

Methodology for Multi-Granularity Embedded Processor
Power Model Generation for an ESL Design Flow

Young-Hwan Park†, Sudeep Pasricha*, Fadi J. Kurdahi†, Nikil Dutt†

 †University of California, Irvine, CA *Colorado State University, Fort Collins, CO
 {younghwp, kurdahi, dutt}@uci.edu sudeep@engr.colostate.edu

ABSTRACT
With power becoming a major constraint for multi-processor

embedded systems, it is becoming important for designers to
characterize and model processor power dissipation. It is critical for
these processor power models to be useable across various modeling
abstractions in an electronic system level (ESL) design flow, to guide
early design decisions. In this paper, we propose a unified processor
power modeling methodology for the creation of power models at
multiple granularity levels that can be quickly mapped to an ESL
design flow. Our experimental results based on applying the
proposed methodology on an OpenRISC processor demonstrate the
usefulness of having multiple power models. The generated models
range from very high-level two-state and architectural/ISS models
that can be used in transaction level models (TLM), to extremely
detailed cycle-accurate models that enable early exploration of
power optimization techniques. These models offer a designer
tremendous flexibility to trade off estimation accuracy with
estimation/simulation effort.

Categories and Subject Descriptors: J.6 [Computer-aided Design];
B.7.2 [Integrated circuits]: Design; C.5.4 [VLSI Systems]
General Terms: Design, Experimentation, Performance
Keywords: Embedded Processor, Power Modeling, System-on-Chip, ESL

1. INTRODUCTION
Reducing power dissipation is a critical design goal for electrical

devices from hand-held systems with limited battery capacity to large
computer workstations that dissipate huge amounts of power and need
costly cooling mechanisms. Designers today must evaluate various power
optimizations as early as possible in an electronic system level (ESL)
design flow, since design changes are easier and have the greatest impact
on application power dissipation at the system level [1]-[2]. In order to
explore these optimizations, accurate power estimation models are
necessary. These models are especially important for chip multiprocessor
(CMP) systems with tens to hundreds of processors integrated on a single
chip. Even a slight inaccuracy in power estimation for a single processor
can result in a large absolute error for the chip.

Several system level power estimation approaches have been proposed
in recent years focusing on the various components of CMP designs,
such as processors [3]-[4], memories [5], interconnection fabrics [6], and
custom ASIC blocks [7]. Because of the heterogeneity of these
components, power estimation models are usually customized for each
component to achieve desired estimation accuracy. In addition, each type
of component requires several power estimation models that can be
incorporated at the most coarse grain, high levels of abstraction, as well
as at the most detailed, low level simulation abstractions.

Fig. 1 shows the typical ESL design stages for embedded processors.
The functional stage consists of a high level model of the processor that
captures its basic functionality. This model is refined down to the
architectural level, which has a well defined instruction set architecture
(ISA). A simulator that captures the ISA at this level is commonly
referred to as an instruction set simulator (ISS). In the subsequent stage,
the pipeline of the processor is modeled, to create a more detailed
pipeline-accurate architectural model. This model can simulate
instructions flowing through a pipeline, and captures the performance
benefits of pipelining, as well as the slowdown due to pipeline stalls.
Finally, this model is refined down to the cycle accurate micro-
architectural level, by adding details of the functional units (data path)
and the pipeline (control path), to capture the behavior of the processor at
a highly detailed cycle-accurate granularity.

To guide design decisions that affect power dissipation, designers need
power estimation models at each of these levels. Existing processor
power estimation techniques create power models that map onto and are
useful only at a particular level. For instance, the commonly used
instruction level power estimation technique [8] assigns a power number
to each instruction in a processor ISA. This technique can only be used at
an ESL level that captures the ISA. Thus, while this technique is readily
applicable at the architectural level, it cannot be easily used at the higher
functional level which is unaware of the ISA. Furthermore, if this
technique is used at the lower levels, it fails to exploit the additional
accuracy in the control and data paths and suffers from an abstraction
mismatch. Similarly, cycle accurate power estimation tools such as
Wattch [3] and SimplePower [4] are applicable to the detailed micro-
architectural level of the ESL design flow, but cannot be easily ported to
higher level architectural/ISS models that lack micro-architectural detail.
The mismatch between power model granularity and level of detail
captured at an ESL design level thus limits the applicability of current
power estimation techniques across an ESL flow.

Figure 1: ESL design flow for embedded processors

In this paper, we propose a comprehensive multi-granularity power
model generation methodology that spans the entire ESL design flow
(Fig. 1). Using industry standard design flows, our methodology can
quickly generate multiple power models ranging from the simplest two-
level, coarse grained model for early power estimation, to the most
accurate cycle accurate model that allows designers to explore the impact
of using power optimizations with minimal manual interference and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19-24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10...$5.00.

255

effort. Our proposed approach is based on the concept of hierarchical
decomposition, with the aid of a tripartite hyper-graph model of
processor power that can be iteratively refined to create power estimation
models with better accuracy. The methodology serves a vital function in
supplying a designer with multiple derivative processor power estimation
models that match the increasing accuracy of the design, as it is
successively refined from the functional, to the architectural and then
down to the cycle-accurate micro-architectural stages in a typical ESL
design flow. We demonstrate the feasibility of our approach on an
OpenRISC [18] processor case study, and present results to show how
the multi-granularity power models generated for the processor provide
designers with the flexibility to trade-off estimation accuracy and
simulation effort during system-level exploration.

2. RELATED WORK
Processor power estimation has been the focus of several research

efforts over the past few years. One of the simplest processor power
estimation models is a two-state model with one of the states representing
the processor when it is busy, and the other representing an idle state [1].
A popular power estimation technique for processors is instruction level
power estimation, which was first proposed by Tiwari et al. [8]. The
technique is based on the simple observation that each instruction can be
assigned its own power cost. Several subsequent research efforts [9]-[14]
have applied instruction level power estimation to obtain high level
power estimates for various processor variants such as a DSPs [10],
VLIW processors [13] and the Intel XScale [15]. However, while these
techniques are useful for early estimation of average power, they are not
very accurate for cycle-level power estimation. For more accurate
processor power estimation, structural modeling [3][4][16] is a widely
used approach, which creates power models for smaller decomposed sub-
units in the processor. These power models observe the activity of the
units in the processor and use this information for estimating power.
Power estimation tools such as Wattch [3] and SimplePower [4] use this
approach, and are relatively well known because they can cooperate with
the widely used processor simulation platform SimpleScalar [17]. Even
though these tools are popular, they have their limitations. Wattch
concentrates its effort on regular structures such as memory array and
CAM structures, for which it is relatively easy to calculate switched
capacitance, but not on the complex combinational logic often found in
processors. SimplePower relies on a lookup table (LUT) that contains the
switch capacitance for each input transition of the processor functional
units. This methodology is known to be accurate for small units, but if the
input size is large, it is impractical to have all the cases in the table.
Techniques used to overcome this limitation end up sacrificing estimation
accuracy.

All of these processor power estimation techniques have trade-offs
between designer effort, accuracy and simulation speed. To the best of
our knowledge, there has not been any approach that can
comprehensively generate several power models for a processor to plug
into the various stages of an ESL design flow. Our methodology can
provide an easy way for designers to create multi-granularity models by
simply varying certain parameters to trade-off estimation accuracy and
simulation speed. Another important differentiation between this work
and prior work is that our methodology generates both average and
maximum power estimates, and provides these estimates dynamically
(i.e., for a given window of time). This helps in early design space
exploration of CMPs with large number of processors, and facilitates the
realistic optimization of such systems. Finally, we note that while our
approach concentrates on the processor cores only, it is complementary to
existing memory models such as CACTI[5] which provide estimates of
caches and other memories peripheral to the processor core that are
comparable in terms of accuracy and flexibility to our models.

3. POWER MODELING METHODOLOGY
In this section we present details of our power estimation methodology.

3.1 3D Power Contribution LUT
During program execution, an instruction in a processor ISA activates

different functional sub-units, and consequently dissipates varying
amounts of power as it traverses the processor pipeline stages. To
accurately characterize the power contribution of an instruction, we
create a 3D lookup table (LUT), as shown in Fig. 2. Assuming K
processor functional units, M pipeline stages, and N instructions in the
ISA, we create a table that holds the power dissipation for each
instruction, at each pipeline stage, for all of the functional units in the
processor. For improved accuracy, we create a set of three 3D LUTs,
corresponding to average power, minimum power and maximum power.
For 2-operand instructions, these power ranges can be obtained by
varying the data operand values from minimum to maximum (e.g.,
0x0000 to 0xFFFF) which will vary the Hamming Distance (HD)
between the two operands. A larger HD is found to result in greater
power dissipation. Fig. 3 shows the normalized power for several
instructions from the OpenRISC ISA [18], for varying HD values of
operand data. It can be seen that power dissipation between the minimum
and maximum HD cases varies by as much as 3×, justifying the need for
three 3D LUTs. Linear interpolation is used to estimate the power entries
in the LUTs for arbitrary data values using their HD. Section 3.5
describes how we populate the 3D LUTs in more detail, and how inter-
instruction and other unpredictable power dissipation factors are captured
using regression compensation.

Figure 2. 3D Power contribution LUT

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70

Hamming Distance

N
o
rm

a
li
z
e
d
 P

o
w

e
r

add

addc

sub

and

or

xor

Figure 3. Relation between Hamming Distance and power of several

instructions at EX stage in ALU unit of the OpenRISC processor

3.2 Processor Tripartite Hyper-Graph
For the purpose of creating multi-granularity processor power models,

we can conceptually represent a processor as a tripartite hyper-graph
H(P) = <V,E>, as shown in Fig. 4 (d). The set of vertices V is partitioned
into three disjoint sets: I = {i1,i2,…,iN}, S = {s1,s2,…,sM}, and U =
{u1,u2,…,uK} corresponding to the set of processor instructions, pipeline
stages, and functional units, respectively. The ternary edges (or
hyperedges) E is a set of triples (i,s,u), i ∈ I, s∈ S, u∈ U that represent the
ternary association between an instruction and its power dissipation
across the pipeline stages it traverses and functional units it activates. The
weights of those hyperedges are populated from the 3D LUTs described
in the previous subsection. A reduced graph, H’(P) can be obtained by
clustering disjoint subsets of I, S and U, resulting in 1≤ |I’|≤ N,
1≤ |S’|≤ M and 1≤ |U’|≤ K clusters for each of the three sets of vertices.
The number of hyperdeges is also reduced as one hyperedge exists
between each triplet of clusters.

The tripartite hyper-graph offers a convenient way to represent the
granularity of different processor power models. Consider a simple 2-
state processor power model, with only two power values: for the active
and idle states. Such a model can be represented as shown in Fig. 4(a),

256

with a triple (i,s,u), where |I’|=2 (an idle or NOP, and an active
instruction), |S’|=1, and |U’|=1. Such a coarse grain model does not
require information about pipeline stages or functional units. More
accurate, finer granularity power models can be obtained by
decomposing subsets I’, S’, and U’ in the hyper-graph, examples of
which are shown in Fig. 4(b)-4(d). These models will more accurately
represent the power dissipation of multiple instructions I, as they traverse
the pipeline stages S, and activate U functional units.

 (a) (b)

 (c) (d)

Figure 4. Tripartite hyper-graph H(P), (a) simplest 2-state power model,
(b) power model with set I decomposed, (c) power model with sets I, S

decomposed, (d) power model with sets I, S, U decomposed

3.3 Processor Power Models for an ESL Flow
Having introduced the concept of a tripartite hyper-graph that allows

multi-granularity power model representation, we now present power
models that can be mapped to the various stages of an ESL design flow,
shown in Fig. 1. There are four power models that map to the appropriate
four major ESL stages:
Level 0 (functional): A 2-state (active, idle) coarse grained power model
is used for the functional stage, and is shown in Fig. 4(a).
Level 1 (architectural/ISS): At the architectural level that supports ISA
simulation, the instruction subset is decomposed so that each instruction
has a power value (|I’| = N, where N is number of instructions in ISA), as
shown in Fig. 4(b). Since the pipeline stages and functional units are not
necessarily modeled at this stage, their effect on power dissipation cannot
be modeled, and therefore subsets S’ and U’ are not decomposed (|S’| =
1, |U’| = 1).
Level 2 (pipeline-accurate architectural): When the pipeline is modeled
at the pipeline-accurate architectural level, the power model can be
further refined by decomposing the pipeline stage subset S’ (|S’| = M,
where M is the number of pipeline stages), as shown in Fig. 4(c). This
represents more accurate power dissipation, as it accounts for the effects
of pipelined execution, including any stalls and flushes.
Level 3 (cycle-accurate micro-architectural): When the structural units
are additionally modeled cycle-accurately, as is the case at the cycle-
accurate micro-architectural level, then the power model can be further
refined by decomposing the functional unit subset U’ (|U’| = K, where K
is the number of processor function units), as shown in Fig. 4(d). This is
the most accurate power model that gives very reliable cycle-accurate
power dissipation information.

Note that the finer grained, lower level power models are extremely
accurate, but require significantly greater modeling effort and simulation
overhead.

3.4 Power Model Customization
The multi-granularity power models described above map conveniently

to the different ESL design stages. However, different processors have
different functional (i.e., instruction set), temporal (i.e., pipelining), and
structural (i.e., functional unit) complexities. These may require more
flexible power models, to achieve the best possible trade-off between
accuracy and simulation effort. This flexibility in our power model
generation methodology is achieved by appropriately varying the number
of elements in each of the subsets I’, S’ and U’. Due to lack of space, we
only present a brief overview of the approaches in the following
subsections. More information on these algorithms can be found in our
detailed technical report [19].
3.4.1 Instruction Set Clustering

One possible power model customization is to reduce the number of
instructions considered for power estimation, by clustering similar power
dissipating instruction into groups. Fig. 5 shows an example of our hyper-
graph clustering algorithm to automatically generate different instruction
set groupings. Recall that each instruction in the ISA has a power
dissipation range, obtained from the minimum, average, and maximum
power in the 3D LUTs. The algorithm attempts to reduce the complexity
of an instruction level power model (Level 1) by clustering instructions
that have similar behavior and power dissipation characteristics. If some
instructions span a similar power range within a deviation threshold (Td),
we can cluster them together. For example, as shown in Fig. 5, if the
difference in power between instruction I1 and I2 is smaller than the
threshold value (|Pmax(I1)-Pmax(I2)| < Td and |Pmin(I1)-Pmin(I2)| < Td), we
can regard these instructions as similar enough to be clustered together. A
larger threshold value will allow more instructions to be grouped together.
In the figure instructions I1–I3 constitute group G1, while I4–I6 are part
of group G2, etc using this method.

An approach to further improve power estimation speed uses a range
threshold (Tr) to discard the min and max values for an instruction group,
if the power range for the group is smaller than Tr. The goal is to reduce
the number of LUT entries for an instruction (group) if there is minimal
variation between its min and max values. In the example in Fig. 5, Tr >
Pmax(G3)-Pmin(G3), and therefore for G3, min and max values are
discarded, and we just keep an average value. For group G2, Tr <
Pmax(G2)-Pmin(G2), and so we do not discard its min and max values,
which would cause a more significant impact on estimation accuracy.

Both of these threshold based approaches allow faster power estimation
from Level 1 onwards (by reducing the instruction space and pruning
LUTs) at the cost of a slight inaccuracy.

Figure 5. Instructions and clustering groups

3.4.2 Further Decomposition and Regression Analysis
It is possible that greater accuracy is required than the accuracy

supported by the models described in Section 3.3. In such a case, we can
increase accuracy by using two strategies. First we can further
decompose pipeline and/or functional units, and consider their power
contribution separately. For instance, the EX pipeline stage can be further
decomposed into multiple stages, or a register file unit can be
decomposed into several sub-banks. In our approach, we use a ranking
scheme that iteratively performs decomposition starting with the unit
with the highest rank, which coincides with the largest power dissipation
magnitude and variation.

257

If such decomposition is still unable to provide sufficient accuracy, we
can then perform a regression compensation step. In this step, we account
for hard to determine factors that contribute to power dissipation,
including any complex inter-instruction influences due to multiple
instructions traveling at the same time through the pipeline. Note that the
regression adjustment is relevant only for lower levels in the ESL flow
that capture structural and pipeline details (e.g. Level 3). The cycle power
for the model with regression adjustment, based on testbench simulation
and subsequent curve fitting [20] can be expressed as:

),,(
1

0 usiPP
M

s
sCycle ⋅+= ∑

=

αα

where M is the number of pipeline stages in the processor, α0 is
regression coefficient representing power of the factors that are
independent of the model variables, αs is the regression coefficient for
P(i,s,u), which is the power value from LUT for instruction i, pipeline
stage s and unit u. Our experimental results show that such a
compensation step can improve estimation accuracy noticeably.

3.5 Power Model Generation Methodology

Figure 6. Power model generation methodology

The overall methodology to build the multi-granularity power models
for an ESL design flow is shown in Fig. 6. The methodology consists of
two major flows: the 3D power LUT generation, shown on the left and
the power model generation for the desired ESL design stage, shown on
the right. In Step 1, the processor RTL (Verilog) design is synthesized to
a gate-level net-list using Synopsys Design Compiler [21], for the target
technology cell library. In Step 2, the gate-level simulation is performed
using NC-Verilog [22], with a special purpose tuning testbench. This
testbench consists of all the instructions in the ISA separated by an
appropriate number of NOPs, to isolate the power dissipation for each
instruction type. Operand data values with minimum, average and
maximum Hamming distances are used for each instruction. This step
provides us with simulation information such as timing, control signals
that indicate accessed functional units, and information about the activity
of instructions in each pipeline stage. In Step 3, power simulation is
performed using the PrimeTime PX tool [21], to generate gate level
power data, which is decomposed for each functional unit using simple
Perl scripts. The generated information in Steps 2-3 is provided to Step 4,
which generates the 3D LUTs.

The generated 3D LUTs are then provided to the power modeling flow.
Depending on the granularity of the model required (e.g., Level 0, 1, 2, or
3, Section 3.3), the appropriate values to create the tripartite hyper-graph
are specified. The target accuracy goal for the power model is also
specified. Additionally, if a trade-off between accuracy and simulation
effort is desired, then the user should provide deviation and range
threshold values, rank values for the pipeline/functional units to guide
structural decomposition, and a bias value to indicate preference for

instruction set or structural decomposition, if accuracy goals are not met.
In Step 5, an optional instruction clustering-based optimization is
performed (Section 3.4.1). In Step 6, the power model is integrated into
an ESL stage and simulated to obtain power information for the tuning
benchmark, and compared with gate-level simulation data for the same
benchmark. If the power model meets the accuracy goal (Step 7) then it
becomes the output power model, for use in ESL power simulation with
any application. If the accuracy goal is not met, then we need to refine
the power model. The bias value is checked to determine if instruction set
decomposition or structural decomposition is favored. Either
decomposition increases the sizes of one or more of the sets in the hyper-
graph, and improves accuracy, at the cost of estimation/simulation effort.
If the bias value in Step 8 favors instruction set decomposition, then we
check if such decomposition is possible (i.e., check if instruction groups
exist that can be decomposed). If decomposition is possible (Step 9), we
reduce the threshold values (Step 10) and go back to step 5 and redo the
clustering, which will then create fewer (or no) groups. Otherwise we
proceed to the structural decomposition. Provided it is possible for at
least one of the ranked components to be decomposed (Step 11), we
decompose the highest ranked unit (Step 12), and go back to Step 2, as
shown. If no decomposition is possible, then we apply regression
compensation in Step 13 (Section 3.4.2) and repeat the flow from Step 6
onwards, till the output power model with appropriate accuracy is
generated.

Figure 7. CPU/DSP Core architecture of OR1200

4. OpenRISC Processor Power Modeling
To evaluate the effectiveness of our multi-granularity power model

generation methodology, we use the OR1200 freely downloadable open
source RISC processor (part of the OpenRISC 1000 family [18]) as a
case study. OR1200 is a 32-bit scalar RISC processor with a Harvard
architecture. Fig. 7 shows a basic block diagram of the processor, which
has a 4 stage pipeline, basic DSP functionality and virtual memory
support with an MMU. The CPU core has 32 general purpose 32-bit
register file (RF) implemented as two synchronous dual-port memories.
The controller (CTRL) manages instruction decoding and generates
proper control signals for each of the pipeline stages for each instruction.
The integer execution unit implements 32-bit integer instructions such as
arithmetic, compare, logical and rotate/shift instructions. Most integer
instructions can be executed in one cycle. A few instructions such as
multiply require more cycles (4 cycle latency). The Multiply/MAC
(MULT_MAC) unit executes multiplication and basic DSP MAC
operations. The MAC unit is fully pipelined so that it can fetch new
MAC operations at every clock cycle. The processor also has special
purpose registers, and an exception unit which handles exception cases
such as external interrupt request, a system call, or attempting to execute
unimplemented opcode, etc. It has been claimed that when the processor
is implemented in a typical 180 nm 6LM process, it can provide over 300
Dhrystone, 2.1 MIPS at 300MHz and 300 DSP MAC 32x32 operations
that is at least 20% better than other competitors in this class (32-bit
RISC processors) such as ARM10 and Tensilica RISC processors [18].

4.1 OpenRISC Power Models
Fig. 8 shows the multi-granularity power models generated for the

OpenRISC processor using our methodology. Level 0, 1_b, 2_b, and 3_a
correspond to levels 0-3 of a typical ESL flow, as described in Section
3.3. Three additional levels are also created, customized for the

258

OpenRISC, to further trade-off accuracy and estimation effort. Level 1_a
uses instruction clustering to reduce the number of instructions
considered in ISS models at Level 1 of the ESL flow. Level 2_a abstracts
up the EX stage of the pipeline as a single stage. Finally, Level 3_b
includes regression compensation on the most detailed model (Level 3 of
the ESL flow) to further improve accuracy over gate-level estimates.

Figure 8. Hierarchical power model for OpenRISC processor

5. EXPERIMENTAL RESULTS
In this section we present results of applying our methodology on the

OpenRISC processor case study. The power models in Fig. 8 were
generated using our proposed methodology in Fig. 6, for the 65 nm
TSMC standard technology library implementation of the OpenRISC
processor. The models were then incorporated into appropriate
simulation models of the OpenRISC in SystemC 2.1 [23] for the four
levels of modeling abstraction in an ESL design flow (Fig. 1). The
estimated power obtained from the simulation of multiple testbenches
(dhry, des, mul, tick, cbasic, basic) at these ESL modeling abstractions
was compared with gate level power estimates at the 65 nm node. The
absolute power estimation cycle error, for each of the generated multi-
granularity ESL power models, when compared to gate level power can
be calculated as:

%100×
−

= i
G

i
G

i
Si

AC P

PP
E

where Ei
AC is absolute cycle error at cycle i, Pi

S is cycle power obtained
from system level simulation with the generated power model, and Pi

G is
cycle power from gate level simulation. Note that while the higher level
power models do not have the same clock cycle period as in detailed gate
level simulation, for comparison purposes we sample the estimated
power from the models at the gate level clock cycle period. The average
absolute cycle error can then be formulated as:

N

E
E

N

i

i
AC

AAC

∑
== 1

where EAAC is the average absolute cycle error and N is the total number
of simulation cycles.

Fig. 9 shows the average absolute cycle error (EAAC) and relative
estimation effort in terms of simulation overhead, for the generated
power models for OpenRISC. The power model at Level 0 has a large
error of over 20%, which subsequently reduces for the more detailed
power models. The Level 3_b power model has an approximately 5%
error, which is extremely good compared to gate level estimates. The
error in such a detailed model occurs because of several factors, such as
the inability to capture the layout and consequently accurately model
intra-processor interconnect length, and wire switching. As part of our
ongoing work, we are integrating our previous work on interconnect
power estimation [24] that has the capability to create an early layout and
provide routing information at the ESL level for embedded systems,
which can improve accuracy. In addition to estimation accuracy, Fig. 9
also compares relative effort, in terms of simulation time required for
power estimation at the various levels in the ESL design flow. The

variation in simulation time is an artifact of the amount of detail that must
be simulated. Higher level models such as level 0, 1_a, and 1_b are faster
because they don’t capture the processor pipeline and structural details in
a cycle accurate manner, unlike the lower level models. The generated
power models allow a designer to trade-off power estimation accuracy
with “estimation/simulation” overhead. Based on the availability of
simulation models, accuracy goals, or desired simulation speed, designers
can generate and use the appropriate power model using our
methodology.

0%

5%

10%

15%

20%

25%

L0 L1_a L1_b L2_a L2_b L3_a L3_b

Power Model

Er
ro

r__

1

10

100

1000

10000

100000

R
el

at
iv

e
Ef

fo
rt__

Error
Relative Effort

Figure 9. Average absolute cycle error for power models

The results in Fig. 9 are presented for the tuning benchmark (Section
3.5) that was used to create the power models. In order to show that the
power models are applicable to any benchmark, we determined cycle
power estimates for other benchmarks executed on the OpenRISC
processor. Fig. 10 shows the average error and average absolute cycle
error for the Levels 3_b model, compared to gate level estimates, for
several benchmarks. We chose Level 3_b for the comparison because it
is the only level that relies on regression analysis, which is highly
dependent on the tuning benchmark. Consequently, this level is expected
to have the highest deviation in accuracy when tested with other
benchmarks. From the figure it can be seen that not only is the average
error for the testbenches fairly low, but the average absolute cycle error is
lower than 6% for four out of the six benchmarks, and 8% at the most for
‘dhry’. This is very close to the approximately 5% error obtained in Fig.
9, and shows how the power models created by our methodology are
portable across multiple applications.

-4%

-2%

0%

2%

4%

6%

8%

10%

des dhry mul tick cbasic basic

Er
ro

r_
_

Average error
Average absolute cycle error

Figure 10. Error comparison for various testbenches

Fig. 11 shows a comparison between system level and gate level
normalized power for the ‘mul’ testbench executing on OpenRISC,
across different ESL flow levels. The figure shows how the coarse
grained level 1_b instruction set model at the architectural/ISS level is
unable to track the power variation very accurately due to the absence of
a pipeline at that level. When the pipeline is captured, as in the level 2_b
case, then accuracy improves slightly. However, it requires a more
detailed level 3_b model which additionally captures the structural units
in a cycle accurate manner, to accurately track the peaks of the gate level
power waveform. The power estimated at this level can allow designers
to accurately estimate peak power of the processor at simulation speeds
that are 100-1000× faster than gate level power simulation. Such a model
is extremely useful for determining the thermal and electrical limits of the
design, and can guide the selection of the appropriate packaging to
prevent hotspots and thermal runaway.

259

0

5

10

15

20

1 10 19 28 37 46 55 64 73 82 91 100109 118127 136145 154163 172181 190 199208 217226 235

Time

gate power
system power

(a) level 1_b

0

5

10

15

20

1 10 19 28 37 46 55 64 73 82 91 100109 118127 136145 154163 172181 190 199208 217226 235

Time

gate power
system power

(b) level 2_b

0

5

10

15

20

1 10 19 28 37 46 55 64 73 82 91 100109 118127136145 154163172 181190199 208217226 235

Time

gate power
system power

(c) level 3_b

Figure 11. Relative power waveform comparison for the ‘mul’ testbench on OpenRISC (Unit for Time: 20ns)

6. CONCLUSION
In this paper we presented a multi-granularity processor power

modeling methodology for generating various power models that can be
used at different stages in an ESL design flow. We introduced a tripartite
hyper-graph representation of the processor instruction set, pipeline, and
functional units. Iteratively decomposing the hyper nodes in this graph
allows our methodology to create increasingly more detailed power
models with better accuracy. Ultimately, our methodology can allow
designers to generate processor power models for any stage of an ESL
design flow, with support for model customization that allows trade-offs
between simulation speed and estimation accuracy. The generated power
models enable designers to explore the power design space and
determine the effect of using various power optimizations, early in the
design flow. Our ongoing work is focusing on applying this methodology
to other types of processors, and integrating floorplanning and routing
information at the system level, for even more accurate early processor
power estimation.

7. ACKNOWLEDGMENTS
This research was partially supported by grants from SRC (2005-HJ-

1330 and 1617.001) and NSF (CCF-0702797).

REFERENCES
[1] I. Lee, et al, “PowerViP: Soc power estimation framework at transaction level”,

Proc. ASP-DAC 2006.
[2] W. Nebel, “System-Level Power Optimization”, Proc. DSD 2004.
[3] D. Brooks, et al, “Wattch: a framework for architectural-level power analysis

and optimizations”, Proc. ISCA, pp. 83-94, 2000.
[4] W. Ye, et al, “The design and use of SimplePower: a cycle-accurate energy

estimation tool”, Proc. DAC 2000.
[5] “Cacti4”, http://quid.hpl.hp.com:9081/cacti/.
[6] N. Banerjee, et al, “A power and performance model for network-on-chip

architectures”, Proc. DATE 2004.

[7] Y. Park, et al, “System-level power estimation methodology with H.264
decoder prediction IP case study”, Proc. ICCD 2007.

[8] V. Tiwari, et al, “Instruction Level Power Analysis and Optimization of
Software”, Journal of VLSI Signal Processing, pp.223-233, 1996.

[9] H. Mebta, et al, “Techniques for Low Energy Software”, International
Symposium on Low Power Electronics and Design, pp. 72-75, Aug 1997.

[10] C. Gebotys, et al, “An Empirical Comparison of Algorithmic, Instruction, and
Architectural Power Prediction Model for High-Performance Embedded DSP
Processors”, Proc. ISLPED 1998.

[11] D. Sarta, et al, “A data dependent approach to instruction level power
estimation”, Proc. IEEE AVMW Low-Power Design, Mar. 1999.

[12] C. Chakrabarti et al, “Instruction level power model of microcontrollers”,
Proc. IEEE ISCAS, pp. 176-179, 1999.

[13] M. Sami, et al, “Instruction-level power estimation for embedded VLIW
cores”, Proc. CODES 2000.

[14] N. Kavvadias, et al, “Measurements analysis of the software-related power
consumption in microprocessors”, Proc. IMTC, pp. 981- 986, 2003.

[15] A. Varma, et al, “Instruction-level power dissipation in the Intel XScale
embedded microprocessor.” Proc. SPIE's 17th Annual Symposium on
Electronic Imaging Science & Technology, Jan.2005.

[16] M. Schneider, et al, “Power estimation on functional level for programmable
processors”, Advances in Radio Science, pp 215-219, 2005.

[17] D. Burger , et al, “The simplescalar tool set, version 2.0”, Technical report,
Computer Sciences Dept., University of Wisconsin, June, 1997.

[18] OpenRISC 1000 Family, http://www.opencores.org/projects/or1k/.
[19] Y. Park, et al, “Methodology for Multi-Granularity Embedded Processor

Power Model Generation”, UCI Technical Report, 2008.
[20] J.J. Faraway, “Linear Models with R”, CRC Press, 2004.
[21] Synopsys Design Compiler, PrimeTime PX, http://www.synopsys.com.
[22] Cadence NC-Verilog, http://www.cadence.com.
[23] SystemC initiative, http://www.systemc.org.
[24] S. Pasricha, et al, “System-level power-performance trade-offs in bus matrix

communication architecture synthesis”, Proc. CODES+ISSS 2006.

260

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

