}. That is, if the given conditions
hold, in the optimal solution, the slack of the application
should be exactly equal to 0, d − c or one of the break-even
times {Bi}.

Observe that the upper limit of interval Ii becomes the
lower limit for interval Ii−1. Say ULi = LLi−1 = β. We
evaluate the energy consumption when Ropt = β twice, once
in interval Ii and again in interval Ii−1. The difference is that
in interval Ii, we assume device Di is transitioned while in
interval Ii−1 we assume Di is not transitioned. This totally
covers at most 2m cases were Ropt = d−Bi, i = 1 . . . m. Fur-
ther, we also evaluate the energy consumption when Ropt = c
and Ropt = d. Thus, an implication of Corollary 1 is that
there are at most 2m + 2 cases that need to be examined to
determine the optimal solution.

Observe that f = U is a natural candidate for the solution
based on Corollary 1. In fact, for the single-device model
where m = 1, it was shown that f = U , is always a legitimate
candidate. Lemma 2 below, reduces the 2m + 2 cases to be
examined as given by Corollary 1 to at most m + 2 cases.

Lemma 2. Ei(f = c
ULi

) ≤ Ei−1(f = c
LLi−1

)

Proof. Assume Ei(f = c
ULi

) > Ei−1(f = c
LLi−1

). Since

ULi = LLi−1 = β, running the processor at f = c
ULi

gives the same response time as running the processor at
f = c

LLi−1
. Consequently, the CPU energy consumption

in both cases is the same. Note that in both cases devices
{Di+1 . . . Dm} are not transitioned while devices {D1 . . . Di−1}
are transitioned. This being the case the difference in sys-
tem energy consumption in the two cases, if any, must come
from the energy consumption of device Di. Hence we can say
that if Ei(f = c

ULi
) > Ei−1(f = c

LLi−1
), then Ei

sd + Ei
wu >

(d − β)P i
a. Since d − β ≥ Bi, this is a contradiction.

An interesting question is whether there exists a pattern
among these final m + 2 cases that can be further exploited
by optimization techniques. Let ECopt denote the set of
energy consumption values obtained by evaluating the final

m + 2 cases. Unfortunately, the following observation shows
that the relative ordering of the values in the set ECopt can
be arbitrary.

Observation 1. The relative ordering of the (m+2) val-
ues in the set ECopt does not exhibit a special pattern.

We give an example to justify the above observation.
Consider a real time application with c = 10 and d = 30. It
uses four devices D1(P

1
a = 0.2, B1 = 5), D2(P

2
a = 0.15, B2 =

10), D3(P
3
a = 0.5, B3 = 15) and D4(P

4
a = 0.4, B4 = 17). Let

us assume a = 1 and Tsw ≤ Bi
actual for all devices. Bi

actual =
Ei

sd+Ei
wu

P i
a

, i = 1 . . . 4. In these settings, we can verify that

f4 = 0.855, f3 = 0.752, f2 = 0.559 and f1 = 0.464. No-
tice that ∀i, c

fi
∈ Ii. In interval I0, f = U is the best as

no devices are transitioned to sleep states. With the above
data we can verify E(f = U) = 38.611, E(f = f1) = 38.963,
E(f = f2) = 38.886, E(f = f3) = 38.958 and E(f = f4) =
38.730.

Notice how the interval-optimal energy consumption Ei(f)
first increases, next decreases, then increases before decreas-
ing once again, as we move from the first candidate frequency
f1 to f2, f3 and f4. This shows that the energy consump-
tion values of the final m + 2 cases, need not to have a well-
defined relationship which can be exploited by optimization
techniques. As an implication, it turns out that it is indeed
necessary to evaluate and compare the m+2 candidate cases
for the optimal solution.

4.1 Computing the Optimal Speed Efficiently
Based on the above characterizations we formulate an

O(m log m) algorithm, given in Figure 7, to find the optimal
speed for the multiple-device model. As an implication of
Observation 1, it is necessary to compare the best energy
consumptions obtained by assuming Ropt ∈ Ii, i = 0 . . . m
to obtain the global optimal. From Lemma 1 and 2, in every
interval Ii, i �= m, if f = fi does not satisfy the response
time constraints then it is sufficient to evaluate and compare
energy consumption at f = ULi. In I0, f0 = 0. Hence, we
start out with the assumption that in the optimal solution
f = U (lines 4− 5). The Ebest variable holds the minimum
system energy consumption value encountered so far and
the fbest holds the corresponding frequency. In lines 6− 17,
we consider cases where the optimal response time of the
application is assumed to belong to each of the remaining
m intervals I1 . . . Im. For each such interval we compute
fi. Based on whether or not fi satisfies the response time
constraints we compare energy consumption at either f = fi

or f = ULi with Ebest. For interval Im if fm does not
satisfy the response time constraints then it is necessary to
evaluate and compare energy consumption at LLm = c, as
c does not act as an upper limit to any interval. In lines
18− 21, we perform this final comparison. At the end, fbest

holds the optimal value of f that minimizes system energy
consumption.

Time Complexity: Sorting the devices based on break-
even times requires O(m log m) time. The algorithm per-
forms a constant time comparison in every interval and there
are at most m + 1 intervals. Thus, the complexity of the al-
gorithm is O(m log m).

106

Function Optimal Speed:

1 PON =
mP

i=1

P i
a

2 POF F = 0
3 ET = 0
4 Ebest = aU2c + PONd
5 fbest = U
6 for i = 1 to m
7 PON = PON − P i

a

8 POF F = POF F + P i
a

9 ET = ET + Ei
sd + Ei

wu

10 fi = 3
q

POF F
2a

11 if (c
fi

∈ Ii) then f = fi

12 else f = c
ULi

= c
d−Bi

13 if (E(f) < Ebest)
14 Set Ebest = E(f)
15 Set fbest = f
16 endif
17 endfor
18 if (c

fm
/∈ Im AND E(fmax) < Ebest)

19 Set Ebest = E(fmax)
20 Set fbest = fmax

21 endif
22 return fbest

Function System Energy:
1 E(f) = af2c + PONd + POF F

c
f

+ ET

Figure 7: Algorithm to Compute Optimal Speed
(Multiple-Device Case)

4.2 Experimental Evaluation
The experimental methodology we follow in this section

is the same as the one described in Section 3.3. Again, the
real-time application has a frame length of 44ms. It uses
three devices during its execution: IBM Microdrive (B =
24ms), Realtek Ethernet Chip (B = 20ms) and Simple Tech
Flash Card (B = 4ms). The specifications of these devices
are from [5]. Among the devices under consideration, IBM
Microdrive has the largest break-even time equal to 24ms.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 4 6 8 10 12 14 16 18 20

O
p
ti
m

a
l
S

la
c
k

c

Optimal Slack

(a) Optimal Slack as a func-
tion of c

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14 16 18 20

N
o
rm

a
li
z
e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

c

OPT
AG-SD
DA-SD

(b) Relative performance of
OPT, AG-SD and DA-SD as a
function of c

Figure 8: Multiple Device Model, effect of worst-
case execution time, c

We consider the effect of worst-case execution time on
both optimal system slack and optimal system energy con-
sumption. Figure 8(a) shows the optimal slack which min-
imizes system-wide energy as a function of c. Figure 8(b)

shows the relative performance of the three schemes. The
energy values are normalized with respect to AG-SD when
c = 20ms. The optimal slack decreases uniformly with in-
creasing utilization in the range 2 ≤ c ≤ 14. In this interval,
f = fee is optimal, and the OPT scheme follows DA-SD.
For values in the range 14 < c < 20, OPT is significantly
different from both DA-SD and AG-SD. During this period
one or more devices cannot be transitioned at f = fee, which
explains the sharp increase in DA-SD at c = 16. The step
like behavior of the optimal slack is also a consequence of
the optimal frequency shifting from f = fee to an interme-
diate value between fee and U . Note that depending on the
power characteristics of devices and frame length, the sharp
increase in DA-SD scheme may also occur at an earlier stage
than the one shown in figure. In such cases, the advantages
of our optimal scheme is even more pronounced.

In models minimizing the system-wide energy while ig-
noring device transition overheads and DPM related issues,
DA-SD scheme was shown to be optimal assuming it satisfies
feasibility constraints [1]. Observe that AG-SD outperforms
DA-SD in the spectrum c ≥ 16 in Figure 8(b). Due to device
transition overheads, as mentioned before, transitioning de-
vices at f = fee is not always possible. When c = 16, IBM
Microdrive cannot be transitioned at fee and remains active
throughout the frame significantly increasing device energy
consumption. The CPU power consumption rate is signif-
icantly high compared to that of Flash Card and Ethernet
Chip. Thus, with IBM Microdrive in active state through-
out the frame, the CPU energy savings in scheme AG-SD
dominates the device energy saving obtained by transition-
ing Flash Card and Ethernet Chip in DA-SD. This explains
the reason why AG-SD outperforms DA-SD.

Finally, at c = 20, OPT follows AG-SD. Observe that for
the devices considered T i

sw > Bi
actual. As a result, the device

break-even time, defined as max(T i
sw, Bi

actual), is dominated
by the device transition times. Thus, even at c = 20, all the
three devices can be efficiently transitioned yielding lower
device energy consumption. However, when c > 20, the
slack is not large enough to produce a device transitioning
decision, involving transitioning at least one device to sleep
state, which can reduce device energy consumption to an
extent that it overshadows the increase in CPU energy by
running the processor at speeds higher than f = U . Thus,
AG-SD is optimal in that region.

5. CONCLUSIONS
In this work, we addressed the problem of system-wide

energy minimization through a novel approach. Unlike prior
studies, our system-level energy model considered both DVS-
and DPM-related issues and accounted for device transi-
tion overheads. With this general model, we were able to
characterize the exact interplay between DVS and DPM for-
mally. By deriving useful properties from this characteri-
zation, we formulated a O(m log m)-time algorithm (where
m is the number of devices) to determine the CPU speed
and device transitioning decisions to minimize the system-
wide energy. Experimental evaluations using real device pa-
rameters demonstrated the potential benefits of our opti-
mal scheme. To the best of our knowledge, this is the first
work formally investigating the interplay between two well-
known energy management techniques for real-time embed-
ded systems: DVS and DPM, by also considering the device
transition overheads at the same time. We believe that the

107

non-trivial the interplay of DVS and DPM as portrayed in
this paper provides valuable insights to system-level energy
management in real-time embedded systems.

6. REFERENCES
[1] H. Aydin, V. Devadas, and D. Zhu. System-level energy

management for periodic real-time tasks. In Proceedings of
the 27th IEEE Real-Time Systems Symposium (RTSS’06),
2006.

[2] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez.
Power-aware scheduling for periodic real-time tasks. IEEE
Transactions on Computers, 53(10):584–600, May 2004.

[3] L. Benini, A. Bogliolo, and G. D. Micheli. A survey of
design techniques for system-level dynamic power
management. IEEE Transactions on VLSI Systems,
8(3):299–316, 2000.

[4] Cheng and S. Goddard. Sys-edf: A system-wide energy
efficient scheduling algorithm for hard real-time systems.
International Journal of Embedded Systems on Low Power
Real-Time Embedded Computing, 4(4):45–56, 2007.

[5] H. Cheng and S. Goddard. Online energy-aware i/o device
scheduling for hard real-time systems. In Proceedings of
Design Automation and Test in Europe (DATE’06), 2006.

[6] V. Devadas and H. Aydin. Real-time dynamic power
management through device forbidden regions. In
Proceedings of the IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’08), 2008.

[7] P. J. M. Havinga and G. J. M. Smith. Design techniques for
low-power systems. Journal of Systems Architecture, 46(1),
2000.

[8] R. Jejurikar and R. Gupta. Dynamic voltage scaling for
system-wide energy minimization in real-time embedded
systems. In Proceedings of the 2004 International
Symposium on Low Power Electronics and Design
(ISLPED’04), 2004.

[9] D. Luenberger. Linear and Nonlinear Programming.
Addison-Wesley, Reading Massachusetts, 1984.

[10] M. Pedram. Power minimization in ic design: Principles
and applications. ACM Transactions on Design
Automation of Electronics Systems, 1(1):3–56, 1996.

[11] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling
for low-power embedded operating systems. In Proceedings
of the ACM Symposium on Operating Systems Principles
(SOSP’01), 2001.

[12] A. Qadi, S. Goddard, and S. Farritor. A dynamic voltage
scaling algorithm for sporadic tasks. In Proceedings of the
IEEE Real-Time Systems Symposium (RTSS’03), 2003.

[13] C. Rusu, R. Melhem, and D. Mosse. Maximizing rewards
for real-time applications with energy constraints. ACM
Transactions for Embedded Computing Systems, 2(4), 2003.

[14] S. Saewong and R. Rajkumar. Practical voltage-scaling for
fixed-priority real-time systems. In Proceedings of the IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS’03), 2003.

[15] D. Snowdon, S. Petters, and G. Heiser. Accurate online
prediction of processor and memory energy usage under
voltage scaling. In Proceedings of the International
Conference On Embedded Software, 2007.

[16] V. Swaminathan and K. Chakrabarty. Energy conscious
deterministic i/o device scheduling in hard real-time
systems. In Proceedings of the International Conference in
Computer Aided Design (ICCAD’03), 2003.

[17] V. Swaminathan and K. Chakrabarty. Pruning-based,
energy-optimal deterministic i/o scheduling for hard
real-time systems. ACM Transactions on Embedded
Computing Systems, 4(1):141–167, 2005.

[18] V. Swaminathan, K. Chakrabarty, and S. S. Iyengar.
Dynamic i/o power management for hard real-time systems.
In Proceeding of the International Conference on
Hardware-Software Co-design and System Synthesis
(CODES’01), 2001.

[19] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced cpu energy. In USENIX Symposium
on Operating Systems Design and Implementation, 1994.

[20] R. Xu, D. Mosse, and R. Melhem. Minimizing expected
energy consumption in real-time systems through dynamic
voltage scaling. ACM Transactions on Computer Systems,
25(4), 2007.

[21] R. Xu, C. Xi, R. Melhem, and D. Mosse. Practical pace for
embedded systems. In Proceedings of the ACM
International Conference on Embedded Software
(EMSOFT’04), 2004.

[22] X. Zhong and C.-Z. Xu. System-wide energy minimization
for real-time tasks: Lower bound and approximation. In
Proceedings of the Int’l Conference on Computer-Aided
Design (ICCAD’06), 2006.

[23] X. Zhong and C.-Z. Xu. Frequency-aware energy
optimization for real-time periodic and aperiodic tasks. In
Proceedings of the Conference on Languages, Compilers
and Tools for Embedded Systems (LCTES’07), 2007.

[24] J. Zhuo and C. Chakrabarti. System-level energy-efficient
dynamic task scheduling. In Proceedings of Conference on
Design Automation (DAC), 2005.

APPENDIX: Proof of Lemma 1
The solution f to the optimization problem OPTi must also sat-
isfy the following Kuhn-Tucker conditions for convex programs
[9].

2af3 −
iX

j=1

P j
a + (µ1 − µ2) = 0 (4)

µ1(− c

f
+ LLi) = 0 (5)

µ2(
c

f
− ULi) = 0 (6)

∀i, µi ≥ 0 (7)

Proposition 3. In the solution to OPTi both µ1 and µ2 can-
not be strictly positive.

Proof. Assume both µ1 and µ2 are strictly positive, i.e µi >
0, i = 1, 2. Under this assumption there must exist an f that
satisfies the following two conditions.

− c

f
+ LLi = 0 (8)

c

f
− ULi = 0 (9)

But, since LLi �= ULi this is impossible.

From Proposition 3 we know that both µ1 and µ2 cannot be
strictly positive. Observe that by setting µ1 = µ2 = 0 we get
f = fi, the frequency which minimizes Ei(f). Considering other
possibilities:
Case1: Assume µ1 > 0 and µ2 = 0. Then from Equation (5),
− c

f
+ LLi = 0. This implies f = c

LLi
is a candidate optimal

solution.
Case2: Assume µ1 = 0 and µ2 > 0. Then from Equation (6),
c
f

− ULi = 0. This implies f = c
ULi

is a candidate optimal

solution.
Thus, either f = c

LLi
or f = c

ULi
is the solution to OPTi.

108

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

