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ABSTRACT
Instruction set extensions (ISEs) can accelerate embedded proces-
sor performance. Many algorithms for ISE generation have shown
good potential; some of them have recently been expanded to in-
clude Architecturally Visible Storage (AVS)—compiler-controlled
memories, similar to scratchpads, that are accessible only to ISEs.
To achieve a speedup using AVS, Direct Memory Access (DMA)
transfers are required to move data from the main memory to the
AVS; unfortunately, this creates coherence problems between the
AVS and the cache, which previous methods for ISEs with AVS
failed to address; additionally, these methods need to leave many
conservative DMA transfers in place, whose execution significantly
limits the achievable speedup. This paper presents a memory co-
herence scheme for ISEs with AVS, which can ensure execution
correctness and memory consistency with minimal area overhead.
We also present a method that speculatively removes redundant
DMA transfers. Cycle-accurate experimental results were obtained
using an FPGA-emulation platform. These results show that the
application-specific instruction-set extended processors with spec-
ulative DMA-enhanced AVS gain significantly over previous tech-
niques, despite the overhead of the coherence mechanism.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles; D.3.4 [Programming
Languages]: Processors—Optimization

General Terms
Design, Performance

Keywords
Application-Specific Processors, Architecturally Visible Storage,
Instruction Set Extensions, Speculative Direct Memory Access

1. INTRODUCTION
The performance requirements of embedded systems are contin-

uously growing under a very constrained cost and energy envelope.
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System designers must extract maximal performance from rela-
tively simple cores through specific architectural decisions; pro-
cessor customization is a possible framework for such architectural
decisions [8] and instruction set extensions one of the main tools in
the hands of designers.

Unfortunately, the power of customized instructions is often lim-
ited by the data bandwidth to and from the datapaths implementing
them—indeed a typical formulation of the instruction-set exten-
sion identification problem has register-port availability as a crit-
ical constraint [10]. One way to moderate the problem is to add
Architecturally Visible Storage (AVS), which intrinsically provides
the customized datapath with additional local bandwidth. Archi-
tecturally visible storage may simply mean scalar registers to hold
local variables mostly used by the customized instruction. It can
also mean complete data structures, such as local arrays, whose
content is used over and over by the special instruction.

Some researchers have made first steps in introducing memory
elements in automatically discovered instruction set extensions [4].
The basic idea is to enable selectively the inclusion of load and
store operations (often simply excluded) in the custom instruction,
assuming that such load and store operations are in fact imple-
mented not from main memory but from a locally instantiated reg-
ister or small ASIC memory; such memories are not fundamentally
dissimilar from ad-hoc Scratch Pad Memories (SPMs). The key of
the methodology is to provide any classic instruction set extension
algorithm (such as [10] in that case) with a good estimation of the
cost of bringing in and out the required data, usually with Direct
Memory Access (DMA) transfers. The authors developed an al-
gorithm to compute such a λoverhead parameter by placing DMA
transfers in those positions in the program that guarantee correct
execution (coherent content between the custom memory and main
memory) and have minimal cost (that is, are executed as seldom
as possible). Our goal is to improve on the results of Biswas et
al. [4] in two directions: (1) extend the applicability to more com-
plex and typical systems where their results would be optimistic or
even incorrect, and (2) improve the efficiency of their solution.

The rest of the paper is organized as follows: Section 2 details the
related work in the domain. Section 3 discusses the specific prob-
lems that one could encounter in the introduction of architecturally
visible storage inside custom instructions, and brings effective and
efficient solutions to all of them. We prove this in Section 5 by ad-
dressing a complete application displaying all qualitative situations
of interest, and by using the experimental environment described in
Section 4. Section 6 concludes the paper.

2. RELATED WORK
Most of the research in automatic identification of instruction set
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Figure 1: The basic system architecture that we target. We as-
sume that a cache coherence protocol to support multiple pro-
cessors is already implemented.

extensions has been carried out independently from the problem of
storage [5, 10, 13, 2, 12]. In many cases load and store instruc-
tions would simply be omitted from custom instructions while in
some cases they can be included allowing normal memory ports
from the custom units. The problem of adding architectural visi-
ble storage to custom functional units has been addressed directly
by Biswas et al. [4], in the various forms of constant tables, scalar
variables, and arrays. In this paper we solve a few shortcomings
of the system presented in [4] and exploit the architectural features
of modern multiprocessor systems-on-chip to achieve significantly
better results.

Although this work is positioned toward prior art in instruction
set extensions much in the same way as Biswas et al. [4], it addi-
tionally relates to the body of literature on cache coherence in mul-
tiprocessors [6]. If both [4] and our work relate to the problem of
synthesizing application-specific memories [3] or allocating data to
scratch pads [11], doing so for custom functional units in systems
equipped with data caches naturally raises problems of coherence
between the various copies of the data (typically, main memory,
cache, and storage in the custom instruction). To address the is-
sue, we assume that our target platform is already equipped with
a typical coherence protocol, such as MESI [9]. Although by no
means inexpensive, such protocols are becoming frequent in high-
end embedded systems because of the growing importance of mul-
tiprocessor systems-on-chip (e.g., ARM Cortex-A9 MPCore [1]).
We seamlessly adapt our customized memories to standard coher-
ence protocols, maintaining coherence protocol compatibility with
special care to minimize the additional hardware cost. Figure 1
shows the type of system that we address in this paper.

3. THE IMPORTANCE OF COHERENCE
As mentioned, previous methods to include architecturally visi-

ble storage in instruction set extensions have shown very tangible
potentials but also display a number of nonnegligible shortcom-
ings. To illustrate the limitations, we will use a complete applica-
tion composed of several heterogeneous functions and comprising
examples of all problems we address. We will take them one by one
in successive sections and show our solutions to overcome them.
We focus on three contributions:

• Ensuring coherence. We will show that coherence is, in all
but the most trivial cases, an issue that cannot be overlooked
and must be considered while adding memory elements to
instruction set extensions. We address the challenges of solv-
ing this issue efficiently without losing altogether the benefits
of instruction set extensions with memory—a very concrete
risk, as we will show.

• Speculative DMA. The naive introduction of DMA transfers
in all positions that are indicated by standard program analy-
sis [4] may result in suboptimal performance due to an overly
conservative number of transfers to and from the instruction
set extension memories. We show that one can leverage the
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Figure 2: JPEG compression and decompression algorithm.
Top: the six main kernels of the algorithm. Bottom: schematic
representation of the compression algorithm. The decompres-
sion algorithm has the same steps, but in reverse order.

investment in the coherence network to improve significantly
on the results with very limited hardware cost.

• Improved DMA overhead modeling. One can obtain sig-
nificantly suboptimal results by the use of a simple and local
model of the data transfer overhead to get data into and out
of the instruction set extension memory. We indicate how
this model can be improved with no significant increase in
algorithmic complexity.

Before addressing these three points, we will briefly discuss the
sample application which we will use throughout the paper.

3.1 JPEG Encoding and Decoding
We target the kernels of the JPEG compression and decompres-

sion algorithm as very simple but still representative example of an
application for the system of Figure 1. JPEG compression is taken
from the EEMBC [7] test-bench suite and its kernels are depicted
in Figure 2. From the six kernels presented in Figure 2, we use the
De-quantization and Inverse Discrete Cosine Transformation as a
motivational example throughout the remainder of the paper. This
kernel will be referred to as IDCT.

It is worth mentioning that our interest is in fully automated prac-
tical solutions. We have taken, for our example, a relatively op-
timized version of the JPEG encoding and decoding application:
it contains a few optimizations for improving the software perfor-
mance, as does most production code. For instance, in the IDCT
kernel the software designer, aware of the fact that most of the AC-
components of the entropy-decoded Discrete Cosine Transformed
(DCT) values are zero, has implemented in the IDCT function a
fast-track in case of all zero AC-values, only performing a complete
one-dimensional IDCT otherwise. The pseudocode of the software-
optimized IDCT is given on the left side of Figure 3. We will see
that these software optimizations can actually prevent or worsen the
impact of hardware optimization through instruction set extensions
including architecturally visible storage. To ensure realistic results,
we will not undo such optimizations but we will show how to work
with them, albeit somehow sub-optimally.

3.2 Ensuring Coherence
By applying the algorithms from [4] on the IDCT, the Control

Flow Graph (CFG) shown to the right of Figure 3 is found. Basic
Block 1 (BB1) and BB5 represent the if constructs of the pseudo-
code, BB3 and BB7 the fast paths discussed in the previous sec-
tion, BB2 and BB6 the 1-dimensional IDCTs, and BB4 and BB8 the
loops. The algorithms of [4] detects that BB2 and BB6 can be sped
up by using ISEs with architecturally visible storage. The memo-
ries included into the ISEs are, amongst others, the buffer holding
the 64 IDCT values (read-write). In this work we consider the data
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} while (col < IDCTSIZE)
      1D IDCT(col)}
   } else {
         Dequant(col)
         DC_comps(col) *=
      AC_comps(col) =
   if (AC_comps(col) == 0) {
do {

         DC_comps(row) *=

} while (row < IDCTSIZE)
      1D IDCT(row) }
   } else {
         Dequant(row)

      AC_comps(row) =
   if (AC_comps(row) == 0) {
do {

Process
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Figure 3: Left: The Pseudo code of the software-optimized
IDCT kernel. Right: The Control Flow Graph of the IDCT ker-
nel. Applying the algorithm of [4] will detect BB2 and BB6 hav-
ing ISEs with AVS. The filled circles denote the DMA-in/DMA-
out actions.

structures included in the AVS-search to be processor local. This
assumption implies that the data structures reside in the cache in
either exclusive or modified state. Therefore, these data structures
will never be requested by other processors, allowing us to perform
the experiments on a single processor system without losing gen-
erality. Although this assumption may be arguably too restrictive,
dealing with shared data structures will be left for future work.

Executing the IDCT as presented in Figure 3 will result in incor-
rect program behavior in the presence of one or more data caches.
To demonstrate incorrect execution, we look at the situation de-
picted in Figure 4. The processor starts by performing a column
based one-dimensional IDCT. To perform the IDCT, the processor
takes the path through BB2, which contains an ISE with architec-
turally visible storage. The processor performs a DMA-in trans-
fer and the values present in memory are copied into the architec-
turally visible storage. Here already the first problem arises: the
memory may not contain the latest copy of the data as the latter
can be dirty in the cache; the DMA-in transfer not being coherence
aware, this results in incorrect execution. If by chance the mem-
ory contains the correct values, the execution of the column-based
IDCT continues correctly. The column-based values are updated
into memory through the DMA-out action following BB2. After
one iteration, BB1 will check the next column, that is stored in the
cache, and continues operation. As all columns are mutually exclu-
sive, no problem arises for BB1 in obtaining the latest copy of the
data. However, when reaching BB5, the execution of the program
is guaranteed to be incorrect: (i) BB1 has forced the cache to load
local copies of the data structure into the cache. (ii) The DMA-
in and DMA-out actions surrounding BB2 have not informed the
cache on changes of the data; thus the cache will keep its old copy.
(iii) When reaching BB5, the processor will use incorrect values.

Radical ways to avoid the coherence problem include flushing
the data cache prior to DMA transfers or removing the data cache
altogether. We will show in the results that, although these methods
do resolve the coherence problem, their influence on performance
is simply inacceptable and a different strategy is needed. Given
the fact that our architecture already provides a coherence protocol
between the caches, the simplest solution is to include the architec-
turally visible storage into such coherence protocol. However, the
following problems may arise:

• Stall requirement. As the coherency protocol can invalidate
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Figure 4: Example of a coherence violating path through the
IDCT kernel. A coherent path would be BB1-BB3-BB4- BB5-
BB7-BB8.

the architecturally visible storage at any time, or request at
any time a write-back, a stall mechanism must be integrated
in the ISE, and indirectly into the processor.

• Granularity. To work properly, the coherence protocol ex-
pects a burst transfer of the size of a cache line. As, in gen-
eral, the architecturally visible storage is not of the size of
a single cache line, we have to take precautions to make a
granularity adaptation.

• Alignment. As we do not know if the data structure con-
tained in the architecturally visible storage is cache-block
aligned, we have to take precautions on misaligned data.

Although the stall requirement problem appears to be the most
difficult and costly to solve, it is actually the easiest one: We are
guaranteed by the algorithm in [4] that, between any pair of DMA-
in and DMA-out transfers, all references to the data structure con-
tained in the architecturally visible storage will be done through the
custom instructions, and not through the cache. Therefore, making
sure that a DMA-in transfer will request the write-back of all pol-
luted data contained in the caches, we are guaranteed that no coher-
ence invalidation or write-back request will occur during the exe-
cution of the custom instruction. The coherence protocol enforces
this behavior, resulting in no stall requirement for the custom in-
structions. The granularity and alignment problems can easily be
solved by splitting up the architecturally visible storage into chunks
of the size of a cache line, or smaller. Each of these chunks are then
burst individually in or out of the architecturally visible storage.
Although these chunk-based DMA transfers require more cycles
than normal DMA transfers, they provide correctness of execution
through the existing and unmodified coherence protocol.

3.3 Speculative DMA Transfers
Revisiting Figure 4, one can notice that, during the processing of

the eight columns of the IDCT, the processor may, in the worst case,
request eight DMA-in and eight DMA-out transfers. As discussed
before, the correctness of the IDCT can be guaranteed without the
cache having the latest version of the data structure used in BB2.
Hence, the number of required DMA transfers is in fact not sixteen
but two. However, as it cannot be guaranteed that the processor
will always go through BB2, the DMA-in and DMA-out transfers
cannot just by moved before BB1 and after BB4, respectively. This
is an example, as anticipated in Section 3.1, of a difficulty that was
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Figure 5: The CFG of the IDCT after applying speculative
DMA transfers. Correctness of execution is guaranteed, al-
though all DMA-out transfers are removed and all DMA-in
transfers are only performed when actually required.

artificially created by the software optimizations of the code. How-
ever, by keeping track of the state of the data structure contained
in the architectural visible storage, we can speculatively remove re-
dundant DMA-in transfers. Keeping track of the state of the data
structure can be realized by adding a single valid bit to the architec-
turally visible storage of a particular data object. A real DMA-in
transfer will set this valid bit. We can simply use the snooper of
the available coherence protocol to invalidate the content of our
architecturally visible storage. A DMA-in transfer is now only per-
formed in case the valid bit is inactive—we call this Speculative
DMA Transfer. Its cost is minimal: one added bit in the hardware
and one cycle delay for each redundant DMA-in transfer. In the
case of Figure 4 we can save in the best case seven times the DMA-
in transfer delay minus seven cycles. In a critical loop in the pro-
gram this can result in drastic speedups.

Performing a similar speculation on the DMA-out transfer is not
as simple as the speculation on the DMA-in. To ensure coherence,
we must send out a coherence invalidation message for each chunk
of the architecturally visible storage of the size of a cache line.
To perform speculative DMA-out we have to add a dirty bit to the
architecturally visible storage which is activated whenever the cus-
tom instruction writes in the local memory. If the dirty bit was
reset prior to this writing by the custom functional unit, we have to
send out invalidation messages for all chunks of the architecturally
visible storage. At the moment of the speculative DMA-out trans-
fer, we have to DMA-out the data contained inside the architectural
visible storage only when the dirty bit is active. The DMA-out
transfer resets the dirty bit. The problem with this scheme is that
it is extremely likely that the ISE with architectural storage writes

Block Tag
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Block dirty bits

Block offset

Data structure start address Block valid bit

mini−cache controller providing
Data structure bytes Overhead bytes due to cache−line miss alignment a L1 coherence protocol

State
Machine

Figure 6: Speculative DMA memory architecture. The archi-
tecturally visible storage is transformed from a SPM-like struc-
ture into a mini-cache-like structure.
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Figure 7: The CFG of the IDCT kernel after applying profile-
based speculative DMA transfers.

to it: no DMA-out transfer is prevented as the dirty bit is always
active when hitting the DMA-out transfer, and we introduced extra
hardware overhead with no real use. An interesting alternative is
to remove the DMA-out transfers from the program altogether and
introduce the dirty bit into the standard coherence protocol. Due to
the resulting coherence invalidation messages, all caches are guar-
anteed to have no local copy of the data structure contained in the
architectural visible storage (we are the exclusive owner). In case
the processor wants to access the data structure through the cache, a
cache-miss will occur and the cache will request the data from main
memory. Hence, by introducing the dirty bit into the coherence pro-
tocol, we can detect this request and use the coherence protocol to
safely write-back our dirty copy to main memory before the cache
gets its copy. This ensures correctness for speculative lazy DMA-
out transfers. Figure 5 shows our example CFG after introducing
speculative DMA transfers.

To support speculative DMA transfers, Figure 6 lists the ad-
ditions to the basic architecturally visible storage. In Figure 6,
Block Count is required for the number of cache-line sized and
aligned chunks contained in the architectural visible storage (not
necessarily a power of 2). The data structure start address is the
source/target address required by a DMA controller to know where
to copy from/to the data. However, in the speculative DMA the
data structure start address is also used as the tag for the coherence
protocol. Figure 6 furthermore shows the valid bit and one dirty bit
for each cache-line sized chunk of the architectural visible storage.
We added one dirty bit for each chunk, but this is not necessar-
ily required: only one dirty bit is sufficient. However, depending
on the access patterns, multiple dirty bits might improve the per-
formance. Figure 6 suggests that essentially we have transformed
the architecturally visible storage from a SPM-like structure into a
peculiar and relatively cheap coherent cache: it contains a single
oversized cache line with a single tag, segmented dirty bits, and a
segment count. The state machine is similar to the state machine
of a cache with coherence protocol, and the coherence states are
Shared(S) (dirty bits are inactive and valid bit is active), Invalid(I)
(all bits are inactive), and Modified(M) (valid bit is active and at
least one dirty bit is active).

3.4 Improved DMA Overhead Modeling
Each transformation of the DMA behavior as described in the

previous sections has a drastic impact on the λoverhead mentioned
in [4] and representing the additional cost induced by the DMA
transfers. Such value is an essential input to the instruction set ex-
tension search algorithm, as it is a nonnegligible part of the speedup
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Table 1: Speedup results for two selected kernels of the JPEG
algorithm, applying the different optimizations.

Kernel DCT IDCT

Atasu 1.1 0.9
Biswas coherence violating 9.0 1.3
Biswas Data Cache Flush 1.3 0.2

Biswas no Data Cache 6.2 0.7
Biswas corrected M(C) 1.1 0.9

Coherent DMA 6.3 1.0
Speculative DMA 9.6 9.0

metric that such algorithm tries to optimize. However, due to the
dynamic nature of the speculative DMA transfers, the value calcu-
lated statically for λoverhead as in [4] may be extremely imprecise.
A better estimation can only be obtained by profiling all data ac-
cesses in a given CFG for all data structures contained in this CFG.
Although these data traces are dependent on the used data set, they
make it possible to compute a λoverhead for a given data structure
in a given CFG, where all BBs, using this data structure, are con-
verted into ISEs with architectural visible storage. This statistical
λoverhead can be used in the same way as the static value of [4]
and a ISE search can be performed. The resulting CFG for the
IDCT is shown in Figure 7. Although our approach is still sim-
plistic here, we intend to perform more research and improve the
statistical modeling the influence of the speculative DMA transfers
on λoverhead.

4. EXPERIMENTAL SETUP
We implemented our speculative DMA transfers by implement-

ing the algorithms of [4] in our own environment for automatic
generation of instruction set extensions. We have augmented the al-
gorithms of [4] with data profiling support to achieve the goals dis-
cussed in Section 3.4. Finally, we modified the merit function op-
timized by the instruction set extension selection algorithm [10] to
account for the D$-flushing overhead and speculative DMA trans-
fers. We used the complete JPEG encoding/decoding chain (as de-
scribed in Section 3.1) as our benchmark. Our environment for
automatic generation of instruction set extensions has generated
five architectural versions with corresponding modified C-code and
VHDL-models of the ISEs (with or without local memories). We
merged all the generated VHDL models of the ISEs to generate one
module to augmented our OpenRISC-compatible platform running
on FPGA. The different versions of DMA controller have been im-
plemented by hand in VHDL, giving software control over normal
DMA, coherent DMA and speculative DMA. All the modified C-
code has been cross-compiled using a gcc 3.4.4 toolchain based on
“newlib” for the OpenRISC.

Our FPGA-based multi-processor platform allows us to emulate
cycle-accurately embedded systems consisting of 1 to 7 OpenRISC
processors. The platform has software controllable 16 kB instruc-
tion and data caches. Consistently with our architectural assump-
tion of Figure 1, the data caches implement a MESI Level 1 coher-
ence protocol. For our experiments we used the single processor
version with a 16 kB 2-way set-associative instruction cache with
LRU-replacement policy. We used a 16 kB 4-way set-associative
data cache with LRU-replacement policy and MESI Level 1 co-
herence protocol. For the experiment without the data cache, we
disabled it in software.

For all the experiments we used the same 24-bit RGB encoded
picture of 1024x768 pixels, similar to the resolution of current
high-end web-cams and standard portable phones. Furthermore we
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ferent approaches to speedup the program applying ISEs with
and without AVS.

gave a 4:2 input-output constraint to the algorithms for automated
instruction set extension generation [10].

5. EXPERIMENTAL RESULTS
Firstly, we ran the original code without ISEs on our emulation

platform to confirm the run-time models used in our own environ-
ment for automatic generation of ISE. The run-time breakdown for
the different kernels are shown in the first column of Figure 8 and
are normalized to the total runtime (about 290 million cycles) of
the original code. In all the experiments there are only compul-
sory instruction-cache misses (about 300 misses in 210 million ac-
cesses). The data-cache miss rate varies over the different config-
urations due to the coherence overhead and is listed together with
the Instructions Per Cycle (IPC), speedup, and relative execution
time in Table 2.

Subsequently, we used the code with ISEs without AVS (using
the Atasu algorithm [10]). The kernel breakdown is seen in Fig-
ure 8. Overall, the Atasu algorithm gains over the original code.
The Atasu algorithm achieves the most gain by detecting a 16x16-
bit divider in the quantization kernel (providing a speed-up of 3.18
for this kernel). Looking a bit closer at the different kernels, we can
detect a speed-down for the IDCT kernel (as shown in Table 1). The
speed-down in this kernel is due to the compiler not being able to
optimize the code as in the previous experiment. In our profile,
we find 15% more executed instructions compared to the original
code. This increase offsets the predicted 6% speed-up in this kernel
causing slow-down.

Next, we investigated the code generated by the Biswas algo-
rithm. Although the speed-up given by the detection of AVS is
impressive (as can be seen in Figure 8 and Table 1), the program
did not execute correctly, because of coherence violations. We
confirmed the correctness of the program by disabling the data
cache. Furthermore we issued a data-cache flush before any DMA-
in transfer, and thus the program ran correctly. The kernel break-
down for the three different runs is depicted in Figure 8. As ex-
pected, the program with data cache flush exhibited degraded per-
formance due to extensive delays of the data cache flush and the re-
sulting reloading of required data into the data cache. On the other
hand, the program with the data cache disabled retains mostly the
increased performance in the custom instructions with AVS, how-
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Table 2: Experimental results for the complete JPEG encoding and decoding chain of a 24-bit 1027x768 RGB picture.
Original Atasu Biswas coherence Biswas Data Biswas no Biswas corrected Coherent Speculative

Parameter: code violating Cache flush Data Cache M(C) DMA DMA

IPC 0.66 0.6 0.47 0.21 0.21 0.6 0.42 0.53
D$ miss-rate [%] 0.29 0.33 0.52 7.20 100 0.33 2.77 1.32

Speedup 1 1.29 1.71 0.75 0.77 1.29 1.58 2.08
Execution time 1 0.78 0.59 1.33 1.31 0.78 0.63 0.48

ever drastic performance degradation for all other kernels is caused
by the absence of the data cache.

As the current algorithm of Biswas does not provide us with a
correct solution in presence of a data cache, we modified the merit
function M(C) to take into account the overhead of data cache flush-
ing. As expected, the algorithm now only detects constant tables for
ISE inclusion, and the speed improvement is negligible if compared
to Atasu’s algorithm. To regain the benefits of Biswas algorithm,
we introduced our coherent DMA, and profiled the corresponding
program. Our coherent DMA scheme re-introduces the AVS into
the custom instructions, resulting in similar speed-up as the Biswas
algorithm presented in [4]. Due to the fact that our coherent DMA
requires more cycles to transfer the data into and out-of the AVS,
we loose some of the speed-up compared to Biswas. As can be
seen in Table 2 the influence of the coherence protocol is clearly
reflected in the data cache miss rate.

As the DMA placement of Biswas algorithm gives room for im-
provement, we introduced our profile based speculative DMA into
the algorithm. The kernel-breakdown for this architectural version
is shown in column eight of Figure 8. As can be seen in Table 1, we
successfully removed redundant DMA transfers in the DCT-kernel,
resulting in a 60% improvement in speed-up over Biswas original
algorithm. More interesting however is the speed-up seen for the
IDCT. As all algorithms fail to speed-up the IDCT kernel due to its
software optimization, our profile based speculative DMA is able
to capture all memories inside custom instructions due to a reduced
cost function. Not only does our profile based speculative DMA
provide program correctness, but it also gives us a speed-up of 9x
for the IDCT kernel, and a speed-up of 2x over the complete ap-
plication. Despite the coherence traffic overhead, as reflected in
the data cache miss rate in Table 2, the profile based speculative
DMA successfully outperforms all previous proposed algorithms,
whilst providing program correctness in presence of one or more
data caches.

6. CONCLUSIONS
We have shown that, in all but the most trivial cases, coherence is

a serious concern when developing instruction set extensions with
architecturally visible storage, and this problem has been often un-
derestimated in prior art. Indeed, there is no miracle solution, and
the best solution is to leverage existing cache coherence protocols
which are now available in high-end embedded processors. Nev-
ertheless, we show that adding coherence to the local memories
is feasible with very limited hardware resources and that a num-
ber of optimizations are enabled by the coherence network. These
optimizations achieve tangible speedup compared to conventional
methods, including those which actually incur into coherence prob-
lems and are actually not guaranteed correct.
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