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ABSTRACT
This paper presents a dynamic scratchpad memory (SPM)
code allocation technique for embedded systems running an
operating system with preemptive multitasking. Existing
SPM allocation schemes do not support multiple tasks or
only a fixed number of processes that are known at compile
time. These schemes rely on algorithms that select code
depending on the size of the SPM. In contemporary portable
devices, however, processes are created and terminated on
demand and the SPM is shared among them.

We introduce a dynamic scratchpad memory code alloca-
tion technique for code that supports dynamically created
processes. At runtime, an SPM manager (SPMM) loads
code pages of the running applications into the SPM on de-
mand. It supports different sharing strategies that deter-
mine how the SPM is distributed among the running pro-
cesses. We analyze several sharing strategies with regard to
several preferable properties of multiprocess SPM allocation
schemes.

We evaluate the proposed multiprocess SPM allocation
techniques and compare them to a fully-cached reference
system by running several multiprocess benchmarks. The
benchmarks comprise of multiple embedded applications
such as H.264, MP3, MPEG-4, and PGP. On average, we
achieve a 47% improvement in throughput and a 32% re-
duction in energy consumption. A comparison with the un-
achievable lower bound shows that the best SPM sharing
strategy exploits 87% of the runtime improvements and 89%
of the energy savings possible.

Categories and Subject Descriptors: C.4 [Performance
of Systems]: Design Studies; D.3.4 [Programming Langua-
ges]: Processors–code generation, compilers, optimization;
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1. INTRODUCTION
Today’s portable devices perform an ever increasing num-

ber of diverse functions that were traditionally handled by
several devices specializing on one task. This ongoing con-
vergence has several effects: first, portable devices contain
more and more general purpose CPUs and move away from
traditional embedded systems with specialized processors.
Second, CPUs in portable devices continue to get more pow-
erful to provide the computing power necessary to run sev-
eral complex tasks in a multitasking environment.

Reducing the energy consumption for such devices is a
major concern. Studies have shown that the memory sys-
tem is responsible for a large portion of the total energy
consumption [12, 20]. To increase performance and reduce
the energy consumption, system designers make use of mem-
ory hierarchies to reduce off-chip memory accesses either by
using hardware caches, scratchpad memories, or both.

Many studies have discussed code and/or data SPM al-
location techniques [1, 4, 6, 11, 12, 19, 26, 27]. Signifi-
cant energy savings and performance improvements can be
achieved by placing frequently accessed code/data blocks in
the SPM. However, most studies require the size of the SPM
to be known at compile time. While a few consider multiple
running tasks [1, 26], none of the proposed techniques can
handle dynamically created tasks.

Contemporary portable devices often run an operating
system with a scheduler, virtual memory, and even a file
system. Processes are created and destroyed on the user’s
demand and at arbitrary times. Furthermore, the varying
hardware configurations of the devices make it impractical
for applications to be tailored to one specific SPM size.

In this paper we introduce a dynamic SPM code alloca-
tion technique for systems running an operating system with
virtual memory and preemptive multitasking. The SPM
is managed by an SPM manager (SPMM) that adapts as
processes join and leave. It supports various SPM sharing
strategies that define how the SPM is shared among the run-
ning processes. We propose three strategies and provide an
analysis of their runtime overhead and performance.
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Our method is outlined as follows: Based on profiling in-
formation, a postpass optimizer sorts the code of an appli-
cation based on the access frequency. Temporally local code
is then clustered together into pages the size of an MMU
page. Local data, i.e. constant pools are extracted from the
code and placed in separate data pages. For each page, the
postpass optimizer adds information to the SPM-optimized
application binary about the page’s access frequency and
whether it belongs to a loop. Which code pages are loaded
into the SPM is decided at runtime, i.e., the generated bi-
naries are independent of the size of the available SPM.

At runtime, the SPM manager is notified by the operating
system whenever a new process is created, destroyed, sched-
uled, or changes its ready-to-run status. It allocates the
SPM to the running processes depending on the currently
active sharing strategy and copies code pages into the SPM
on-demand by intercepting MMU page fault exceptions.

The contributions of this work are as follows: (1) We
introduce an SPM management technique for multitasking
systems with dynamic process creation and destruction. The
proposed technique is independent of both the number of
processes and the concrete hardware configuration. The
SPMM is built as a module to facilitate integration into
existing operating systems. (2) We develop, implement, and
analyze three different SPM sharing strategies for multitask-
ing systems. In order to outperform a cached system in
terms of both energy and performance, the overhead intro-
duced by the SPM management must be kept to a bare min-
imum. The proposed sharing strategies therefore keep the
computational complexity as low as possible. (3) Lacking a
benchmark suite for multitasking systems, we propose rep-
resentative multiprocess benchmarks for portable systems.

We evaluate the proposed SPM management technique on
a cycle-accurate ARM9E-S simulator [14] with a combina-
tion of concurrently running applications. Compared to a
fully-cached reference system, on average, we achieve a 47%
improvement in throughput and a 32% reduction in energy
consumption. Compared with the (in practice unachievable)
lower bound, in which all executed code is located in SPM,
the global SPM sharing strategy exploits 87% of the runtime
improvements and 89% of the energy savings possible.

The rest of this paper is organized as follows: Section 2
discusses related work. Section 3 describes the runtime en-
vironment, the SPM manager, and various SPM sharing
strategies. In Section 4, we describe the postpass optimizer
framework. Section 5 explains simulation environment, the
runtime environment, and the experimental setup. Section 6
presents the results. The paper ends with a conclusion and
future work in Section 7.

2. RELATED WORK
Existing work on SPM allocation can be roughly divided

into static and dynamic schemes. Static techniques initialize
the SPM with the designated program parts at load time,
and the contents of the SPM do not change at runtime. In
dynamic SPM allocation techniques the contents of the SPM
change while the program executes.

Static SPM allocation techniques are presented in [1, 3,
19, 27]. Except for Nguyen’s work [19], all of these tech-
niques require knowledge of the SPM size at compile time.
Angiolini et al. [1] present an SPM allocation scheme that se-
lects code blocks which promise the highest energy savings
using an algorithm based on Dynamic Programming. Ba-

nakar et al. [3] solve the static assignment with a knapsack
algorithm, both for code and data blocks. Verma et al. [27]
select memory objects based on a cache conflict graph ob-
tained through cache hit/miss statistics. The optimal set
of memory objects is obtained by solving an Integer Linear
Program (ILP) variant of the knapsack algorithm. In [19],
Ngyuen et al. delay the decision which blocks should go
to the SPM until the application is loaded, making their
approach independent from the scratchpad memory size.

Dynamically allocated SPM algorithms are presented in
[11, 12, 15, 24, 25]. Kandemir et al. [12] focus on data
arrays accessed from well-structured loop kernels. Arrays
are split into tiles that are transferred to the SPM inde-
pendently. Also Li et al. [15] assign parts of data arrays
to the SPM based on a graph coloring algorithm. Steinke
et al. [24] present a technique that dynamically copies the
optimal set of code blocks to the SPM based on an ILP.
Udayakumaran et al. [25] construct a data program relation-
ship graph (DPRG), which then guides a greedy heuristi-
cal algorithm to determine the most promising candidates.
Janapsatya et al. [11] introduce the so-called concomitance
metric which measures the temporal locality of code block.
At runtime, blocks with a strong correlation are copied to-
gether to the SPM. Dominguez et al. [5] propose an SPM
allocation scheme for heap data. Promising candidates are
assigned to a fixed-size bin that can hold up to n elements of
a dynamically allocated variable. At runtime, a heap man-
ager allocates an object to the SPM only if there is free space
in its predetermined bin.

The horizontal partitioning of memory hierarchies has
been examined in [4, 7, 23]. Inspired by the memory ar-
chitecture of the Intel XScale with a big main data cache
and a 2KB minicache [10], Shrivastava et al. [23] show that
by cleverly allocating the data objects to one of the caches a
substantial amount of energy can be saved. Egger et al. [7]
present a dynamic SPM allocation technique for a horizon-
tally partitioned memory system consisting of an SPM and a
small cache. At runtime, an SPM manager intercepts MMU
page faults to load frequently executed code into the SPM
on demand. Their approach is similar to the one taken in
this paper, but only works for single tasks. Cho et al. [4]
propose a similar technique for the data side.

To this day, the use of SPM in multitasking environments
has not been widely studied. Verma et al. [26] present a
static approach for a known set of processes. They propose
three sharing strategies. The non-saving strategy divides
the scratchpad evenly between the applications. In the sav-
ing approach, the whole scratchpad memory is given to the
currently active task and saved and restored at each task
switch. The hybrid approach is a mixture of the non-saving
and the saving method: parts of the SPM are assigned ex-
clusively to the processes and a common area is shared and
needs to be saved/restored at each task switch. Since the
SPM is statically allocated, their approach requires both
the size of the SPM and the number of running processes to
be known at compile time, which makes it unsuitable for a
multitasking environment where processes are created and
destroyed dynamically. In our work, the application bina-
ries are not tailored to a specific SPM size and the runtime
SPM manager redistributes the available SPM to the run-
ning processes on demand.

Machanick et al. [16] present an approach similar to this
work by replacing the unified second-level cache by a soft-
ware-managed SRAM. The main memory serves as a pag-
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ing device for the SRAM. Pages are loaded into the SRAM
whenever one of the first level caches misses. The main dif-
ference to our work is that we use the SPM in the first-level
memory hierarchy as a software-managed cache, while [16]
focuses on the second-level cache. It is possible to apply their
concept to the first-level caches as well, however, since the
latency of the L1 cache is much more critical to performance
and energy consumption, unmodified binaries will not run at
satisfactory performance. In our approach, temporally-local
code is clustered together at compile time, and the decision
whether a block is loaded into the SPM or mapped to the
cache is made at runtime based on the number of running
processes and the number of page faults (i.e., misses).

3. MULTIPROCESS SPM MANAGEMENT

3.1 The SPM Manager
The SPM manager (SPMM) is designed to run on a hor-

izontally partitioned memory system with a cache and an
SPM on the first level memory hierarchy as found in many
contemporary embedded processors such as the ARM11 pro-
cessor [2]. The SPMM manages the SPM as an operating-
system controlled cache. It distributes the SPM to the
running processes and decides which code pages should be
loaded into the SPM and which are assigned to the hardware
cache. It supports both SPM-optimized and SPM-unaware
applications. Only SPM-optimized binaries will make use of
the SPM, while SPM-unoptimized binaries are mapped to
the hardware cache.

The SPMM needs to be notified for the following five
events: (1) a new process is created, (2) a running process
exits, (3) a process changes its ready-to-run status, (4) a pro-
cess is scheduled, and (5) an MMU page fault occurs. When-
ever an new process is created, the SPMM checks whether
the application is SPM-optimized, i.e., has been processed
by our postpass optimizer (Section 4). SPM-optimized bi-
naries contain a map of all code blocks listing their access
frequencies and loop affiliations. Every time the number of
ready-to-run processes changes, the SPMM redistributes the
SPM to all SPM-optimized processes that are ready to run.
If necessary, it also modifies the processes’ virtual memory
mappings based on the active SPM sharing strategy (Sec-
tion 3.2), the number of available SPM pages, and the in-
formation contained in each process’ code block map. Code
pages that are rarely accessed get mapped to the cache in
order not to pollute the SPM. The memory mappings of
pages that are to be loaded into the SPM before execution
are marked invalid so that accesses trigger an MMU page
fault. Whenever the control flow reaches unmapped code,
the MMU generates a pagefault exception. The exception is
handled by the RTE and forwarded to the SPMM which then
loads the requested page into the SPM and enables its page
table entry before the aborted instruction is restarted. If
there is no free page in the SPM, the SPMM chooses victim
and disables its memory mappings so that future accesses to
the evicted page will again trigger a page fault.

Currently, the SPMM employs a round-robin replacement
strategy because round robin does not depend on additional
hardware support in the form of page reference or aging bits
and its computational complexity is very low.

The decision which blocks are mapped to the cache and
which are to be loaded into the SPM prior to execution is
based on the number of available pages to the process. The

information embedded in the code block map not only con-
tains each block’s access frequency, but also its loop affilia-
tions and the loop hierarchy. If the size of the current work-
ing set exceeds the number of available pages, thrashing will
occur. In that case, the SPMM maps the least frequently
accessed pages of the working set to the cache.

Integration into Existing Operating Systems. In or-
der to facilitate easy integration into existing operating sys-
tems, the SPMM is built as a module. It needs to be in-
voked by the RTE for the five events listed in the previous
section. In our implementation, we define a global SPMM
record that contains five function pointers corresponding to
the five events:

SPMM = record
on create process
on destroy process
on change status
on schedule process
on page fault

end

The necessary changes to the existing code of the RTE are
thus reduced to a minimum. The integration of the SPMM
into the scheduler, for example, is outlined by the if state-
ment in the following pseudocode (pcurrent denotes the cur-
rently running process):

procedure schedule(register context *context)
var pold: process
begin

pold = pcurrent

pold.context = context
pcurrent = select next process()
context = pcurrent.context

if (spmm.on schedule process != NULL) begin
spmm.on schedule process(pold, pcurrent)

end
end

This implementation also enables us to freely switch the
SPM sharing strategy at runtime, even while processes are
running. This is possible because processes are not aware of
the SPM sharing strategy.

Effect on Virtual Memory Systems The SPM can be
regarded as an additional layer in the memory hierarchy of a
virtual memory system with paging and thus does not hinder
paging of memory pages to an external storage medium.
Minor modifications to the pagefault exception handler are
necessary to redirect pagefault exceptions that are caused
by pages to be run from the SPM to the SPMM.

3.2 SPM Sharing Strategies
Where a page is placed in the SPM and which page is

evicted from it when a page fault exception occurs is de-
termined by the SPM sharing strategy. We propose three
different strategies for multiprocess SPM allocation: shared,
dedicated, and dedicated with pool. In the shared SPM shar-
ing strategy, the SPM is treated as a global resource and
shared among all running processes. The dedicated SPM
sharing strategy divides the SPM into n disjoint regions and
assigns one region to each SPM-optimized process. The ded-
icated with pool SPM sharing strategy is a combination of
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the shared and the dedicated strategies: part of the SPM is
divided into n disjoint regions while the remaining portion
is shared among all processes.

We have designed all three strategies with the follow-
ing goals in mind: easy adaptation, maximum preservation,
computational complexity, small task-switching overhead,
and fairness. Adaptation is important because processes are
created and destroyed at arbitrary times. An SPM sharing
strategy must be able to easily adapt at runtime to a varying
number of SPM-optimized processes. Whenever a process
joins or leaves, the SPM is redistributed among all active
processes. Ideally, the newly computed allocation preserves
as much of the old state as possible. For example, a recently
allocated page should not be evicted from the SPM before
all the older pages have been replaced. Similarly, if a process
has to release a few of its pages because a new process joins,
then these pages should be the ones that would be replaced
next because these are the oldest pages. Another case arises
when a process p has to surrender pages to another process
q. The pages moved from p to q may still contain code of p,
even though they now belong to q. An SPM sharing strat-
egy with good preservation will not evict that code from the
SPM until process q actually requires the pages.

Since a new SPM allocation needs to be computed at run-
time whenever a process joins or leaves, it is important that
the allocation algorithms do not require complex calcula-
tions. Similarly, the task-switching overhead introduced by
the SPM sharing strategy should be kept as small as possi-
ble. Finally, an SPM sharing strategy should be fair, that
is, a single process should not be able to cling to the whole
or an over-proportional part of the SPM and thereby dis-
criminating other processes.

3.2.1 The Shared Strategy
In the shared SPM sharing strategy, the SPM is shared

among all processes (Figure 1 (a)). The SPMM maintains
a single round-robin pointer, next, that points to the next
block to be replaced. Whenever a pagefault occurs, the re-
quested page is loaded into the designated SPM page, and
the next pointer is moved to the following page in the list.
If next does not point to a free page, that page is evicted
from the SPM as soon as a new page needs to be loaded.
On other words, the shared strategy manages the SPM as a
fully-associative, software-managed cache with round-robin
replacement.

The shared SPM sharing strategy satisfies all but one goal.
It easily adapts to joining or leaving processes and preserves
the existing SPM allocation. It does not require any compu-
tation when the number of running task changes, and there
is no task switching overhead introduced by the shared strat-
egy. It is, however, not particularly fair because a process
with a big working set can request as many pages as needed,
thereby evicting most or all pages of the other processes.

3.2.2 The Dedicated Strategy
For the dedicated SPM sharing strategy, the SPMM splits

the SPM into n disjoint regions where n is the number of ac-
tive SPM-optimized processes. These regions are dedicated
to the process they are assigned to, i.e., other processes can-
not load pages into another process’ region. The size of each
dedicated region is determined by the SPM division policy.
We have implemented two different policies, the maximum-
workingset (static), and the on-demand (adaptive) policy.

For each process p, the SPMM maintains a pointer nextp

that points to the next page to be replaced (Figure 1 (b)).
Whenever a process requests a page, the SPMM loads the
code into the designated page. If there is no free page left,
the SPMM replaces the oldest page within p’s region in a
round-robin fashion.

The dedicated SPM sharing strategy is fair because each
process can only occupy up to s(p) pages. Like the shared
strategy, the dedicated strategy does not cause any task
switching overhead for managing the SPM.

Easy adaptation and maximum preservation can be ac-
complished if we allow the disjoint regions to be discontigu-
ous. To do so, blocks of the SPM are managed with a ring
implemented with a doubly-linked list. The pseudo-code in
Figure 2 illustrates the process of computing a new SPM
allocation. Assume we have n running processes, and scur[i]
stands for the number of SPM blocks currently allocated
to process i. When a process joins or leaves, the SPMM
first computes the new number of SPM blocks snew[i] allo-
cated to each process. It then removes extra blocks from all
processes i where snew[i] < scur[i]. By following the round-
robin pointer next[i], the SPMM moves the snew[i]− scur[i]
oldest blocks to a temporary pool and leaves the more re-
cently allocated blocks allocated to process i. Finally, the
SPMM assigns the blocks from pool to all processes i where
scur[i] < snew[i]. The newly assigned blocks are inserted into
process i’s region at next[i], i.e., on a page fault, process i
will first allocate the new blocks before evicting its own code
blocks. Since

P
i in P

scur[i] =
P

i in P

snew[i], the number of re-

claimed blocks is equal to the number of reassigned blocks,
i.e., pool is empty at the end of AllocateSPM.

The complexity of the dedicated SPM sharing strategy de-
pends on the sharing policy. Static policies, i.e., policies
that do not change the SPM distribution unless the number
of running processes changes, have a very little overhead.
Adaptive policies monitor the behavior of the running pro-
cesses and recompute a new SPM distribution when required
and thus incur a higher overhead.

The Maximum-Workingset Policy. In this policy, the
size of a process’ private region is proportional to the maxi-
mum working set of that process (computed by the postpass
optimizer at compile-time, see Section 4). The maximum-
workingset policy is static, i.e., the distribution of the SPM
does not change unless a new process joins or a running
process exits.

The On-Demand Policy. During its execution, a pro-
cess may go through various phases with different working
sets. The on-demand policy distributes the SPM accord-
ing to the current working sets of the running processes,
ws(p), by keeping track of the average number of pagefaults,
φPF (p), over the last k epochs of process p. φPF (p) de-
pends on the relationship of s(p), the number of pages allo-
cated to p, and ws(p): if s(p) ≥ ws(p), process p will gen-
erate no or only compulsory misses, but for s(p) < ws(p),
(possibly many) capacity misses occur. The on-demand pol-
icy constantly measures the number of pagefaults and up-
dates φPF (p). Immediately before a process is scheduled,
φPF (p) is compared to φPFlast(p), the average number of
pagefaults used when the current SPM distribution was cal-
culated. If φPF (p) differs significantly from φPFlast, then
the SPM distribution is re-computed. The on-demand pol-
icy is adaptive as it matches the SPM distribution to the
current working set of the running processes.
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Figure 1: SPM sharing strategies: (a) shared, (b) dedicated, and (c) dedicated with pool.

3.2.3 The Dedicated with Pool Strategy
The dedicated with pool SPM sharing strategy is a mixture

between the shared and the dedicated SPM sharing strategy.
A part of the SPM, the shared pool, is shared between all
processes. The remaining blocks are distributed according
to the dedicated SPM sharing strategy (Figure 1 (c)). The
shared pool is always allocated to the currently running pro-
cess. The dedicated with pool strategy can be considered the
common case because a shared pool size of zero blocks yields
the identical SPM allocation as the dedicated strategy. Like-
wise, with a shared pool size equal to the number of SPM
blocks, the allocation is the same as in the shared SPM shar-
ing strategy.

The dedicated with pool strategy incurs a small overhead
at each task switch when the blocks of the shared pool are
moved from the old to the newly scheduled process (Fig-
ure 3). Assume that the size of the shared pool is two
blocks, i.e., sshared = 2, and that these blocks are allocated
to the currently running process, p. For efficiency reasons,
the dedicated with pool SPM sharing strategy maintains a
per-process pool end[p] pointer that is always exactly sshared

blocks ahead of next[p]. Whenever the running process al-
locates a new block, both pointers, next[p] and pool end[p]
are advanced by one block, i.e., at any time the shared pool
consists of the sshared oldest blocks between next[p] and
pool end[p] of the currently running process.

Moving the shared pool from p to q requires the follow-
ing steps: first, the sshared oldest blocks of p are removed.
Since pool end[p] is always sshared blocks ahead of next[p],
the SPMM links the block preceding next[p] to pool end[p]
(Figure 3 upper row). The two blocks are then inserted into
q’s list of SPM blocks as shown in the lower row of Figure 3.

In terms of adaptation, preservation, and computational
complexity, the dedicated with pool SPM sharing strategy
is equal to the dedicated strategy. It is also fair because a
process can only allocate up to scur[p] + sshared blocks. At
each task switch, the dedicated with pool strategy incurs a
small overhead caused by moving the shared pool from the
old to the newly scheduled process.

Table 1 summarizes the properties of the SPM sharing
strategies discussed in this section. The task-switching over-
head of the dedicated with pool strategy is caused by moving
the shared pool. The on-demand policy introduces an addi-
tional overhead of keeping track of the number of pagefaults
and, if necessary, recomputing a new SPM distribution.

Table 1: Properties of the Proposed SPM Shar-
ing Strategies. (MWS: Maximum-Workingset Pol-
icy, OD: On-Demand Policy, n: Number of SPM-
Optimized Processes)

SPM sharing strategy

Property shared dedicated dedicated with pool

MWS OD MWS OD

Easy adaptation yes yes yes

Maximum Preservation yes yes yes

Fairness no yes somewhat

Computational complexity O(1) O(n) O(n)

Task-switching overhead no no yes yes yes

3.3 Predictability and Real-Time Tasks
To give an estimation of the worst-case execution time

(WCET), we have to assume that a page fault occurs every
time the control flow reaches code in the paged region. A
guaranteed lower WCET is difficult to asses because the
number of active processes changes dynamically at runtime
(Section 5.3 quantifies the penalty incurred for a single page
fault). This WCET estimation might not be good enough for
real-time tasks with tight timing constraints. The SPMM
therefore provides an API for real-time tasks which allows
them to exclusively allocate n SPM pages. Internally, the
SPMM removes these pages from the list of globally available
pages and recomputes a new SPM allocation. This approach
works with all proposed SPM sharing strategies.

4. SPM-OPTIMIZED APPLICATIONS
In order to achieve the best performance while saving as

much energy as possible, frequently executed code should
be run from the SPM whereas rarely accessed instructions
should be accessed via a cache or directly from the external
memory. The postpass optimizer is based on the one pre-
sented in [7]. It disassembles ARM ELF binaries, analyzes
the traces of training runs, and sorts the code of an applica-
tion based on the access frequency. Temporally local code is
clustered into pages the size of an MMU memory page. The
postpass optimizer also constructs the dynamic control flow
graph of the entire application and detects loops. Once all
code has been placed in pages, the loop hierarchy is used to
compute the maximal working set of an application.

To improve code density within the pages, the postpass
optimizer performs several optimizations. On the function
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procedure AllocateSPM(Thread list P )
begin

compute snew according to the active policy

pool := φ
for i in P do begin

if (snew[i] < scur[i]) then begin
move (scur[i] − snew[i]) blocks from process i to pool

end
end

for i in P do begin
if (snew[i] > scur[i]) then begin

move (snew[i] − scur[i]) blocks from pool to process i
end
scur[i] := snew[i]

end
end

policy MaxWorkingSet(Thread list P , distribution snew)
begin

for i in P do begin

snew[i] :=
max working set[i]P

j in P
max working set[j]

· # of SPM pages

end
end

policy OnDemand(Thread list P , distribution snew)
begin

for i in P do begin

snew[i] :=
φPF [i]P

j in P
φPF [j]

· # of SPM pages

end

for i in P do φPFlast[i] := φPF [i]
end

Figure 2: Computing a new SPM allocation for
the dedicated SPM strategy depending on the pol-
icy. scur[i] contains the number of blocks currently
assigned to process i.

level, infrequently executed basic blocks are separated from
frequently executed ones and allocated to different pages.
On the loop level, functions are sorted according to their
access frequency and placed in descending order. The func-
tions of the innermost loops are allocated to pages first, and
code of the outer loop is only placed in those pages to re-
duce internal fragmentation. ARM code includes small data
sections, so called data pools, that contain constants that
are to big to be encoded as an immediate operand or global
data addresses. The postpass optimizer extracts the con-
stant pools from the code sections because if they are placed
in the instruction SPM, data reads incur an additional two
cycle penalty. Like code, the extracted constant pools are
clustered into pages. To satisfy the constraints imposed by
the limited range of immediate operands, those data pages
have to be placed in the near vicinity of the code page(s)
referencing them. The final layout of an SPM-optimized
application thus does not contain separated text and data
sections, but rather single pages containing code or data.

After the final code and data layout has been computed,
the postpass optimizer inserts a code block map listing each
block’s access frequency and loop affiliation. Finally, the
postpass optimizer generates a new ELF binary. It is note-
worthy that the SPM-optimized binaries run unmodified on
systems with no SPM.

p

next

pool_end pool_end
p

next

pool_end

next
q

pool_endnext

q

(a) (b)

Figure 3: Moving a shared pool of two blocks from
p to q. (a) before (b) after moving the shared pool.

Table 2: Access Latencies in CPU Cycles

Memory Hit Miss
Cache 1 2 + writeback + line fetch
unified TLB 1 3 + MMU page table walk
µTLB 1 2 + unified TLB access
Memory Read Write
SPM 1 1
SDRAM

sequential 24 24
non-seq. 27 27

5. EVALUATION ENVIRONMENT

5.1 Simulation Environment
The multiprocess benchmarks are executed on a cycle-

accurate ARM architecture simulator [14]. The simulator
models the ARM9E-S processor core and supports the
ARMv5TE instruction set. It includes timing models for the
pipelined ARM9E-S core, the MMU with the unified TLB,
caches with µTLBs, scratchpad memory, the AMBA AHB
bus, and external memory. For the simulations, the proces-
sor core clock is set to 200 MHz. The data cache and the
instruction cache of the reference case are virtually-indexed,
virtually-tagged, i.e., accesses to the caches do not require
prior address translation by the MMU. This is in contrast
to the horizontally partitioned memory architecture where
both the SPM and the minicache are physically addressed.
The page size of an MMU page is set to 256 bytes. The la-
tencies of the caches, the SPM, the unified and the µTLBs,
and the external memory (SDRAM) are shown in Table 2.

5.2 Memory System
The SPMM and the SPM sharing strategies are designed

for high performance embedded processors with both a cache
and an SPM with the same access latency, such as the
ARM11 processors. The ARM11 chip, however, accesses
both the cache and the SPM for every access, independent
of the actual location of the requested instruction. To ob-
tain optimal energy savings, we have therefore proposed a
horizontally-partitioned memory system where the address
translation is performed first and then only the memory con-
taining the address is accessed [7]. We have shown that the
increased latency introduced by the prior address transla-
tion limits the maximum clock frequency of the level-one
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memory system to about 1.5GHz for 0.13-µm manufacturing
technology. This is, however, not a problem for contempo-
rary embedded processors where clock frequencies typically
still are below 1 GHz.

5.3 The Runtime Environment
We have implemented a small RTE consisting of a loader,

a scheduler, and the SPMM. The scheduler is a preempting
round-robin scheduler. All processes have equal priority.
Processes in the scheduler queue are always ready-to-run
because there are no data dependencies between processes
and all I/O data is placed in external memory. The loader
loads processes from a RAM file system and assigns stack
and heap areas to newly created processes.

Whenever a process accesses an unmapped instruction,
on average, the penalty incurred by loading the correspond-
ing page into the SPM is 69 instructions, or 240 core clocks
(1.2ms). The interrupt handler is responsible for 7 instruc-
tions, and the SPMM requires 48 instructions for manag-
ing the SPM, advancing the round robin pointers and dis-
abling/enabling the memory mappings. Copying a page of
256 bytes requires 14 load/store multiple instructions.

5.4 Performance Metrics
We use the total energy consumed by the core and the

memory subsystem as the energy metric and the total ex-
ecution time as the performance metric. Additionally, we
define the throughput of the RTE as the amount of work per
time. The amount of work, i.e., running a benchmark from
start to the end, is constant, thus

throughput =
c

Ttotal

The simulator computes the total number of core clocks from
the start till the end of a run. The end of a run is reached
as soon as the last single process applications of a multi-
process benchmark ends. The execution time is computed
by dividing the measured number of core clocks by the core
clock frequency:

Ttotal =
# core clocks

core frequency

The energy consumption is calculated by summing up the
the core energy, the on-chip memory system with both
µTLBs (if present), the unified TLB, the instruction and
the data cache, the SPM (if present), the off-chip bus, and
the external memory (SDRAM).

For the horizontally partitioned memory system, the en-
ergies consumed by the TLBs, the caches and the SPM are
computed by

ETLB = eTLB(hit + miss)

Ecache = ecache(hit + miss · linesize)

ESPM = eSPM (read + write)

where eTLB , ecache, and eSPM denote the access energy for
the respective memory type. Hit and miss denote the num-
ber of hits and the number of misses for the corresponding
memory structures, respectively. The µTLBs and the uni-
fied TLB are modeled as caches with a 4-byte linesize, hence
writing a datum costs one word write. The cache energy is
computed accordingly, only this time with the correspond-
ing linesize. The SPM energy is simply the access energy
multiplied by the sum of reads and writes.

Table 3: Multiprocess Benchmarks

Applications Code Applications Code

Benchmark Start Size Benchmark Start Size

[ticks] [KB] [ticks] [KB]

combine 0 epic 0
dsp

fft 0
21

multimedia 1 fft ? 69

pgpd 0 pgpe ?

internet 1 pgpe 0 108 mp3 0

unepic 0 mp4d 103

combine 0 multimedia 2 pgpd 50 166

fft 0 pgpe 179

mp3 0 unepic 5

high load mp4d 0 186 epic 36

pgpd 0 h264 0

pgpe 0 multimedia 3 mp4e 93 230

unepic 0 pgpe 147

combine 63 unepic 43

epic 0 fft 0

fft 112 mp3 69
internet 2

mp4d 7
133

multimedia 4 pgpd 53 141

pgpe 139 pgpe 141

unepic 193 unepic 189

The SDRAM energy is composed of static and dynamic
energy [17]. We have modeled the low power 64-MB Sam-
sung K4X51163PC SDRAM [22] with a memory bus fre-
quency fmem = 66 MHz and a supply voltage Vdd = 1.8 V.
The static energy consumption includes the standby power
and the power to periodically refresh the SDRAM cells and
is computed by multiplying the execution time by the static
power consumption. The dynamic energy comprises of the
read random, write random, read burst, and write burst en-
ergy. It includes both the SDRAM dynamic energy and the
memory bus energy.

5.5 Benchmarks
Lacking a suitable benchmark suite consisting of multi-

process applications for portable devices, we use fifteen em-
bedded applications to construct representative multipro-
cess benchmarks. The applications include nine benchmarks
from MiBench [8] and MediaBench [13], a H.264 video de-
coder [9], the official ISO MP3 decoder [18], MPEG-4 XviD
encoding/decoding [28], and a public key encryption tool,
Pretty Good Privacy (PGP) [21]. We chained the applica-
tions quicksort, dijkstra, SHA, ADPCM-enc, ADPCM-dec,
and bitcount together into one application called combine.
Each of the smaller applications is executed once in combine
to represent an embedded program with multiple phases.

Each of the multi-process benchmarks comprises of sev-
eral applications. The benchmarks dsp, internet 1, and high
load represent increasing workloads, and all applications are
started simultaneously. The benchmarks internet 2 and mul-
timedia 1-4 represent dynamic workloads and were gener-
ated by randomly selecting both the applications contained
within and their starting time.

Table 3 summarizes the characteristics of each multipro-
cess benchmark. The columns Benchmark show the eight
multiprocess benchmarks. The columns Applications list
the single process applications of each benchmark and their
starting time. A starting time of zero implies that the ap-
plication is started as soon as the scheduler starts running.
A starting time of t ticks denotes that the application is
started after t scheduler ticks.
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Table 4: Energy Consumption and Execution Time of the Different SPM Sharing Strategies in Comparison
with a Fully-Cached System. E stands for Energy, and T denotes the Throughput

SPM sharing strategy

hybrid with on-demand policy
Benchmark ideal divided

1/4 2/4 3/4
global

E T E T E T E T E T E T

dsp 63% 148% 75% 126% 66% 141% 63% 147% 63% 147% 63% 147%

internet 1 75% 118% 76% 117% 75% 117% 75% 117% 75% 117% 75% 117%

high load 65% 154% 113% 96% 88% 119% 79% 130% 73% 140% 66% 152%

internet 2 69% 135% 102% 98% 81% 119% 76% 126% 72% 131% 70% 134%

multimedia 1 73% 123% 87% 107% 78% 116% 75% 120% 74% 122% 74% 122%

multimedia 2 51% 227% 91% 140% 80% 157% 70% 176% 65% 188% 57% 210%

multimedia 3 71% 130% 110% 96% 102% 102% 98% 105% 96% 108% 95% 108%

multimedia 4 48% 237% 59% 202% 55% 214% 53% 221% 53% 223% 53% 224%

Geo.mean 64% 154% 87% 119% 77% 132% 73% 139% 70% 143% 68% 147%

6. EXPERIMENTAL RESULTS
The reference case for our measurements is defined by

running all benchmarks in the RTE on an ARM926EJ-S
core with virtually-indexed, virtually-tagged caches. The in-
struction cache size of the reference case is set to the smallest
cache that achieves a cache miss ratio of about 1% (4 KB
for all benchmarks). The size of the data cache is fixed to
16 KB. For the reference case, the multiprocess benchmarks
are composed of the original (SPM-unaware) single process
applications.

A theoretical lower bound, the so-called ideal case, is ob-
tained by running each benchmark with the original (SPM-
unaware) applications on the horizontally partitioned mem-
ory architecture. We assume that all instruction fetches are
covered by the SPM. The SPM is not large enough to hold
all code at once, but we assume that it always contains the
required instructions, i.e., no pagefaults occur and no code
needs to be copied from the external memory into the SPM.
We choose this setup because the access energy of an SPM
that is large enough to hold all code is so high that the energy
consumption is higher than that of the reference case. This
means that, in practice, this lower bound is unachievable,
but we will show that the proposed SPM sharing strategies
approach the lower bound if the number of pagefaults is rea-
sonably small.

The results for the proposed dynamic SPM allocation with
the shared, dedicated, and dedicated with pool SPM sharing
schemes are obtained by running the benchmarks comprising
of the SPM-optimized images on an ARM926EJ-S core with
a horizontally partitioned memory system on the instruc-
tion side. The original 4-KB, 4-way set-associative cache is
replaced by an 8-KB SPM and a 256-byte direct-mapped
cache. Thanks to the simpler design of the SPM, the hor-
izontally partitioned memory system fits into the same die
area as the original cache. The data side is left unmodified.

Figures 4 and 5 compare the throughput and the energy
consumption of the reference images, denoted ref, to the
ideal case (ideal), the three SPM sharing strategies, dedi-
cated, dedicated with pool (with a pool size of 1/4, 2/4, and
3/4 of the available SPM size), and the shared SPM shar-
ing strategy. Both the dedicated and the dedicated with pool
sharing strategies use the on-demand policy which adapts
the SPM distribution on-demand based on the number of
pagefaults.

The energy consumption in Figure 5 is split up into CPU

core, SDRAM (includes static and dynamic energy), TLB
(includes the energy of the unified and the µTLBs), instruc-
tion cache, data cache, and SPM energy. The energy con-
sumption of the CPU core is directly proportional to the
execution time, i.e., the execution time is represented by
the fraction of the CPU Core bar. Note that we assume
virtually-indexed, virtually-tagged caches, thus, the refer-
ence case consumes no TLB energy except for a couple of
unified TLB misses. The other cases, on the other hand,
require address translation by the µTLBs prior to accessing
the correct memory and consequently spend about 9% of the
total energy in the TLBs.

Figure 6, finally, shows the number of pagefaults normal-
ized to the dedicated case (no pagefaults occur in the ref-
erence or ideal case). The number above the dedicated bar
represents the absolute number of pagefaults.

We have run all benchmarks at a scheduling frequency
of 100 and 300 Hz, as well as two reference cache sizes (4
KB and 8 KB). The results of the different configurations
are comparable, and we only show the results for the 4-KB
reference case running at a scheduling frequency of 100 Hz.

Compared to the reference case, the ideal case consumes
only about 64% of the energy and achieves a throughput
of 154%. The SPM uses significantly less energy than the
instruction cache, and since we assume that all instructions
reside in SPM, the SDRAM energy is also reduced because
of the absent cache misses (reduced dynamic energy) and the
shorter runtime (reduced static energy). The dedicated case
performs not very well. Figure 6 reveals that the completely
separated, private SPMs assigned to each running applica-
tion are too small and result in a huge number of pagefaults.
The exception, internet 1, has only 771 pagefaults because
the working sets of the three applications it is comprised of
almost fit into the available SPM.

As we increase the size of the shared pool in the dedi-
cated with pool cases, the number of pagefaults drops, and
both the energy consumption and the throughput signifi-
cantly outperform the reference case. The shared SPM shar-
ing strategy, finally, achieves the best results overall, both
in terms of throughput and energy consumption. Figure 6
shows that this is due to the overall smallest number of page-
faults. While the shared strategy is susceptible to applica-
tions with a big working set that could lead to the eviction
of other processes’ pages, this disadvantage is not as big as
expected.
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Figure 4: Throughput.
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Figure 5: Energy consumption of core and memory subsystem.
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Figure 6: Relative and absolute number of pagefaults.

On average, the dedicated SPM sharing strategy achieves
a 19% increase in throughput and a 13% reduction in energy
consumption (Table 4). The dedicated with pool SPM shar-
ing strategy achieves a 32%, 39%, and 43% improvement in
throughput and a 23%, 27%, and 30% reduction in energy
consumption for a shared pool size of 1/4, 2/4, and 3/4 of
the SPM size, respectively. Finally, the shared SPM shar-
ing strategy achieves a 47% improvement in throughput and

a 32% reduction in energy consumption over a fully-cached
ARM926EJ-S core.

A comparison of the shared SPM sharing strategy with the
(in practice unachievable) ideal case shows that the shared
SPM strategy achieves a very good performance and ex-
ploits, on average, 87% of the runtime improvements and
89% of the energy savings possible.
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7. CONCLUSION AND FUTURE WORK
In this paper we have introduced an SPM management

technique for systems with virtual memory and preemptive
multitasking. We propose three SPM sharing strategies, the
shared, the dedicated, and the dedicated with pool SPM shar-
ing strategy, and analyze them in terms of implementation
issues and with regard to preferable properties of multipro-
cess SPM allocation schemes.

The SPM-optimized applications are generated by a post-
pass optimizer that clusters temporally local code into pages.
At runtime, the pages are loaded into the SPM on demand
by an SPM manager (SPMM) by intercepting the MMU’s
page fault exception.

We have evaluated the three strategies on a horizontally
partitioned memory system with a physically-addressed
SPM and a small minicache. The multiprocess benchmarks
developed for this work are run on a simple runtime envi-
ronment (RTE) with a preempting round-robin scheduler,
a loader, and the SPMM. We compare the proposed multi-
process SPM sharing strategies to a fully-cached reference
system.

On average, we achieve a 47% improvement in through-
put, and a 32% reduction in energy consumption with the
shared strategy. Compared to the ideal case, the shared shar-
ing strategy exploits 87% of the throughput improvements
and 89% of the energy savings possible.

In our future work, we will employ more advanced SPM
page replacement techniques in the SPMM, and extend our
work to multiprocess systems without an MMU.
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