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ABSTRACT 
With power becoming a major constraint for multi-processor 

embedded systems, it is becoming important for designers to 
characterize and model processor power dissipation. It is critical for 
these processor power models to be useable across various modeling 
abstractions in an electronic system level (ESL) design flow, to guide 
early design decisions. In this paper, we propose a unified processor 
power modeling methodology for the creation of power models at 
multiple granularity levels that can be quickly mapped to an ESL 
design flow. Our experimental results based on applying the 
proposed methodology on an OpenRISC processor demonstrate the 
usefulness of having multiple power models. The generated models 
range from very high-level two-state and architectural/ISS models 
that can be used in transaction level models (TLM), to extremely 
detailed cycle-accurate models that enable early exploration of 
power optimization techniques. These models offer a designer 
tremendous flexibility to trade off estimation accuracy with 
estimation/simulation effort. 

Categories and Subject Descriptors: J.6 [Computer-aided Design]; 
B.7.2 [Integrated circuits]: Design; C.5.4 [VLSI Systems] 
General Terms: Design, Experimentation, Performance 
Keywords: Embedded Processor, Power Modeling, System-on-Chip, ESL  

1. INTRODUCTION 
Reducing power dissipation is a critical design goal for electrical 

devices from hand-held systems with limited battery capacity to large 
computer workstations that dissipate huge amounts of power and need 
costly cooling mechanisms. Designers today must evaluate various power 
optimizations as early as possible in an electronic system level (ESL) 
design flow, since design changes are easier and have the greatest impact 
on application power dissipation at the system level [1]-[2]. In order to 
explore these optimizations, accurate power estimation models are 
necessary. These models are especially important for chip multiprocessor 
(CMP) systems with tens to hundreds of processors integrated on a single 
chip. Even a slight inaccuracy in power estimation for a single processor 
can result in a large absolute error for the chip. 

Several system level power estimation approaches have been proposed 
in recent years focusing on the various components of CMP designs, 
such as processors [3]-[4], memories [5], interconnection fabrics [6], and 
custom ASIC blocks [7]. Because of the heterogeneity of these 
components, power estimation models are usually customized for each 
component to achieve desired estimation accuracy. In addition, each type 
of component requires several power estimation models that can be 
incorporated at the most coarse grain, high levels of abstraction, as well 
as at the most detailed, low level simulation abstractions.  

Fig. 1 shows the typical ESL design stages for embedded processors. 
The functional stage consists of a high level model of the processor that 
captures its basic functionality. This model is refined down to the 
architectural level, which has a well defined instruction set architecture 
(ISA). A simulator that captures the ISA at this level is commonly 
referred to as an instruction set simulator (ISS). In the subsequent stage, 
the pipeline of the processor is modeled, to create a more detailed 
pipeline-accurate architectural model. This model can simulate 
instructions flowing through a pipeline, and captures the performance 
benefits of pipelining, as well as the slowdown due to pipeline stalls. 
Finally, this model is refined down to the cycle accurate micro-
architectural level, by adding details of the functional units (data path) 
and the pipeline (control path), to capture the behavior of the processor at 
a highly detailed cycle-accurate granularity. 

To guide design decisions that affect power dissipation, designers need 
power estimation models at each of these levels. Existing processor 
power estimation techniques create power models that map onto and are 
useful only at a particular level. For instance, the commonly used 
instruction level power estimation technique [8] assigns a power number 
to each instruction in a processor ISA. This technique can only be used at 
an ESL level that captures the ISA. Thus, while this technique is readily 
applicable at the architectural level, it cannot be easily used at the higher 
functional level which is unaware of the ISA. Furthermore, if this 
technique is used at the lower levels, it fails to exploit the additional 
accuracy in the control and data paths and suffers from an abstraction 
mismatch. Similarly, cycle accurate power estimation tools such as 
Wattch [3] and SimplePower [4] are applicable to the detailed micro-
architectural level of the ESL design flow, but cannot be easily ported to 
higher level architectural/ISS models that lack micro-architectural detail. 
The mismatch between power model granularity and level of detail 
captured at an ESL design level thus limits the applicability of current 
power estimation techniques across an ESL flow. 
 

 
 

Figure 1: ESL design flow for embedded processors 
 

In this paper, we propose a comprehensive multi-granularity power 
model generation methodology that spans the entire ESL design flow 
(Fig. 1). Using industry standard design flows, our methodology can 
quickly generate multiple power models ranging from the simplest two-
level, coarse grained model for early power estimation, to the most 
accurate cycle accurate model that allows designers to explore the impact 
of using power optimizations with minimal manual interference and 
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effort. Our proposed approach is based on the concept of hierarchical 
decomposition, with the aid of a tripartite hyper-graph model of 
processor power that can be iteratively refined to create power estimation 
models with better accuracy. The methodology serves a vital function in 
supplying a designer with multiple derivative processor power estimation 
models that match the increasing accuracy of the design, as it is 
successively refined from the functional, to the architectural and then 
down to the cycle-accurate micro-architectural stages in a typical ESL 
design flow. We demonstrate the feasibility of our approach on an 
OpenRISC [18] processor case study, and present results to show how 
the multi-granularity power models generated for the processor provide 
designers with the flexibility to trade-off estimation accuracy and 
simulation effort during system-level exploration.  

2. RELATED WORK 
Processor power estimation has been the focus of several research 

efforts over the past few years. One of the simplest processor power 
estimation models is a two-state model with one of the states representing 
the processor when it is busy, and the other representing an idle state [1]. 
A popular power estimation technique for processors is instruction level 
power estimation, which was first proposed by Tiwari et al. [8]. The 
technique is based on the simple observation that each instruction can be 
assigned its own power cost. Several subsequent research efforts [9]-[14] 
have applied instruction level power estimation to obtain high level 
power estimates for various processor variants such as a DSPs [10], 
VLIW processors [13] and the Intel XScale [15]. However, while these 
techniques are useful for early estimation of average power, they are not 
very accurate for cycle-level power estimation. For more accurate 
processor power estimation, structural modeling [3][4][16] is a widely 
used approach, which creates power models for smaller decomposed sub-
units in the processor. These power models observe the activity of the 
units in the processor and use this information for estimating power. 
Power estimation tools such as Wattch [3] and SimplePower [4] use this 
approach, and are relatively well known because they can cooperate with 
the widely used processor simulation platform SimpleScalar [17]. Even 
though these tools are popular, they have their limitations. Wattch 
concentrates its effort on regular structures such as memory array and 
CAM structures, for which it is relatively easy to calculate switched 
capacitance, but not on the complex combinational logic often found in 
processors. SimplePower relies on a lookup table (LUT) that contains the 
switch capacitance for each input transition of the processor functional 
units. This methodology is known to be accurate for small units, but if the 
input size is large, it is impractical to have all the cases in the table. 
Techniques used to overcome this limitation end up sacrificing estimation 
accuracy.  

All of these processor power estimation techniques have trade-offs 
between designer effort, accuracy and simulation speed. To the best of 
our knowledge, there has not been any approach that can 
comprehensively generate several power models for a processor to plug 
into the various stages of an ESL design flow. Our methodology can 
provide an easy way for designers to create multi-granularity models by 
simply varying certain parameters to trade-off estimation accuracy and 
simulation speed. Another important differentiation between this work 
and prior work is that our methodology generates both average and 
maximum power estimates, and provides these estimates dynamically 
(i.e., for a given window of time). This helps in early design space 
exploration of CMPs with large number of processors, and facilitates the 
realistic optimization of such systems. Finally, we note that while our 
approach concentrates on the processor cores only, it is complementary to 
existing memory models such as CACTI[5] which provide estimates of 
caches and other memories peripheral to the processor core that are 
comparable in terms of accuracy and flexibility to our models. 

3. POWER MODELING METHODOLOGY 
In this section we present details of our power estimation methodology. 

3.1 3D Power Contribution LUT 
During program execution, an instruction in a processor ISA activates 

different functional sub-units, and consequently dissipates varying 
amounts of power as it traverses the processor pipeline stages. To 
accurately characterize the power contribution of an instruction, we 
create a 3D lookup table (LUT), as shown in Fig. 2. Assuming K 
processor functional units, M pipeline stages, and N instructions in the 
ISA, we create a table that holds the power dissipation for each 
instruction, at each pipeline stage, for all of the functional units in the 
processor. For improved accuracy, we create a set of three 3D LUTs, 
corresponding to average power, minimum power and maximum power. 
For 2-operand instructions, these power ranges can be obtained by 
varying the data operand values from minimum to maximum (e.g., 
0x0000 to 0xFFFF) which will vary the Hamming Distance (HD) 
between the two operands. A larger HD is found to result in greater 
power dissipation. Fig. 3 shows the normalized power for several 
instructions from the OpenRISC ISA [18], for varying HD values of 
operand data. It can be seen that power dissipation between the minimum 
and maximum HD cases varies by as much as 3×, justifying the need for 
three 3D LUTs. Linear interpolation is used to estimate the power entries 
in the LUTs for arbitrary data values using their HD. Section 3.5 
describes how we populate the 3D LUTs in more detail, and how inter-
instruction and other unpredictable power dissipation factors are captured 
using regression compensation. 
 

 
Figure 2. 3D Power contribution LUT 
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Figure 3. Relation between Hamming Distance and power of several 

instructions at EX stage in ALU unit of the OpenRISC processor 

3.2 Processor Tripartite Hyper-Graph  
For the purpose of creating multi-granularity processor power models, 

we can conceptually represent a processor as a tripartite hyper-graph 
H(P) = <V,E>, as shown in Fig. 4 (d). The set of vertices V is partitioned 
into three disjoint sets: I = {i1,i2,…,iN}, S = {s1,s2,…,sM}, and U = 
{u1,u2,…,uK} corresponding to the set of processor instructions, pipeline 
stages, and functional units, respectively. The ternary edges (or 
hyperedges) E is a set of triples (i,s,u), i ∈ I, s∈ S, u∈ U that represent the 
ternary association between an instruction and its power dissipation 
across the pipeline stages it traverses and functional units it activates. The 
weights of those hyperedges are populated from the 3D LUTs described 
in the previous subsection. A reduced graph, H’(P) can be obtained by 
clustering disjoint subsets of I, S and U, resulting in 1≤ |I’|≤ N, 
1≤ |S’|≤ M and 1≤ |U’|≤ K clusters for each of the three sets of vertices. 
The number of hyperdeges is also reduced as one hyperedge exists 
between each triplet of clusters.  

The tripartite hyper-graph offers a convenient way to represent the 
granularity of different processor power models. Consider a simple 2-
state processor power model, with only two power values: for the active 
and idle states. Such a model can be represented as shown in Fig. 4(a), 
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with a triple (i,s,u), where |I’|=2 (an idle or NOP, and an active 
instruction), |S’|=1, and |U’|=1. Such a coarse grain model does not 
require information about pipeline stages or functional units. More 
accurate, finer granularity power models can be obtained by 
decomposing subsets I’, S’, and U’ in the hyper-graph, examples of 
which are shown in Fig. 4(b)-4(d). These models will more accurately 
represent the power dissipation of multiple instructions I, as they traverse 
the pipeline stages S, and activate U functional units. 

 
                          (a)                    (b) 

 
                        (c)                    (d) 

 

Figure 4. Tripartite hyper-graph H(P), (a) simplest 2-state power model, 
(b) power model with set I decomposed, (c) power model with sets I, S 

decomposed, (d) power model with sets I, S, U decomposed 
 

3.3 Processor Power Models for an ESL Flow 
Having introduced the concept of a tripartite hyper-graph that allows 

multi-granularity power model representation, we now present power 
models that can be mapped to the various stages of an ESL design flow, 
shown in Fig. 1. There are four power models that map to the appropriate 
four major ESL stages: 
Level 0 (functional): A 2-state (active, idle) coarse grained power model 
is used for the functional stage, and is shown in Fig. 4(a). 
Level 1 (architectural/ISS): At the architectural level that supports ISA 
simulation, the instruction subset is decomposed so that each instruction 
has a power value (|I’| = N, where N is number of instructions in ISA), as 
shown in Fig. 4(b). Since the pipeline stages and functional units are not 
necessarily modeled at this stage, their effect on power dissipation cannot 
be modeled, and therefore subsets S’ and U’ are not decomposed (|S’| = 
1, |U’| = 1). 
Level 2 (pipeline-accurate architectural): When the pipeline is modeled 
at the pipeline-accurate architectural level, the power model can be 
further refined by decomposing the pipeline stage subset S’ (|S’| = M, 
where M is the number of pipeline stages), as shown in Fig. 4(c). This 
represents more accurate power dissipation, as it accounts for the effects 
of pipelined execution, including any stalls and flushes.  
Level 3 (cycle-accurate micro-architectural): When the structural units 
are additionally modeled cycle-accurately, as is the case at the cycle-
accurate micro-architectural level, then the power model can be further 
refined by decomposing the functional unit subset U’ (|U’| = K, where K 
is the number of processor function units), as shown in Fig. 4(d). This is 
the most accurate power model that gives very reliable cycle-accurate 
power dissipation information. 

Note that the finer grained, lower level power models are extremely 
accurate, but require significantly greater modeling effort and simulation 
overhead. 

3.4 Power Model Customization 
The multi-granularity power models described above map conveniently 

to the different ESL design stages. However, different processors have 
different functional (i.e., instruction set), temporal (i.e., pipelining), and 
structural (i.e., functional unit) complexities. These may require more 
flexible power models, to achieve the best possible trade-off between 
accuracy and simulation effort. This flexibility in our power model 
generation methodology is achieved by appropriately varying the number 
of elements in each of the subsets I’, S’ and U’. Due to lack of space, we 
only present a brief overview of the approaches in the following 
subsections. More information on these algorithms can be found in our 
detailed technical report [19].   
3.4.1 Instruction Set Clustering  

One possible power model customization is to reduce the number of 
instructions considered for power estimation, by clustering similar power 
dissipating instruction into groups. Fig. 5 shows an example of our hyper-
graph clustering algorithm to automatically generate different instruction 
set groupings. Recall that each instruction in the ISA has a power 
dissipation range, obtained from the minimum, average, and maximum 
power in the 3D LUTs. The algorithm attempts to reduce the complexity 
of an instruction level power model (Level 1) by clustering instructions 
that have similar behavior and power dissipation characteristics. If some 
instructions span a similar power range within a deviation threshold (Td), 
we can cluster them together. For example, as shown in Fig. 5, if the 
difference in power between instruction I1 and I2 is smaller than the 
threshold value (|Pmax(I1)-Pmax(I2)| < Td and |Pmin(I1)-Pmin(I2)| < Td), we 
can regard these instructions as similar enough to be clustered together. A 
larger threshold value will allow more instructions to be grouped together. 
In the figure instructions I1–I3 constitute group G1, while I4–I6 are part 
of group G2, etc using this method.  

An approach to further improve power estimation speed uses a range 
threshold (Tr) to discard the min and max values for an instruction group, 
if the power range for the group is smaller than Tr. The goal is to reduce 
the number of LUT entries for an instruction (group) if there is minimal 
variation between its min and max values. In the example in Fig. 5, Tr > 
Pmax(G3)-Pmin(G3), and therefore for G3, min and max values are 
discarded, and we just keep an average value. For group G2, Tr < 
Pmax(G2)-Pmin(G2), and so we do not discard its min and max values, 
which would cause a more significant impact on estimation accuracy.  

Both of these threshold based approaches allow faster power estimation 
from Level 1 onwards (by reducing the instruction space and pruning 
LUTs) at the cost of a slight inaccuracy.  
 

 
Figure 5. Instructions and clustering groups 

3.4.2 Further Decomposition and Regression Analysis 
It is possible that greater accuracy is required than the accuracy 

supported by the models described in Section 3.3. In such a case, we can 
increase accuracy by using two strategies. First we can further 
decompose pipeline and/or functional units, and consider their power 
contribution separately. For instance, the EX pipeline stage can be further 
decomposed into multiple stages, or a register file unit can be 
decomposed into several sub-banks. In our approach, we use a ranking 
scheme that iteratively performs decomposition starting with the unit 
with the highest rank, which coincides with the largest power dissipation 
magnitude and variation.  
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If such decomposition is still unable to provide sufficient accuracy, we 
can then perform a regression compensation step. In this step, we account 
for hard to determine factors that contribute to power dissipation, 
including any complex inter-instruction influences due to multiple 
instructions traveling at the same time through the pipeline. Note that the 
regression adjustment is relevant only for lower levels in the ESL flow 
that capture structural and pipeline details (e.g. Level 3). The cycle power 
for the model with regression adjustment, based on testbench simulation 
and subsequent curve fitting [20] can be expressed as: 

),,(
1

0 usiPP
M

s
sCycle ⋅+= ∑

=

αα  

where M is the number of pipeline stages in the processor, α0 is 
regression coefficient representing power of the factors that are 
independent of the model variables, αs is the regression coefficient for 
P(i,s,u), which is the power value from LUT for instruction i, pipeline 
stage s and unit u. Our experimental results show that such a 
compensation step can improve estimation accuracy noticeably.  

3.5 Power Model Generation Methodology 
 

 
Figure 6. Power model generation methodology 

The overall methodology to build the multi-granularity power models 
for an ESL design flow is shown in Fig. 6. The methodology consists of 
two major flows: the 3D power LUT generation, shown on the left and 
the power model generation for the desired ESL design stage, shown on 
the right. In Step 1, the processor RTL (Verilog) design is synthesized to 
a gate-level net-list using Synopsys Design Compiler [21], for the target 
technology cell library. In Step 2, the gate-level simulation is performed 
using NC-Verilog [22], with a special purpose tuning testbench. This 
testbench consists of all the instructions in the ISA separated by an 
appropriate number of NOPs, to isolate the power dissipation for each 
instruction type. Operand data values with minimum, average and 
maximum Hamming distances are used for each instruction. This step 
provides us with simulation information such as timing, control signals 
that indicate accessed functional units, and information about the activity 
of instructions in each pipeline stage. In Step 3, power simulation is 
performed using the PrimeTime PX tool [21], to generate gate level 
power data, which is decomposed for each functional unit using simple 
Perl scripts. The generated information in Steps 2-3 is provided to Step 4, 
which generates the 3D LUTs. 

The generated 3D LUTs are then provided to the power modeling flow. 
Depending on the granularity of the model required (e.g., Level 0, 1, 2, or 
3, Section 3.3), the appropriate values to create the tripartite hyper-graph 
are specified. The target accuracy goal for the power model is also 
specified. Additionally, if a trade-off between accuracy and simulation 
effort is desired, then the user should provide deviation and range 
threshold values, rank values for the pipeline/functional units to guide 
structural decomposition, and a bias value to indicate preference for 

instruction set or structural decomposition, if accuracy goals are not met. 
In Step 5, an optional instruction clustering-based optimization is 
performed (Section 3.4.1). In Step 6, the power model is integrated into 
an ESL stage and simulated to obtain power information for the tuning 
benchmark, and compared with gate-level simulation data for the same 
benchmark. If the power model meets the accuracy goal (Step 7) then it 
becomes the output power model, for use in ESL power simulation with 
any application. If the accuracy goal is not met, then we need to refine 
the power model. The bias value is checked to determine if instruction set 
decomposition or structural decomposition is favored. Either 
decomposition increases the sizes of one or more of the sets in the hyper-
graph, and improves accuracy, at the cost of estimation/simulation effort. 
If the bias value in Step 8 favors instruction set decomposition, then we 
check if such decomposition is possible (i.e., check if instruction groups 
exist that can be decomposed). If decomposition is possible (Step 9), we 
reduce the threshold values (Step 10) and go back to step 5 and redo the 
clustering, which will then create fewer (or no) groups. Otherwise we 
proceed to the structural decomposition. Provided it is possible for at 
least one of the ranked components to be decomposed (Step 11), we 
decompose the highest ranked unit (Step 12), and go back to Step 2, as 
shown. If no decomposition is possible, then we apply regression 
compensation in Step 13 (Section 3.4.2) and repeat the flow from Step 6 
onwards, till the output power model with appropriate accuracy is 
generated.   

 

Figure 7.  CPU/DSP Core architecture of OR1200 

4. OpenRISC Processor Power Modeling 
To evaluate the effectiveness of our multi-granularity power model 

generation methodology, we use the OR1200 freely downloadable open 
source RISC processor (part of the OpenRISC 1000 family [18]) as a 
case study. OR1200 is a 32-bit scalar RISC processor with a Harvard 
architecture. Fig. 7 shows a basic block diagram of the processor, which 
has a 4 stage pipeline, basic DSP functionality and virtual memory 
support with an MMU. The CPU core has 32 general purpose 32-bit 
register file (RF) implemented as two synchronous dual-port memories. 
The controller (CTRL) manages instruction decoding and generates 
proper control signals for each of the pipeline stages for each instruction. 
The integer execution unit implements 32-bit integer instructions such as 
arithmetic, compare, logical and rotate/shift instructions. Most integer 
instructions can be executed in one cycle. A few instructions such as 
multiply require more cycles (4 cycle latency). The Multiply/MAC 
(MULT_MAC) unit executes multiplication and basic DSP MAC 
operations. The MAC unit is fully pipelined so that it can fetch new 
MAC operations at every clock cycle. The processor also has special 
purpose registers, and an exception unit which handles exception cases 
such as external interrupt request, a system call, or attempting to execute 
unimplemented opcode, etc. It has been claimed that when the processor 
is implemented in a typical 180 nm 6LM process, it can provide over 300 
Dhrystone, 2.1 MIPS at 300MHz and 300 DSP MAC 32x32 operations 
that is at least 20% better than other competitors in this class (32-bit 
RISC processors) such as ARM10 and Tensilica RISC processors [18]. 

4.1 OpenRISC Power Models 
Fig. 8 shows the multi-granularity power models generated for the 

OpenRISC processor using our methodology.  Level 0, 1_b, 2_b, and 3_a 
correspond to levels 0-3 of a typical ESL flow, as described in Section 
3.3. Three additional levels are also created, customized for the 
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OpenRISC, to further trade-off accuracy and estimation effort. Level 1_a 
uses instruction clustering to reduce the number of instructions 
considered in ISS models at Level 1 of the ESL flow. Level 2_a abstracts 
up the EX stage of the pipeline as a single stage. Finally, Level 3_b 
includes regression compensation on the most detailed model (Level 3 of 
the ESL flow) to further improve accuracy over gate-level estimates. 

Figure 8. Hierarchical power model for OpenRISC processor 

5. EXPERIMENTAL RESULTS 
In this section we present results of applying our methodology on the 

OpenRISC processor case study. The power models in Fig. 8 were 
generated using our proposed methodology in Fig. 6, for the 65 nm 
TSMC standard technology library implementation of the OpenRISC 
processor. The models were then incorporated into appropriate 
simulation models of the OpenRISC in SystemC 2.1 [23] for the four 
levels of modeling abstraction in an ESL design flow (Fig. 1). The 
estimated power obtained from the simulation of multiple testbenches 
(dhry, des, mul, tick, cbasic, basic) at these ESL modeling abstractions 
was compared with gate level power estimates at the 65 nm node. The 
absolute power estimation cycle error, for each of the generated multi-
granularity ESL power models, when compared to gate level power can 
be calculated as: 

%100×
−

= i
G

i
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PP
E  

where Ei
AC is absolute cycle error at cycle i, Pi

S is cycle power obtained 
from system level simulation with the generated power model, and Pi

G is 
cycle power from gate level simulation. Note that while the higher level 
power models do not have the same clock cycle period as in detailed gate 
level simulation, for comparison purposes we sample the estimated 
power from the models at the gate level clock cycle period. The average 
absolute cycle error can then be formulated as:   
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where EAAC is the average absolute cycle error and N is the total number 
of simulation cycles.  

Fig. 9 shows the average absolute cycle error (EAAC) and relative 
estimation effort in terms of simulation overhead, for the generated 
power models for OpenRISC. The power model at Level 0 has a large 
error of over 20%, which subsequently reduces for the more detailed 
power models. The Level 3_b power model has an approximately 5% 
error, which is extremely good compared to gate level estimates. The 
error in such a detailed model occurs because of several factors, such as 
the inability to capture the layout and consequently accurately model 
intra-processor interconnect length, and wire switching. As part of our 
ongoing work, we are integrating our previous work on interconnect 
power estimation [24] that has the capability to create an early layout and 
provide routing information at the ESL level for embedded systems, 
which can improve accuracy. In addition to estimation accuracy, Fig. 9 
also compares relative effort, in terms of simulation time required for 
power estimation at the various levels in the ESL design flow. The 

variation in simulation time is an artifact of the amount of detail that must 
be simulated. Higher level models such as level 0, 1_a, and 1_b are faster 
because they don’t capture the processor pipeline and structural details in 
a cycle accurate manner, unlike the lower level models. The generated 
power models allow a designer to trade-off power estimation accuracy 
with “estimation/simulation” overhead. Based on the availability of 
simulation models, accuracy goals, or desired simulation speed, designers 
can generate and use the appropriate power model using our 
methodology. 
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Figure 9. Average absolute cycle error for power models 
 

The results in Fig. 9 are presented for the tuning benchmark (Section 
3.5) that was used to create the power models. In order to show that the 
power models are applicable to any benchmark, we determined cycle 
power estimates for other benchmarks executed on the OpenRISC 
processor. Fig. 10 shows the average error and average absolute cycle 
error for the Levels 3_b model, compared to gate level estimates, for 
several benchmarks. We chose Level 3_b for the comparison because it 
is the only level that relies on regression analysis, which is highly 
dependent on the tuning benchmark. Consequently, this level is expected 
to have the highest deviation in accuracy when tested with other 
benchmarks. From the figure it can be seen that  not only is the average 
error for the testbenches fairly low, but the average absolute cycle error is 
lower than 6% for four out of the six benchmarks, and 8% at the most for 
‘dhry’. This is very close to the approximately 5% error obtained in Fig. 
9, and shows how the power models created by our methodology are 
portable across multiple applications.  
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Figure 10. Error comparison for various testbenches 

 

Fig. 11 shows a comparison between system level and gate level 
normalized power for the ‘mul’ testbench executing on OpenRISC, 
across different ESL flow levels. The figure shows how the coarse 
grained level 1_b instruction set model at the architectural/ISS level is 
unable to track the power variation very accurately due to the absence of 
a pipeline at that level. When the pipeline is captured, as in the level 2_b 
case, then accuracy improves slightly. However, it requires a more 
detailed level 3_b model which additionally captures the structural units 
in a cycle accurate manner, to accurately track the peaks of the gate level 
power waveform. The power estimated at this level can allow designers 
to accurately estimate peak power of the processor at simulation speeds 
that are 100-1000× faster than gate level power simulation. Such a model 
is extremely useful for determining the thermal and electrical limits of the 
design, and can guide the selection of the appropriate packaging to 
prevent hotspots and thermal runaway. 
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Figure 11. Relative power waveform comparison for the ‘mul’ testbench on OpenRISC (Unit for Time: 20ns) 
 

6. CONCLUSION 
In this paper we presented a multi-granularity processor power 

modeling methodology for generating various power models that can be 
used at different stages in an ESL design flow. We introduced a tripartite 
hyper-graph representation of the processor instruction set, pipeline, and 
functional units. Iteratively decomposing the hyper nodes in this graph 
allows our methodology to create increasingly more detailed power 
models with better accuracy. Ultimately, our methodology can allow 
designers to generate processor power models for any stage of an ESL 
design flow, with support for model customization that allows trade-offs 
between simulation speed and estimation accuracy. The generated power 
models enable designers to explore the power design space and 
determine the effect of using various power optimizations, early in the 
design flow. Our ongoing work is focusing on applying this methodology 
to other types of processors, and integrating floorplanning and routing 
information at the system level, for even more accurate early processor 
power estimation.  

7. ACKNOWLEDGMENTS 
This research was partially supported by grants from SRC (2005-HJ-

1330 and 1617.001) and NSF (CCF-0702797). 

REFERENCES 
[1] I. Lee, et al, “PowerViP: Soc power estimation framework at transaction level”, 

Proc. ASP-DAC 2006. 
[2] W. Nebel, “System-Level Power Optimization”, Proc. DSD 2004. 
[3] D. Brooks, et al, “Wattch: a framework for architectural-level power analysis 

and optimizations”, Proc. ISCA, pp. 83-94, 2000. 
[4] W. Ye, et al, “The design and use of SimplePower: a cycle-accurate energy 

estimation tool”, Proc. DAC 2000. 
[5] “Cacti4”, http://quid.hpl.hp.com:9081/cacti/. 
[6] N. Banerjee, et al, “A power and performance model for network-on-chip 

architectures”, Proc. DATE 2004. 

[7] Y. Park, et al, “System-level power estimation methodology with H.264 
decoder prediction IP case study”, Proc. ICCD 2007. 

[8] V. Tiwari, et al, “Instruction Level Power Analysis and Optimization of 
Software”, Journal of VLSI Signal Processing, pp.223-233, 1996. 

[9] H. Mebta, et al, “Techniques for Low Energy Software”, International 
Symposium on Low Power Electronics and Design, pp. 72-75, Aug 1997. 

[10] C. Gebotys, et al, “An Empirical Comparison of Algorithmic, Instruction, and 
Architectural Power Prediction Model for High-Performance Embedded DSP 
Processors”,  Proc. ISLPED 1998. 

[11] D. Sarta, et al, “A data dependent approach to instruction level power 
estimation”, Proc. IEEE AVMW Low-Power Design, Mar. 1999. 

[12] C. Chakrabarti et al, “Instruction level power model of microcontrollers”, 
Proc. IEEE ISCAS, pp. 176-179, 1999. 

[13] M. Sami, et al, “Instruction-level power estimation for embedded VLIW 
cores”, Proc. CODES 2000. 

[14] N. Kavvadias, et al, “Measurements analysis of the software-related power 
consumption in microprocessors”, Proc. IMTC, pp. 981- 986, 2003. 

[15] A. Varma, et al, “Instruction-level power dissipation in the Intel XScale 
embedded microprocessor.” Proc. SPIE's 17th Annual Symposium on 
Electronic Imaging Science & Technology, Jan.2005. 

[16] M. Schneider, et al, “Power estimation on functional level for programmable 
processors”, Advances in Radio Science, pp 215-219, 2005. 

[17] D. Burger , et al, “The simplescalar tool set, version 2.0”, Technical report, 
Computer Sciences Dept., University of Wisconsin, June, 1997. 

[18] OpenRISC 1000 Family, http://www.opencores.org/projects/or1k/. 
[19] Y. Park, et al, “Methodology for Multi-Granularity Embedded Processor 

Power Model Generation”, UCI Technical Report, 2008. 
[20] J.J. Faraway, “Linear Models with R”, CRC Press, 2004. 
[21] Synopsys Design Compiler, PrimeTime PX, http://www.synopsys.com. 
[22] Cadence NC-Verilog, http://www.cadence.com. 
[23] SystemC initiative, http://www.systemc.org. 
[24] S. Pasricha, et al, “System-level power-performance trade-offs in bus matrix 

communication architecture synthesis”, Proc. CODES+ISSS 2006. 
 

260



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


