
Concurrency Emulation and Analysis of Parallel
Applications for Multi-Processor System-on-Chip

Co-Design

Giovanni Beltrame
European Space Agency

Keplerlaan 1
Noordwijk, The Netherlands

giovanni.beltrame@esa.int

Luca Fossati, Donatella Sciuto
Politecnico di Milano

Piazza Leonardo da Vinci
Milano, Italy

{fossati, sciuto}@elet.polimi.it

ABSTRACT

This paper presents a novel technique for the modeling and
the simulation of parallel applications for Multi-Processor
Systems-on-Chip (MPSoCs). This technique consists of an
application-transparent emulation of OS primitives, includ-
ing task creation, scheduling, synchronization etc.; this emu-
lation guarantees compatibility with any program compiled
against the standard POSIX library, independently of the
target OS. This methodology can be used to perform initial
HW/SW partitioning and concurrent engineering of a given
application, as it allows any software routine to be trans-
parently emulated with SystemC modules. The proposed
approach has been verified on a large set of multi-threaded
benchmarks, with both POSIX Threads and OpenMP pro-
gramming styles. Results show that our methodology en-
ables (a) fast simulation of POSIX applications, (b) accurate
analysis of multi-threaded applications, and (c) co-design
and fast preliminary hardware-software partitioning.

This work has been partially supported by the European HiPEAC

network of excellence.

Categories and Subject Descriptors

I.6.4 [Computing Methodologies]: Simulation and Mod-
eling—Model Validation and Analysis

General Terms

Design, Measurement, Performance

Keywords

OpenMP, MPSoC, codesign, Operating System, Emulation, ReSP

1. INTRODUCTION
Industry migration from implicit to explicit concurrency

in processor architectures is facing many issues, for which
there are few solutions [8]. As new programming paradigms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

and compilers are debated research topics, the application
designer has to manually identify, capture, schedule and map
concurrency. Moreover, increasingly large portions of elec-
tronic systems are being implemented in software and its
development cost starts dominating the cost for the whole
system. Software is also becoming the critical part of the
development schedule, mainly because deploying and test-
ing it on the real target hardware is complicated. The con-
current design of hardware and software aims at mitigating
these issues, allowing software to be developed before the
final hardware is ready. Three main methodologies have
been devised [15]: the use of an FPGA emulator, the use of
a workstation with appropriate scaffolding, or running the
software in a virtual platform (full system simulator). In
particular, the latter technique offers an approach that has
many advantages (flexibility, accuracy, observability, etc.)
with respect to the other methods.

When developing parallel programs, the identification of
performance bottlenecks is an increasingly important and
challenging task, due to the complex relationship between
application, operating system, and underlying hardware con-
figuration. In order to gather timing details as soon as pos-
sible in the development process we need high level models
of such intricate relationships. Accurate simulation also re-
quires taking into account the effect of the Operating Sys-
tem. Unfortunately, most of the available high level co-
simulation methodologies suffer from the so called code equiv-
alence problem (as presented in [15]) in that the code exe-
cuted by the virtual system is different from the code exe-
cuted by the real hardware. This not only affects the appli-
cation timing, but it may also change the overall system be-
havior leading to less-than-optimal or wrong design choices.

In this work we address the aforementioned issues by pro-
viding a co-design environment suitable for the development
of multi-processor systems. The base idea consists in a trans-
parent emulation of OS primitives: this emulation guaran-
tees full compatibility with any program compiled against
the POSIX library (including OpenMP and Pthread based
applications); it can also be easily ported to other embed-
ded software standards. The presented methodology can be
applied to a variety of tasks, such as evaluation of the per-
formance of OpenMP constructs, the measurement of the in-
herent concurrency of the software under development, and
the identification of optimal OS configurations. In addition,
we present how it is possible to apply these ideas for initial
design space exploration.

7

This paper is organized as follows: Section 2 describes
previous research on the subject and Section 3 presents how
the proposed methodology addresses the identified issues.
Finally, Section 4 shows the experimental results and Sec-
tion 5 draws some concluding remarks.

2. PREVIOUS WORK
The HW/SW Co-design flow [14] usually starts at system-

level, when the boundaries between the hardware and soft-
ware parts of the final system have not yet been established.
After functional verification, the HW/SW partitioning takes
place and co-simulation is employed to validate and refine
the system. The tight market constraints and the high com-
plexity of current designs push to anticipate as early as pos-
sible thisHW/SW co-validation phase, even before an In-
struction Set Simulator (ISS) for the target architecture is
available. These motivations, together with the fact that
simulation speed of an ISS is usually low, have pushed for
the addition of OS models in system-level Hardware Descrip-
tion Languages (HDL) (as SystemC or SpecC). This allows
native execution of both the hardware and software models
of the system, thus consistently speeding-up simulation. In
addition, since both hardware and software partitions are
described using the same HDL, it is easy to move function-
alities between them.

The authors of [15] present a technique to automatically
generate timed OS simulation models; these models par-
tially re-use the high level OS code, thus mitigating the code
equivalence problem. Since execution is native on the host
machine, the timing of the target architecture is not accu-
rately replicated. On the contrary, we use ISSs in our ap-
proach: this means lower simulation speed but also, as the
assembly code of the final application is used, a reduction
of the code equivalence problem. We also do not depend
on a particular OS, so a wider design space exploration is
possible.

Schirner and Domer [12] address the problem of modeling
preemption and interrupts in abstract RTOS models; they
apply the Result Oriented Modeling (ROM) technique in
order to guarantee accurate interrupt response time while
maintaining fast simulation speed. They mainly concen-
trate on simulating the system timing behavior and the code
equivalence problem is not taken into account.

An untimed abstract model of an RTOS is presented in [6];
the model supports all the services of the μITRON stan-
dard, therefore it can be used with a wide range of applica-
tions, but this work is applied only to uniprocessor systems.

A different approach, valid during the early phases of the
design cycle, is used in [2]; the authors automate the trans-
lation of SystemC processes into threads of the underlying
OS. This mechanism enables quick evaluation of the pos-
sible assignments of tasks to hardware or software compo-
nents. The same objectives are reached in [9] by mapping
OS thread management primitives into SystemC ones. Due
to limitations in the SystemC process model, these works do
not achieve true concurrency. Girods et al. [5] also address
the lack of support for embedded software development by
working in the .NET environment.

These approaches are valid to help the designer perform
and refine the HW/SW partition, but they do not help in the
validation of the system functionalities (for the code equiva-
lence problem), and they are very limited in the assessment
of the system’s timing properties. On the other hand, the

execution on an ISS of the exact same software which will be
deployed on the embedded system creates problems because
the OS has to be already chosen and ported to the target
hardware. Moreover, having the OS ready means it might
be difficult to refine the HW/SW partitioning since the OS
should be updated accordingly.

In this paper we propose a way to emulate OS primi-
tives in order to minimize code equivalence issues while still
maintaining independence from specific OSes. Our tech-
nique also enables early HW/SW codesign, and it allows the
evaluation of different synchronization strategies for multi-
processor systems.

3. PROPOSED METHODOLOGY
For the implementation and the evaluation of the design

methodology presented in this paper we use the Open Source
simulation platform ReSP [1].

ReSP is based on the SystemC library and it targets the
modeling of Multi-Processor Systems. Its most peculiar fea-
ture consists in the integration of C++ and Python pro-
gramming languages; this augments the platform with the
concept of reflection [4], allowing full observability and con-
trol of every C++ or SystemC element (variable, method,
etc.) specified in any component model.

In this work, we exploit and extend ReSP’s characteristics
to include a System Call Emulation subsystem. This is used
for the preliminary exploration of the applications’ bottle-
necks, for guiding the designer in the choice of the target
OS and as a support for early HW/SW codesign. The rest
of this Section is devoted to a more thorough explanation of
such concepts.

3.1 System Call Emulation
System Call Emulation is a technique which allows the ex-

ecution of application programs on an Instruction Set Simu-
lator (ISS) without the need to simulate a complete OS. The
low level calls made by the application to the OS routines
(system calls, SC) are identified and intercepted by the ISS,
and then redirected to the host environment which takes
care of their actual execution. Suppose, for example, that
an application program contains a call to the open routine to
open file“filename”. Such a call is identified by the ISS using
the mechanisms described below and routed to the host OS,
which actually opens“filename”on the PC’s filesystem. The
file handle is then passed back to the simulated environment.

As outlined in Section 1, having a simulation framework
with System Call Emulation capabilities allows the applica-
tion developers to start working as early as possible, even
before a definite choice about the target OS is performed.
These capabilities are also used for ISS validation, by en-
abling fast benchmark execution. Thus, it is common to
find emulation features in instruction set simulators. Sim-It
ARM [10] and SWARM [13] simulate the Service Call (svc)
instruction of the ARM processor so that the corresponding
request is forwarded to the host OS. This requires the emula-
tion mechanism to have knowledge of the various svc codes
used by the different compilers. ArchC [11], on the other
hand, modifies to the compiler in order to insert jumps to
predefined addresses instead of the SC code; the ISS then
takes the appropriate action when one of these particular
addresses gets associated to the program counter.

Figure 1 shows an overview of our System Call emulation
mechanism. Each ISS communicates with one centralized

8

Trap Emulator (TE): this is the component responsible for
forwarding the System Calls from the simulated to the host
environment. In order to ensure independence between the
ISS and the TE, interfaces (IF) are created, and communi-
cation between the TE and the ISS exclusively takes place
through IFs. In our approach, instead of identifying the SCs

Figure 1: Organization of the simulated environ-
ment including the System Call Emulation module

through ad-hoc assembly instructions or special addresses,
the name (i.e. the symbol) of the routine corresponding to
the SC is used. When the application program is loaded for
execution, the names of the low level SCs (e.g. sbrk, _open,
etc.) are associated with their addresses in the application’s
binary file. At runtime the ISS checks for those addresses
and, when one matches the current program counter, the
corresponding functionality of the TE is called and the SC
is emulated. Figure 3 contains a more detailed explanation
of the mechanism for the sbrk SC: as the library function
malloc executes, it calls sbrk; the TE checks if the current
program counter is to be trapped, and as it recognizes sbrk,
it stops the ISS execution and performs the appropriate ac-
tions.

With respect to previous work, our implementation shows
the following advantages:

1. Independence from the cross-compiler toolchain: since
the names of the system call routines are used, there is
no need, for example, to adhere to the svc convention
with which the software is built or to create fictitious
jumps in the code

2. High interoperability with different ISS types: the IF
is the only component which needs customization to
allow a new ISS to be integrated with the TE

3. Extensibility : the presented mechanism can also be
used for preliminary hardware/software partitioning.
Moreover, by emulating the POSIX-Threads routines,
a multi-processor, multi-threading concurrency man-
ager was implemented

Since only the low level SCs (e.g. sbrk) are emulated and
the rest of the OS code (e.g. malloc) is executed unmodified
in the ISS, our method maintains high code equivalence with
the final software, even at the assembly level.

The remainder of the section is devoted to present in detail
all the components of the emulation mechanism and how
they can be used both for HW/SW codesign and for the
emulation and management of concurrency in a single- or
multi-processor environment.

3.1.1 Processor Interface
Communication between the Emulator and the Instruc-

tion Set Simulator is a critical point in the overall design:
on one hand it has to be designed so that ISSs can be easily
plugged into the system and, on the other hand, it has to be
as fast as possible to guarantee high simulation speed. These
requirements are in contrast with each other, thus the right
tradeoff has to be determined. As shown in Figure 2, two
solutions were identified: the first one is purely based on the
C++ language and it does not exploit any of the reflective
features of ReSP; the second one uses the Python language
to unintrusively access the ISS internal variables.

Writing pure C++ code sacrifices ease of use and flexibil-
ity for speed, meaning that the ISS code has to be slightly
modified in order to pass, at every cycle, the program counter
to the IF which, in turn, checks if it corresponds to the ad-
dress of one of the emulated routines. The biggest drawback
of this technique is that it requires access to the source code
of the ISS, which might not be always available.

The second solution is based on the reflective properties of
ReSP. Instead of having the ISS push each program counter
change to the TE, the TE reads it when necessary. This
is performed by using callbacks, methods which are called
when events happen in the simulator. In this case the trig-
gering event is a change in the program counter of each ISS.
With Python reflective capabilities and its integration with
the C++ language and the SystemC library, callbacks can
monitor the ISS without the need for any modification to
its source code. Unfortunately, this does not come for free:
the callback mechanisms is partly implemented in C++ and
partly in Python, and the switching between them is subject
to some overhead and consequent simulation slowdown (see
Section 4).

Figure 2: Communication mechanisms between the
ISS and the IF; the C++ or Python parts are alter-
native solutions

With respect to the communication from the TE to the
ISS, both solutions use the same mechanism: the IF exports
a set of methods which allow to (a) access the registers (PC,
SP, etc.), (b) access the memory as seen by the processor,
and (c) manage the Application Binary Interface (ABI) of
the target architecture. It is worth noting that the IF must
have knowledge of how the ISS is implemented in order to
work correctly. This means that new IFs should be created
for the correct integration of new ISS models.

3.1.2 Concurrency Manager
The majority of the embedded systems used nowadays

is composed of more than one processing unit, either in

9

heterogeneous or homogeneous configuration. To fully ex-
ploit those systems, parallel applications are needed. Such
applications require proper functionalities to manage task
creation and termination and to manage synchronization
among them. While these functionalities are normally pro-
vided by an OS, the number of approaches based on ded-
icated hardware components is growing, especially in the
embedded world.

The TE was extended for the emulation of concurrency
management routines with an additional unit, called Con-
currency Manager. The overall mechanism is analogous to
the one depicted in Figure 3, but instead of trapping I/O
or memory management, the TE traps routines for thread
creation, destruction, synchronization etc. For this purpose,
we created a placeholder library containing all the symbols
(i.e. the function identifiers) of the POSIX-Thread stan-
dard, with no implementation present. This ensures that
programs using the pthread library can correctly compile.
During execution, all calls to pthread routines are trapped
and forwarded to the Concurrency Manager.

If the application software is compiled with a recent GNU
GCC compiler (at least version 4.2) it is also possible to suc-
cessfully simulate OpenMP directives. In addition, by cor-
rectly trapping the libgomp routines, it is possible to directly
emulate OpenMP directives, hence enabling a quick evalua-
tion of their implementation using dedicated hardware com-
ponents. More details on this are presented in Section 3.2.

Many embedded systems operate in real-time environ-
ments and/or are composed of real-time subsystems. While
the current implementation of the Concurrency Manager is
not targeted to such systems, it can easily be extended to
support them by modifying the scheduling policy, by intro-
ducing the concept of task priorities, and by enabling the
modeling of interrupts.

Figure 3: Function Trap Emulator (TE)

3.2 Extension for HW/SW Codesign
While all the features introduced by the TE can be suc-

cessfully employed for software design and verification, their
applicability extends further. As shown in Figure 3, the ex-
tensions implemented in ReSP allow the designer to “trap”
any routine, not just the ones belonging to the Operating
System or to the POSIX-Thread library. This enables an
effective and fast evaluation of the different possible imple-
mentations of a given functionality f :

a) execution of the unchanged software routine: no trap

is installed for f and the functionality of f is simulated
on the ISS

b) emulation: a trap is installed for f and its behavior
emulated; since it is possible to associate a custom
delay d to the trap handler, we can explore how the
timing of the system would be if f were implemented
with a hardware module of delay d

c) implementation through a hardware module: the trap
handler triggers the execution of a SystemC defined
hardware module containing the functionality of f

Also in this situation, Python can be used to describe the
trap handler and/or the SystemC module for f , thus in-
creasing productivity and programming ease.

Since it is possible to associate a custom delay d with
any trap handler, the described techniques can be used to
explore the system behavior in front of threading and syn-
chronization primitives with different latencies, helping in
the choice of the operating system and, for example, in de-
ciding whether hardware managed threading is needed.

4. EXPERIMENTAL RESULTS
This Section presents the results obtained by applying the

described techniques to real world applications and to bench-
mark suites. In particular, we show how the trapping and
emulation capabilities of the system can be used (a) for hard-
ware/software codesign, (b) for the estimation of the paral-
lelism embedded in a given software application and (c) for
the estimation of thread management overhead. Finally we
present an analysis on how the introduced techniques impact
over simulation speed.

All tests have been executed using ReSP on a multi-ARM
architecture consisting of a variable number of cores with
caches, a shared memory, and timers, interrupt controllers
and UARTs as needed by the OS (for the experiments where
we used it), all interconnected by a shared bus, as shown by
Figure 1. The processors are clocked at 500MHz, and the
bus at 250MHz. Simulations where timing was recorded
were run on a Core 2 Duo 2.66GHz Linux machine.

4.1 OS Emulation for Co-Design
To prove the usefulness of the methodology for co-design,

we analyzed the impact of OS latencies on a set of par-
allel benchmarks. For this purpose, 8 benchmarks chosen
from the OpenMP Source Code Repository [3] were used.
All OS primitives were divided into 6 classes: thread cre-
ation (th-create); synchronization initialization, e.g. mutex,
semaphore, and condition variable creation (sync-init); mu-
tex locking and unlocking (mutex); semaphore waiting and
posting (sem); memory management (memory); and general
I/O (io). Since it is possible to associate custom latencies
to emulated routines, we can observe how different values
(corresponding to different system configurations) affect the
system.

Figure 4(e) shows the average behaviour of the 8 bench-
marks when the number of cores, as well as the number of
OpenMP threads, ranges from 2 to 16 in powers of 2. On
each of these hardware configurations, the benchmarks were
run with exponentially increasing latencies for each class,
yielding a total of 1344 simulations. The trend is that, for
increasing latency, synchronization primitives are the ones
that affect execution time most, while I/O and memory man-
agement have negligible effect. As a more specific example,

10

0

1 · 109

2 · 109

3 · 109

4 · 109
E

xe
cu

ti
on

T
im

e
[c

lo
ck

cy
cl

es
]

100 101 102 103 104

latency [clock cycles]

th-create

sync-init

mutex

io

memory

sem

(a) 2 PE 2 threads

0

1 · 109

2 · 109

3 · 109

4 · 109

E
xe

cu
ti

on
T

im
e

[c
lo

ck
cy

cl
es

]

100 101 102 103 104

latency [clock cycles]

th-create

sync-init

mutex

io

memory

sem

(b) 4 PE 4 threads

0

2 · 109

4 · 109

6 · 109

E
xe

cu
ti

on
T

im
e

[c
lo

ck
cy

cl
es

]

100 101 102 103 104

latency [clock cycles]

th-create

sync-init

mutex

io

memory

sem

(c) 8 PE 8 threads

0

2.5 · 109

5 · 109

7.5 · 109

1 · 1010

E
xe

cu
ti

on
T

im
e

[c
lo

ck
cy

cl
es

]

100 101 102 103 104

latency [clock cycles]

th-create

sync-init

mutex

io

memory

sem

(d) 16 PE 16 threads

0

0.01

0.02

0.03

0.04

0.05

N
or

m
.

E
xe

cu
ti

on
T

im
e

100 101 102 103 104

latency [clock cycles]

th-create

sync-init

mutex

io

memory

sem

(e) Global Average

0

2.5

5

7.5

10

Sp
ee

dU
p

[%
]

2 P-T 4 P-T 8 P-T 16 P-T

Configuration

(f) Hardware Synchronization

Figure 4: (a)-(d): execution Time in front of different System Call latencies; (e) shows the average execution
time on all the 1344 runs for the different 8 benchmarks ; (f) shows the increase in performance when using
a hardware synchronization module in different configurations

Figure 4 shows this effect for the lu benchmark: the impact
of synchronization grows noticeably and quickly exceeds ini-
tialization costs as the number of processors and threads
is increased. This kind of analysis can guide the designer
on the decision about the OS architecture, also taking into
account hardware-supported OS mechanisms.

In fact, targeting the latencies to an actual operating sys-
tem (e.g. eCos) can give a quick estimation of the perfor-
mance of an application with a given HW/OS configuration.
Figure 4(f) shows lu’s performance when a hardware accel-
erator for managing synchronization primitives is inserted
in the system. Assuming a memory-mapped module with
a 4-cycle latency (considering bus contention), we observe
an increasing speedup with the number of processors, satu-
rating around 8 processors (mainly due to the lack of paral-
lelism of the benchmark). For these experiments the average
latencies of the eCos OS for each of the 6 primitive classes
were measured. The runs were, then, performed by setting
the TE latencies to these values.

In general, as for synchronization primitives, any software
function can be trapped and emulated in either SystemC or
Python. This means that the proposed methodology can be
used to quickly shift functionalities from software to hard-
ware, without modifying the application’s source code, thus
helping the designer in the initial partitioning.

4.2 Overhead Estimation
The proposed methodology can also be used to estimate

the inherent parallelism of an application and the overhead
introduced by thread management. We examined two multi-
threaded open source applications and an OpenMP bench-
mark: ffmpeg, a powerful audio and video encoder/decoder,
pbzip2, a parallel block compression algorithm, and CG, a
scientific application kernel from the NASA Parallel Bench-
marks suite [7]. For these tests, a 4-core, 4-threaded archi-
tecture was used.

2

4

0 5 · 10−5

0

1

2

3

4

C
on

cu
rr

en
cy

0.2 0.4 0.6 0.8 1

Normalized time

2

4

0 5 · 10−5

pbzip2

CG

ffmpeg

Figure 5: Concurrency profiles on a 4-core architec-
ture; the initialization of pbzip2 is shown in detail

The main idea of these tests is to run the application set-
ting all the concurrency-related latencies to zero, hence ex-
posing the application’s parallel behaviour. The intuition
behind this is that, in the ideal case, when thread man-
agement costs 0, the speedup given by the execution on n
threads is equal to n; in practice this does not happen, ob-
taining a speedup of m ≤ n: n − m is a measure of the
application inherent parallelism. The concurrency profiles
presented in Figure 5 were measured averaging the num-
ber of active processors for each clock cycle over 250 points,
equally distributed along the time axis. To measure the
overhead introduced by thread management, we compare
the average concurrency expressed by each application with
the actual speedup obtained against single-threaded execu-
tion as overhead = (1 − speedup/concurrency) × 100.

The concurrency profile of ffmpeg transcoding (decoding
and encoding) a short clip from MPEG1 to MPEG4 shows
that, due to data dependencies and to the structure of ffm-

11

peg’s code, the 4 processors are never fully exploited, with
an average 2.6 processors working at the same time. When
compared to a single-core architecture, ffmpeg is 2.3 times
faster, yielding a 11% overhead. pbzip2, instead, offers more
exploitable concurrency as its algorithm has less data depen-
dencies. After a very small initial setup time, pbzip2 fully
exploits the available resources. However, even if the av-
erage concurrency expressed by pbzip2 is 3.4, its speedup
on 4 cores is only 2.9, resulting in a 15% overhead. Finally,
CG shows the benefits of OpenMP programming, with a very
smooth concurrency profile, locked to 3.9 after the initializa-
tion phase, and averaging at 3.77. CG’s speedup amounts to
3.55, yielding a small 9% overhead introduced by the com-
piler’s OpenMP runtime (GNU libgomp in our case). All
results are summarized in Table 1.

Table 1: Application runtimes and overheads
Name Concurrency Speedup Overhead
ffmpeg 2.6 2.3 11%
pbzip2 3.4 2.9 15%
CG 3.8 3.5 9%

4.3 Performance
To evaluate the performance of the proposed methodology,

8 OmpSCR benchmarks were run on the eCos OS, using a
4-core virtual platform. eCos system calls were profiled on
the 4-ARM architecture, and the average latency of each
class of system calls was determined. The derived latencies
were introduced for each system call in our OS emulation
system, and the benchmarks were executed once more; this
same procedure was adopted to create Figure 4(f). Figure 6
shows that even with this simple scheme, the methodology
can very well emulate the behavior of a specific OS, with
an average error of 9%. This is a reasonable error as full
code equivalence is present for the application and library
functions, but threading, multi-processor management, and
low-level OS functions are emulated. We plan to further
validate the accuracy of this approach by applying it to other
OSs as RTEMS, Embedded Linux, etc.

In addition, the use of the OS emulation layer introduces
a noticeable speedup when compared to running the OS on
each ISS. This is due to several factors, including the ab-
sence of hardware components emulated by the TE, such as
UARTs and Timers, and the fact that, in our mechanism,
idle processors do not execute busy loops but they are, in-
stead, suspended.

0

0.09

0.15

0.3

E
st

im
at

io
n

E
rr

or

fft
6

jac
ob

i1

jac
ob

i2

gr
ap

hS
ea

rch lu

man
de

l pi fft

1

2
2.35

3

4

5

Sim
ulation

SpeedU
p

Error

SpeedUp

Figure 6: Simulation speedup and estimation error
using the Emulation Layer instead of eCos

Finally, the overhead introduced when writing one of the

Table 2: Execution time for Python and C++ based
trap handlers

Language Avg. Time (sec.) STD (sec.)
Python 1.35 0.09
C++ 1.19 0.09

Slowdown (C + +/py) 17%

emulated functions in Python was measured Table 2 shows
that the use of Python slows down the function’s execution
time by 17% when compared to pure SystemC solution.

5. CONCLUDING REMARKS
In this paper we presented an innovative mechanism for

Operating System emulation inside Instruction Set Simula-
tors. In addition to being non intrusive in the ISS source
code, the described techniques are extended for the emu-
lation of POSIX-Threads routines and multi-processor con-
currency management. High code equivalence is maintained,
enabling fast and accurate simulation of POSIX applica-
tions.

Our methodology has been applied to many real world
concurrent applications and benchmarks using both POSIX-
Threads and OpenMP programming styles. Results show
that emulation brings an average speedup of 2.35 with an
average error of 9%. We also described how the proposed
methodology was applied to the measurement of the inherent
parallelism of software applications and how it can be used
for early HW/SW codesign.

6. REFERENCES
[1] G. Beltrame, C. Bolchini, L. Fossati, A. Miele, and D. Sciuto.

ReSP: a non-intrusive transaction-level reflective MPSoC
simulation platform for design space exploration. In ASP-DAC
’08, pages 673–678, 2008.

[2] P. Destro, F. Fummi, and G. Pravadelli. A smooth refinement
flow for co-designing HW and SW threads. In DATE ’07, pages
105–110, 2007.

[3] A. J. Dorta. The openMP source code repository. In PDP’05,
pages 244–250, Feb. 2005.

[4] B. Foote and R. E. Johnson. Reflective facilities in
smalltalk-80. pages 327–335, 1989.

[5] B. Girodias, E. M. Aboulhamid, and G. Nicolescu. A Platform
for Refinement of OS Services for Embedded Systems. In
DELTA ’06, pages 227–236, 2006.

[6] S. Honda, T. Wakabayashi, H. Tomiyama, and H. Takada.
RTOS-centric hardware/software cosimulator for embedded
system design. pages 158–163, 2004.

[7] H. Jin, M. Frumkin, and J. Yan. The OpenMP Implementation
of NAS Parallel Benchmarks and Its Performance.

[8] E. A. Lee. The problem with threads. Computer, vol. 39:pag.
33–42, 2006.

[9] H. Posadas, J. Ádamez, P. Sánchez, E. Villar, and F. Blasco.
POSIX modeling in SystemC. pages 485–490, 2006.

[10] W. Qin and S. Malik. Flexible and formal modeling of
microprocessors with application to retargetable simulation. In
DATE ’03, page 10556, 2003.

[11] S. Rigo, G. Araujo, M. Bartholomeu, and R. Azevedo. ArchC: a
SystemC-based architecture description language. In
SBAC-PAD 2004, pages 66–73, 2004.

[12] G. Schirner and R. Domer. Introducing preemptive scheduling
in abstract RTOS models using result oriented modeling. In
(DATE ’08), 2008.

[13] SWARM http://www.cl.cam.ac.uk/˜mwd24/phd/swarm.html.

[14] W. Wolf. A decade of hardware/software codesign. Computer,
36:38–43, 2003.

[15] S. Yoo, G. Nicolescu, L. Gauthier, and A. Jerraya. Automatic
Generation Including Fast Timed Simulation Models of
Operating Systems in Multiprocessor SoC Communication
Design. 2002.

12

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

