
A Performance-Oriented Hardware/Software Partitioning
for Datapath Applications

Laura Frigerio, Fabio Salice
Dip. di Elettronica e Informazione, Politecnico di Milano

Piazza Leonardo da Vinci, Milano, Italy
{lfrigerio,salice}@elet.polimi.it

ABSTRACT
This article proposes a hardware/software partitioning method
targeted to performance-constrained systems for datapath
applications. Exploiting a platform based design, a Timed
Petri Net formalism is proposed to represent the mapping
of the application onto the platform, allowing to statically
extract performance estimations in early phases of the de-
sign process and without the need of expensive simulations.
The mapping process is generalized in order to allow an
automatic exploration of the solution space, that identi-
fies the best performance/area configurations among several
application-architecture combinations. The method is eval-
uated implementing a typical datapath performance con-
strained system, i.e. a packet processing application.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose
and Application based Systems,Real-time and embedded sys-
tems

General Terms
Design, Performance

1. INTRODUCTION
Datapath applications, where dataflow elaboration dom-

inates over the control-flow constructs, are gaining increas-
ingly popularity in embedded system design (examples are
DSP or packet processing applications). One of the main
concern when designing this type of applications is to meet
strict timing constraints without sacrificing too much the
flexibility and at a reasonable cost. Throughput require-
ments have become particularly critical in last years; for
example, in packet processing applications typical require-
ments have evolved from 1 Gbps in 1990 up to the actual 10
or more Gbps.

The increasing complexity of System-on-Chip designs and
the need to cope with conflicting requirements are pushing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

Application
Modeling

Architecture
Modeling

Mapping

Performance
Analysis

Decision

Figure 1: The Y-chart scheme

the development of methodologies and tools, that allow to
easily define, analyze and modify a system. In order to man-
age the design space exploration the Y-chart scheme [1] has
been proposed (Figure 1). In this approach, the application
and the architecture are defined separately. The application
is then mapped onto the architecture and the performance of
the system is evaluated. Based on the obtained results, the
designer may decide to choose or change the architecture, to
modify the mapping or to restructure the application.

In this paper we propose a method to automate the archi-
tecture mapping, performance evaluation and decision mak-
ing in the Y-chart approach (these phases are shaded in
Figure 1) for datapath oriented application with stringent
throughput requirements. Different methods can be used to
evaluate the performance of a system and can generally be
classified in (1) simulation techniques and (2) formal mod-
els. Simulation techniques provide information on the sys-
tem behaviour by tracing the results obtained when applying
stimuli to a system model. Pure simulative approaches using
for example the SystemC Library have been applied in [2]
and [3]. However, simulation approaches are time consum-
ing and can not provide information on system properties
like the absence of deadlocks or system bottlenecks.

Formal models describe the system in a mathematical
form and can provide accurate information on its behaviour,
even if their effectiveness decreases with the increase of the
system dimensions. Examples of formal models used for
performance evaluation are Markov processes, Queuing Net-
works and Timed Petri Nets. In the field of performance
evaluation for SoC design, Network Calculus [5] and Stochas-
tic Automata Networks [6] have also been recently proposed.

In this paper, we consider Timed Petri Nets since this for-
malism is especially suited for describing HW/SW systems.
Petri Nets are an intuitive and powerful way to define con-
current and asynchronous processing, resource sharing and

55

events synchronization [8]. The graphical representation of
a Petri Net allows to easily describe and interpret system
models, and the mathematical framework provides a way to
formally describe and analyze them. Moreover, with respect
to other methods that consider Stochastic timing models
only, Timed Petri Nets allow to consider both Deterministic
and Stochastic timing models [4]. This is particularly useful
in SoC design, where IP (Intellectual Property) blocks are
often used and the exact timing required to process input
data is often available (e.g. number of clock cycles of an
hardware module) and can be exploited to build accurate
performance models. Finally, since Petri Nets are a well es-
tablished modeling formalism, several tools are provided to
support both the extraction of analytical properties and the
simulation of Petri Nets models.

Differently from other works, which consider Petri-Nets as
a formal intermediate representation [7], this paper proposes
the use of a Timed Petri Net for the application-architecture
mapping. This provides a description that allows to for-
mally extract performance figures in the early phases of the
system design and without the need of expensive simula-
tions. Moreover, the use of a mathematical formalism al-
lows to extract properties of the system that can be used
to automatically explore the solution space, identifying the
best performance/area tradeoffs among several application-
architecture combinations.

The rest of the paper is organized as follows. Section 2
introduces the formal definitions that will be used thorough
the paper. Section 3 describes how to model a datapath
system with the use of Timed Petri Nets. Section 4 presents
an analytical approach and a semantical interpretation for
the performance analysis. Section 5 presents the algorithm
used to explore the solution space. Section 6 reports some
experimental results and Section 7 concludes the work.

2. FORMAL DEFINITIONS
In this section we recall some definitions and properties of

Timed Petri Nets that are used in the rest of the paper. A
complete description can be found in [8], [4].

A Petri Net (PN) is a 5-tuple, PN = (P, T, C,W,M0)
where P = {p1, p2, . . . pm} is a finite set of places, T =
{t1, t2, . . . tn} is a finite set of transitions, C ⊆ (P × T) ∪
(T × P) is a set of arcs (connections), W : C → N+ is a
weight function, M0 : P → N0 is the initial marking, with
P ∩ T = ∅, P ∪ T 6= ∅.

The dynamic behaviour of a PN is described in terms of
two rules: the enabling rule and the firing rule. A transi-
tion is enabled when all its input places contain a number of
tokens equal or greater than the weights of the correspond-
ing arcs. An enabled transition can fire or not. When the
transition fires it removes a certain amount of tokens from
its input places and produces a certain amount of tokens
in the output places. The amounts of tokens removed and
produced depend on the arcs weights.

The incidence matrix A = [atp] is a n×m matrix of integer
where atp = a+

tp − a−tp, a+
tp = w(t, p), a−tp = w(p, t) and

represents the “amount of change” in the number of tokens
in p caused by the firing of t. An integer solution y to Ay = 0
is called S-invariant. An integer solution of ATx = 0 is called
T -invariant. A Petri Net is consistent if ∃x > 0, ATx = 0.

In Timed Petri Nets, transition occurrences fire in ’real-
time’ associated with each occurrence of each transition. In
this paper we consider deterministic nets, where the times

F1 F3F2 F4 F5

Figure 2: Task graph of a datapath application.

are deterministic. Any enabled transition starts its firing in
the same instant in which it becomes enabled. Each firing
can be considered as a three phase event; first, the tokens
are removed from the input places of the firing transition,
the second phase is the firing time period, and when it is
finished, tokens are deposited to output places of the tran-
sition. If a transition occurrence becomes enabled while it
is firing a new independent firing cycle begins.

Formally, a Timed Petri Net (TPN) is a pair (PN, h)
where PN is a Petri Net, PN = (P, T, C,W,M0) and h is a
firing time function that assigns a positive rational number
to each transition of the net: h : T → R+.

3. TIMED PETRI NET MODEL
Datapath applications are dominated by dataflow behav-

ior, with few control-flow constructs. They can be decom-
posed in distinct tasks at a coarse level of granularity; the
tasks are computation intensive and internally strongly in-
terconnected. These applications have iterative nature, since
they repeatedly execute over different sets of input data.
Example of datapath applications are DSP algorithms or
packet processing applications.

A simple way to represent datapath applications is using
a data dependent based task graph at coarse granularity. In
the following, we will consider applications performing a set
of subsequent tasks. Each task is referred as function (to
avoid confusion with the software tasks used later on) and is
intended as an operation or set of operations performed on
some data. Each independent chunk of input data is referred
as data unit. An example of task graph is given in Figure 2
where circles identify functions and arcs are used to specify
data dependencies.

The architecture is composed of executors that can be
processors or hardware modules. There can exist multiple
instances of the same executor, in order to satisfy the per-
formance requirements. In the following, we indicate as re-
source class (or in short resource) a set of identical executors,
and as availability the number of instances of executors in
the same resource class. The architecture is therefore spec-
ified by the set of resource classes and their availability.

A mapping associates application functions to architec-
ture resources. Formally, given a set of functions F and a
set of resources R we define for each function a mapping g
on the resource on which it is executed, g : F → R. The
execution of a function Fi on a resource Rj requires a cer-
tain execution time eij . Values eij are known if the design
process is based on IPs (Intellectual Property) or can be esti-
mated on the basis of previous and similar implementations.
A Timed Petri Net is used to model the mapping, as repre-
sented in Figure 3 for a simple example. For each function
and each resource we introduce respectively two places (an
F -Place and an R-Place). We also add a Q-place for each
function to represent the queue of data waiting to execute
the function (the first function does not require this place).
The output transition of the F -Place is annotated with the
execution time eij and the initial marking of each R-Place is

56

F2 F3
R2 R3

Q-Place F-Place Q-Place F-Place

R-Place R-Place

R2 R3

e
22

e
33

F2 F3

av(R2) =1
av(R3) = 2

Figure 3: TPN generated from a task graph.

R1

e
11

F1

s
11

Q-Place F-Place Q-Place

R-Place

Figure 4: Modeling of a pipelined resource.

defined by its availability. F -Places are connected according
to the task graph; if a resource is shared by different func-
tions, a single R-Place is used and appropriate arcs are used
to connect different F -Places to the same R-Place.

To model the presence of pipelined hardware resources,
we can extend the representation as indicated in Figure 4.
The execution on a pipelined resource is characterized by
two values: the execution time eij representing the total
time to execute the function and a time sij representing the
stage time defining the rate at which the input data can be
accepted (usually equal to one clock cycle).

To complete the system modeling, we introduce a limit
on the number of data units that can be processed simulta-
neously. In some platforms (like the one presented in Sec-
tion 6.1) this limit is considered explicitly, while in other is
implicit and related to the depth of communication queues
between the modules. We add a place (P -Place) having as
initial marking a number of tokens equal to the maximum
number of data units allowed in the system.

In case the communication introduces substantial over-
heads, it can be modeled using the same framework ex-
ploited for the rest of the system (for example, a data trans-
fer becomes a function and a bus becomes a resource).

4. PERFORMANCE EVALUATION
As mentioned before, one of the critical requirements for

datapath application is the meeting of stringent throughput
constraints. By expressing the mapping between application
and architecture as explained in the previous section, we
obtain a consistent Timed Petri Net (∃x > 0, ATx = 0).
The minimum cycle time τmin of this net (equivalent to the
inverse of the maximum throughput) is computed as [8]:

τmin = max
k
{yT

k (A−)TDx/yT
k M0} (1)

over all the independent minimal-support S-invariants of
matrix A, yk ≥ 0. M0 is the initial marking, D is the diag-
onal matrix of di, i = 1, 2, . . . , r with di the time associated
to transition i and A− the matrix of values a−tp defined in
Section 2.

P
1

P
r+1

P
2

P
3

F-Place Q-Place F-Place

R-Place

t
1

P
r+m-1

P
r

F-Place

R-Place

P-Place

P
r+2

R-Place

...
t
2

t
3

t
4

t
r

t
r+1

P
m

Figure 5: Notation for a general Petri Net model

To find the S-invariants consider the following partition
of the incident matrix A of a consistent net with m Places
and n transitions:

A =

[
A11 A12

A21 A22

]
(2)

where A11 is a non singular r× r matrix, with r the rank of
A. A set of linearly independent S-invariants y is given by
the (m− r) rows of the (m− r)×m following matrix[8]:

Bf = [−AT
12(AT

11)−1 : Im−r] (3)

where Im−r is the identity matrix of order m− r.
Consider a Petri Net built as explained in the previous

Section, with the notation shown in Figure 5. The corre-
spondent matrix A has the following structure:

P1 P2 P3 . . . Pr Pr+1Pr+2 . . . Pm−1Pm

A=

t1
t2
t3
t4
...

tr+1



1 0 0 . . . 0 -1 0 . . . 0 -1
-1 1 0 . . . 0 1 0 . . . 0 0
0 -1 1 . . . 0 0 -1 . . . 0 0
0 0 -1 . . . 0 0 1 . . . 0 0
...

0 0 0 . . . -1 0 0 . . . 1 1


Let us consider the partition reported above that sepa-

rates the sequence of F -Places and Q-Places from R-Places
and P -Place and the first r transitions from the (r + 1)-
th transition. It is easy to verify (e.g. with Gauss algo-
rithm) that the matrix has rank r. The partition therefore
identifies the matrices A11, A12, A21 and A22 according to
Equation 2. The structure of this matrices is very regu-
lar: matrix A11 is a Toeplitz matrix with diagonal elements
aii = 1,∀i, 0 < i ≤ r, elements ai,i−1 = −1,∀i, 1 < i ≤ r
and all the other elements equal to zero. Moreover, each of
the last m − r columns of matrix A has couples of consec-
utive (1,−1), corresponding respectively to the transitions
that consume and produce tokens in the associated R-Place
(or P -Place for the last column), all the other elements are
zero. If the resource is shared there is more than one couple
of (1,−1) values in that column.

Applying equation 3 we obtain that there are m − r S-
invariants:

• m−r−1 S-invariants corresponding to the m−r−1 R-
places in the system. Each vector has elements equal
to 1 for the R-Place and for the F -Places using that
resource (other elements are equal to 0).

• one S-invariant corresponding to the P -Place. This
vector has elements equal to 1 for the P -Place and
all the F -Places and Q-Places in the system (other
elements are equal to 0).

57

P
4

P
1

F-Place Q-Place

t
1

P
2

P
3

F-Place

R-Place

t
2 t

3
t
4

1 2 3 4

P
5

P-Place

Figure 6: Example of Timed Petri Net model

Equation 1 corresponds in finding the minimum value among
the sum of the times on transitions connecting the R-Place
(or P -Place) with the corresponding F -Places, divided by
the number of tokens in the considered places in the initial
marking.

4.1 Example
Let us consider, the net represented in Figure 6, where the

execution times are indicated next to the transitions. The
corresponding matrix A is:

A =

 1 0 0 −1 −1
−1 1 0 1 0

0 −1 1 −1 0
0 0 −1 1 1

 (4)

From AT · x = 0 we obtain xT =
[

1 1 1 1
]
. From

equation 3 we obtain two S-invariants: yT
1 =

[
1 0 1 1 0

]
and yT

2 =
[

1 1 1 0 1
]
. The minimum performance

is therefore given by: τmin = max{10/1, 10/3} = 10.

4.2 Interpretation
Intuitively, value τmin is related to the processing time

required by the resources to process a data unit. Resources
that execute functions requiring long processing time are
more likely to influence the minimum cycle time. However,
a long computational path, even if supported by several re-
sources, can affect the system performance.

Let us consider a simplified version of the system, in which
each function is associated to a different resource, the ini-
tial marking of each R-Place is equal to one and there is no
bound on the maximum number of data units in the sys-
tem. In this case, the system is equivalent to a pipeline and
therefore the minimum cycle time is given by the slowest
stage. If the marking of a R-Place is different from one, it
means that more data units can be executed simultaneously
on that resource, therefore the time for that stage can be di-
vided by the number of executors available (initial marking
of the R-Place). When different functions are associated to
the same resource, the system is not equivalent to a pipeline
anymore, but the “stage” time of a resource is given by the
sum of all the times of the functions associated to that re-
source. Finally, we have to take into account that only a
finite number of data units can be processed simultaneously
by the system. This means that the system can stall not be-
cause one of the resources is slow, but because the maximum
number of data units in the system has been reached.

Considering this semantical interpretation, we can rewrite
Equation 1 for a system composed of v functions and z re-
sources as follows:

τmin = max(rl1, rl2, . . . , rlz, gl) (5)

where rlj is the Resource Latency of resource j and gl is the
Global Latency.

For each resource Rj the Resource Latency rlj is defined
as:

rlj =
∑

i

eij/M0(Rj) with i ∈ {i|g(Fi) = Rj , 1 ≤ j ≤ v},

(6)
where M0(Rj) is equal to the marking of the place associated
to Rj and g(Fi) is the mapping of Fi.

The Global Latency gl is defined as:

gl =
∑

i

eij/M0(P), 1 ≤ i ≤ v (7)

where M0(P) is equal to the marking M0(P) of the P -Place.
If a resource is pipelined, we must consider in equation 6

the time sij instead of eij describing the rate at which data
can be accepted by the resource (see Figure 4).

5. PARTITIONING ALGORITHM
The previous equations can be exploited in order to auto-

mate the exploration of the solution space given a through-
put constraint. Considering v functions and z resources, the
solution space is composed of zv alternatives (number of pos-
sible partitionings). However it is very unlikely that every
functions can be executed on every resource, since, hardware
cores can usually execute very specific functions. The num-
ber of possible partitioning is therefore definitely inferior
to zv. Considering the coarse grain at which we are oper-
ating, the number of functions considered is relative small
(usually in the order on 10-20 functions). Following these
observations, the exploration of the solution space has been
implemented using a branch and bound algorithm, where
equations 5, 6 and 7 are exploited to compute the bounds
for pruning the solution tree.

Given a throughput constraint, we search for the solution
that minimizes the area, by assigning each function to a
resource. The branch operation corresponds to assigning
a function to all the resources that can execute it. The
bounding operation corresponds to calculate values rlj and
gl considering the functions and the resources composing the
partial solution. If one of these values exceed the minimum
cycle time specified by the user the branch is discarded.

More in detail, the exploration algorithm works with the
following input: (1) the set of functions composing the ap-
plication; (2) the set of resources composing the architecture
(the information related to each resource are: the execution
frequency, the availability, the area, the indication if the re-
source is pipelined or not); (3) values eij of execution times
of function Fi on resource Rj , related to the resource fre-
quency; (4) a maximum throughput (minimum cycle) con-
straint.

The B&B algorithm is characterized by:

• Branching rule: assignment of a function to all the
candidate resources.

• Bounding functions: rlj and gl considering the func-
tions and the resources composing the partial solution
in a node. If one of the values is greater than the
mimimum cycle the solution is discarded.

• Strategy for the selection of the next branch: complex
function are selected first (considering the average time
of execution on the available resources).

58

 task0:
T0.I0
T0.I1
T0.I2
T0.I3
T0.I4

task1:
T1.I0
T1.I1
T1.I2
T1.I3

task2:
T2.I0
T2.I1
T2.I2

task3:
T3.I0
T3.I1
T3.I2
T3.I3

T0.I0

Cycle 0

T1.I0

T0.I0

Cycle 1

T2.I0

T1.I0

T0.I0

Cycle 2

T3.I0

T2.I0

T1.I0

T0.I0
Cycle 3

T0.I1

T3.I0

T2.I0

T1.I0
Cycle 4

T1.I1

T0.I1

T3.I0

T2.I0
Cycle 5

task0:
T0.I0
T0.I1
T0.I2
T0.I3

task1:
T1.I0
T1.I1
T1.I2
T1.I3

task2:
T2.I0
T2.I1
T2.I2

task3:
T3.I0
T3.I1
T3.I2
T3.I3
T3.I4

T0.I0

Cycle 0

T1.I0

T0.I0

Cycle 1

T2.I0

T1.I0

T0.I0

Cycle 2

T3.I0

T2.I0

T1.I0

T0.I0
Cycle 3

T0.I1

T3.I0

T2.I0

T1.I0
Cycle 4

T1.I1

T0.I1

T3.I0

T2.I0
Cycle 5

Stage 1

Stage 2

Stage 3

Stage 4

Figure 7: Instruction interleaving

6. EXPERIMENTAL RESULTS
In order to evaluate the approach we implement a typi-

cal datapath application, i.e. a packet processing applica-
tion performing an IP (Internet Protocol) packet forwarding
function, using as reference platform the HW/SW architec-
ture for datapath application developed by Altera [10].

The system receives a MAC (Medium Access Control) in-
put packet, verifies that the packet is valid, modifies some
packet fields, computes the destination MAC address and
issues the packet [9]. The function composing the system
are the following: function F1 receives the packet, function
F2 performs IP header checks and extracts the IP address,
function F3 computes the destination MAC address, func-
tion F4 updates some IP fields, function F5 computes the
V LAN tag, function F6 updates TTL and Checksum fields,
function F7 formats and outputs the packet and function F8

concludes the processing of the packet.
In the following we first provide an overview of the Altera

platform and we then present the experimental results that
are organized in two phases: (1) we verify the suitability of
the description of a system with the presented Timed Petri
Net approach, (2) we present some results obtained applying
the algorithm for the solution space exploration.

6.1 Hardware/Software reference architecture
Altera has developed a hardware/software solution for

high performance datapath applications, with particular ap-
plicability to packet processing domain, that combines a
multithreaded soft processor and hardware accelerators.

The soft processor can execute 8 threads simultaneously
by means of a non-conventional multithreading. Instruc-
tions corresponding to 8 different threads processing differ-
ent data units are mixed (interleaved) in the pipeline (Figure
7 represents the situation for an exemplified pipeline with 4
stages). With this approach, the software execution time
becomes deterministic given an execution path, since all the
sources of indeterminism are avoided: hazards in a given
thread instruction are resolved before the next instruction
of the same thread is executed and only on-chip memory is
used (no cache is required since data and program code are
usually limited in size).

A typical processing flow is based on an asynchronous ex-
ecution paradigm that combines Tasks that are executed in
software and Events executed by dedicated hardware blocks,
as schematically depicted in Figure 8. The maximum num-
ber of data units in the system is a processor parameter
that can be configured during the hardware synthesis (typ-
ical values: 32-64).

To model the multithreading in the Timed Petri Net, we

IN-EVENT EVENT1 EVENTN OUT-EVENT

IN-TASK TASK1 TASKM OUT-TASK
data in data out

Software executing on a processor

Dedicated hardware

Figure 8: Execution Flow

consider that the execution of eight threads on the same pro-
cessor at frequency Fsoft, with the instruction interleaving
described, is functionally equivalent to the execution of eight
threads on eight identical processors each one running at a
frequency Fsoft/8. The multithreaded processor is therefore
represented with a resource class having availability equal to
eight and frequency equal to Fsoft/8.

6.2 Petri Net model verification
In order to verify the suitability of the Petri Net model

we compare the value of the minimum cycle for the system
obtained by 1) defining and simulating the Timed Petri Net
with a PN simulation tool (CPN tool [11]), 2) implement-
ing and simulating the system through the Altera toolchain
that combines an ISS for the processor with software mod-
els of hardware blocks [10], 3) applying the static analysis
presented in Section 4.

For this test we consider a fixed partitioning in which F1,
F3, F5 and F7 are executed by hardware modules (a shared
module is used for F3 and F5) and F2, F4, F6 and F8 are
executed on the multithreaded processor (with 8 threads).

In Table 1, for each function Fi, the value ei represents
the number of clock cycles if it is executed by a hardware
module, or the number of assembly instructions if it is ex-
ecuted by the processor. Both hardware and software run
at the same frequency (250MHz). The first configuration
corresponds to the real system timing. In order to study the
behaviour with different configurations, additional instruc-
tions and clock cycles have been considered in the other
configurations.

QuantitiesNPm andNPs correspond to the average Num-
ber of Packets produced by the system when simulating, re-
spectively, the Petri Net Model and the implemented System
for one million time units; σnpm and σnps are the correspon-
dent standard deviations computed over 20 simulations. τm,
τs, τp represent the average system cycle time for respec-
tively the Petri Net Model, the implemented System and
the prediction computed using equations in Section 4. ar
represents the arrival rate of the packets; when ar is less
than the τmin we indicate this situation as working condi-
tion, since the system can support the input rate (in this
case τp = ar). When ar is greater than τmin the system is
operating in saturated conditions, processing the maximum
number of packets possible (in this case τp = τmin).

As can be noticed, the predictions are quite accurate when
compared both to the Petri Net Model results and the im-
plemented System results. In all the tested situations the
percentage errors are always less than 8%.

6.3 Partitioning algorithm
To identify the best solution that minimize the area, while

maintaining the flexibility and satisfying the throughput
constraints, we apply the exploration algorithm to the input

59

e1 e2 e3 e4 e5 e6 e7 e8 ar NPm σnpm NPs σnps τm τs τp Cond. %em %es

1 10 32 10 32 10 50 1 80 12497 0 12196 0 80.02 81.99 80 work. 0 2
1 30 32 20 32 20 50 1 80 12493 0 12196 0 80.04 81.99 80 work. 0 2
1 30 32 20 32 20 50 1 120 8329 0 8197 0 120.06 122.00 120 work. 0 2
1 30 80 20 80 20 50 1 120 8328 0 8197 0 120.08 122.00 120 work. 0 2
1 20 32 20 32 20 50 1 10 16337 8.82 15152 1.43 61.21 66 61 sat. 0 8
1 30 32 30 32 30 50 1 10 10942 12 10417 2.31 91.39 96 91 sat. 0 5
1 50 32 20 32 20 50 1 30 10952 3.43 10103 6.23 91.31 98.98 91 sat. 0 8
1 50 80 20 80 20 50 1 30 10953 6.46 10102 5.15 91.30 98.99 91 sat. 0 8
1 30 5000 20 5000 20 50 1 120 5969 0 6037.29 1.72 167.53 165.64 158.2 sat. 6 4

Table 1: Throughput comparison in working and saturated conditions

R1(processor) R2(HWmod.) R3(HWmod.) R4(HWmod.)
F1 20 1 10 -
F2 30 20 25 10
F3 50 40 45 32
F4 20 10 - 10
F5 30 10 40 32
F6 20 15 20 -
F7 80 60 50 70
F8 20 15 1 20

Area 1(2017) 548 358 233

Table 2: Input data for the exploration algorithm

τmin Mpk/s F1 F2 F3 F4 F5 F6 F7 F8 N. sol Time(s.) Area
280 0.89 R1 R1 R1 R1 R1 R1 R1 R1 27648 1 2017
230 1.09 R1 R1 R4 R1 R1 R1 R1 R4 27632 1 2250
150 1.67 R1 R4 R4 R1 R4 R1 R1 R4 25623 1 2250
110 2.27 R3 R1 R3 R1 R1 R1 R3 R3 16671 1 2375
100 2.50 R2 R2 R2 R2 R2 R1 R1 R2 13432 1 2565
80 3.13 R1 R3 R4 R1 R4 R1 R3 R3 5586 <1 2608
70 3.57 R3 R4 R4 R1 R1 R1 R3 R4 2075 <1 2608
60 4.17 R2 R2 R1 R2 R2 R2 R2 R3 351 <1 2923
50 5.00 R2 R2 R4 R1 R2 R1 R3 R2 43 <1 3156

Table 3: Exploration algorithm results.

data presented in Table 2, where values (Fi,Rj) corresponds
to values eij (expressed in number of clock cycles or number
of instructions) and the last row is an area measure obtained
synthesizing the resource on an Altera Stratix FPGA (each
value correspond to a the number of normalized logic ele-
ments obtained as: Resource Logic Elements + Resource
Memory bits · Total FPGA Logic Elements/Total FPGA
Memory bits). In order to select flexible solutions first (with
software processor) we force the area of the software proces-
sor to a low value during the solution space exploration.

Table 3 reports the results obtained by increasing the
throughput requirement. The first and the second columns
in the table represent the throughput constraint expressed
as minimum cycle time or maximum throughput (millions of
packets per second with hardware running at 250MHz). Col-
umn F1 . . . F8 indicate the best mapping obtained for each
case. The last three columns indicate the number of found
solutions that meet the constraint, the time to run the ex-
ploration algorithm (in seconds on an Intel Xeon 3.4Ghz)
and the system area (in equivalent logic elements).

As it can be noticed, as the throughput constraint be-
comes more demanding, the number of solutions satisfy-
ing the constraint diminish and the best solution tend to
evolve from a completely software configuration to hard-
ware/software configurations. These solutions become more
and more expensive in term of area but allow to satisfy the
specified timing constraint. For this explorations the time
required by the algorithm is negligible (≤ 1 sec).

7. CONCLUSION
This paper presents a method for the solution space ex-

ploration of datapath applications with stringent through-
put constraints. We propose the use of Timed Petri Nets
to represent the mapping of the application onto the archi-
tecture, in a Y-chart approach. We obtain a set of bounds
that are exploited by an exploration algorithm, based on a
branch and bound approach, to search the solution space
for the best performance/area configuration. The approach
has been applied to a packet processing application and the
experimental results show that (1) the Petri Net Model can
accurately represent the behaviour of a real system (2) the
exploration algorithm is able to find the best compromise in
terms of area/throughput in reasonable times.

8. ACKNOWLEDGMENTS
The authors would like to thank Dr. Argy Krikelis and the

European Technology Center of Altera (UK) for providing
support and the technology for the methodology evaluation.

9. REFERENCES
[1] B. Kienhuis, E. Deprettere, K. Vissers, P. van der Wolf, An

approach for quantitative analysis of application specific
dataflow architectures, in Proc. ASAP 1997.

[2] C. Haubelt, J. Falk, J. Keinert, T. Schlichter, M. Streubühr, A.
Deyhle, A. Hadert, J. Teich, A SystemC-based design
methodology for digital signal processing systems, EURASIP
J. Emb. Syst., N.1, 2007.

[3] K. Ueda, K. Sakanushi, Y. Takeuchi, M. Imai
Architecture-level Performance Estimation for IP-based
Embedded Systems, in proc. DATE 2004.

[4] W. M. Zubereck, Timed Petri Nets - definitions, properties
and applications; Microelectronic and Reliability, pp 627-644,
1991.

[5] A. Maxiaguine, S. Unzli, S. Chakraborty, L. Thiele, Rate
analysis for streaming applications with on-chip buffer
constraints, in proc. ASP-DAC’2004.

[6] N. Zamora, X. Hu, R. Marculescu, System-Level
Performance/Power Analysis for Platform-Based Design of
Multimedia Applications,ACM Trans. on Design Automation
of Electronic Systems, Vol.12, N.1, 2007.

[7] P. Maciel, E. Barros, W. Rosenstiel, A Petri Net Model for
Hardware/Software Codesign, Journal Design Automation for
Embedded Systems, Springer, 1999.

[8] T. Murata, Petri Nets: Properties, Analysis and
Applications, Proceedings IEEE, Vol.77, N.4, 1989.

[9] RFC1812: Requirements for IP Version 4 Routers, RFC
Editor, United States, 1995.

[10] Altera Corporation website, www.altera.com.

[11] CPN Tools website, www.daimi.au.dk/CPnets/.

60

