
Deterministic Service Guarantees for NAND Flash using
Partial Block Cleaning

Siddharth Choudhuri
Center for Embedded Computer Systems

University of California, Irvine, USA
sid@cecs.uci.edu

Tony Givargis
Center for Embedded Computer Systems

University of California, Irvine, USA
givargis@uci.edu

ABSTRACT
NAND flash idiosyncrasies such as bulk erase and wear level-
ing results in non-linear and unpredictable read/write access
times. In case of application domains such as streaming mul-
timedia and real-time systems, a deterministic read/write
access time is desired during design time. We propose a
novel NAND flash translation layer called GFTL that guar-
antees fixed upper bounds (i.e., worst case service rates)
for reads and writes that are comparable to a theoretical
ideal case. Such guarantees are made possible by eliminat-
ing sources of non-determinism in GFTL design and using
partial block cleaning. GFTL performs garbage collection
in partial steps by dividing the garbage collection of a single
block into several chunks, thereby interleaving and hiding
the garbage collection latency while servicing requests.

Further, GFTL guarantees are independent of flash uti-
lization, size or state. Along with theoretical bounds, bench-
mark results show the efficacy of our approach. Based on
our experiments, GFTL requires an additional 16% of total
blocks for flash management. GFTL service guarantees can
be calculated from flash specifications. Thus, with GFTL,
a designer can determine the service guarantees and size re-
quirements apriori, during design time.

Categories and Subject Descriptors D.4.2 Operating
Systems: Storage Management − Secondary Storage, Allo-
cation/deallocation strategies
General Terms Design, Performance, Algorithms
Keywords NAND flash, Embedded Systems, Storage, QoS,
Determinism, Real-Time, File Systems

1. INTRODUCTION
The proliferation of embedded systems has led to wide

spread use of NAND flash as a storage medium. While the
use of flash memory for secondary storage in mobile embed-
ded systems has been known for over a decade [8], large scale
adoption has only been possible recently due to affordable
cost. With lowering cost per GB, NAND flash is poised to
be used in newer application domains [12, 13]. For example,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

the One Laptop Per Child (OLPC) project, Canon’s HD
camcoder use NAND flash as the only non-volatile storage
medium[15, 3]. While the economics of price has been favor-
able, the use of NAND flash in mission critical and real-time
applications that demand determinism, has been a challenge
due to NAND flash idiosyncrasies.

NAND flash has certain unique characteristics that are
atypical of either RAM or hard disk drives. Specifically,
NAND flash does not support in-place updates, i.e., an up-
date (re-write) to a page (the minimum of write) is not pos-
sible, unless a larger region containing the page (known as a
block) is first erased. Erase operation on a block is an order
of magnitude slower, making it undesirable. Further, a block
has a limited erase lifetime (typically 100,000) after which
a block becomes unusable. Such characteristics require spe-
cial handling of NAND flash by using either a dedicated file
system or wrapping the NAND flash with a layer of hard-
ware/software known as the flash translation layer (FTL).
The FTL performs three important functions (i) Exports
a view of NAND flash that resembles a disk drive, thereby
hiding the peculiarities of NAND flash. Thus, an FTL trans-
lates a read/write request from the file system (sector) into a
specific 〈block, page〉 of the NAND flash; (ii) Reclaims space
by erasing obsoleted blocks (due to out of place updates),
also known as garbage collection; (iii) Performs wearleveling
to make sure that blocks across a flash get evenly erased.

NAND flash management (wearleveling, garbage collec-
tion) is workload dependent resulting in asymmetric read-
write times. Therefore, typically FTLs do not provide ser-
vice guarantees. For instance, consider a scenario in which
an FTL is busy performing garbage collection over several
blocks. During this time period I/O requests experience a
high latency. Such latency might be tolerable for single-
threaded, dedicated applications. However, as we move to-
wards newer application domains, a deterministic service
guarantee becomes desirable to design and run applications.

In this paper, we propose a NAND flash translation layer
called as GFTL (for Guarantee Flash Translation Layer)
that provides strict service guarantees for reads and writes
that are close to an ideal case (to be described in Section 3).
GFTL achieves this using a two fold approach. First, it uses
a mapping from sectors to pages on flash that eliminates any
dependency on flash utilization or state (i.e., provides deter-
minism). Second, it uses partial block cleaning to hide the
flash management latencies. Partial garbage collection is a
scheme where the basic unit of garbage collection is a single
block. Further, the garbage collection of each such block is
divided into smaller states such that the garbage collection

19



and the file system read/write requests are interleaved, re-
sulting in a responsive systems that hides garbage collection
latency. The following are contributions of this paper:

1. An FTL that provides strict service time guarantees
for reads and writes independent of the workload, utilization
or the state of NAND flash.

2. Partial garbage collection, where the garbage collection
of a single block is divided into chunks that are no greater
than the largest non-interruptible flash operation; thereby
providing a responsiveness that is close to a theoretical limit.

The rest of the paper is organized as follows. Section 2 de-
scribes the preliminaries of NAND flash. Section 3 presents
the problem formulation followed by technical approach in
Section 4. Section 5 describes our experimental setup and
benchmarks. The results are provided in Section 6.

2. PRELIMINARIES
A NAND flash consists of multiple erase blocks. Each such

erase block is further divided into multiple pages, a page be-
ing the minimum unit of data transfer (read/write). Asso-
ciated with each page is a spare area known as the Out Of
Band (OOB) area, primarily meant to store the Error Cor-
rection Code (ECC) of the corresponding page (also used
to store meta-data such as inverse page table). A page is
512 bytes for older, small block NAND flash and 2 KB for
newer large block NAND flash. Three basic operations can
be performed on a NAND flash. An erase operation “wipes”
an entire erase block turning every byte into all 1s i.e., 0xff.
A write operation works on either a page or an OOB area,
selectively turning desired 1s into 0s. A read operation reads
an entire page or an OOB area. Updates (re-writes) are out-
of-place i.e., directed to a different page unless the entire
block is erased. Table 1 depicts NAND flash specifications
for the basic operations. There are two possible mappings

Table 1: NAND Flash Specifications
Characteristics Samsung 16MB Samsung 128MB

Small Block Large Block
Block size 16384 (bytes) 65536 (bytes)
Page size 512 (bytes) 2048 (bytes)
OOB size 16 (bytes) 64 (bytes)
Read Page 36 (usec) 25 (usec)
Read OOB 10 (usec) 25 (usec)
Write Page 200 (usec) 300 (usec)
Write OOB 200 (usec) 300 (usec)

Erase 2000 (usec) 2000 (usec)

between a sector and a 〈block, page〉. A page based map-
ping where a translation table maps each sector to a 〈block,
page〉 pair. However, the size of translation table can be-
come a limiting factor as flash size increases. In order to
deal with such a problem, a block based translation layer is
widely used. For instance, in one of the popular block based
translation layers known as NFTL [2], a sector is divided
into a virtual block and an offset. The virtual block maps
to a physical block (known as the primary block) on the
NAND flash. In case of a rewrite (or if the primary block is
full), a new physical block called a secondary block is cho-
sen to perform the writes. When the two blocks become
full, an operation known as fold merges the primary and the
replacement blocks into a new primary block and freeing
the old primary and replacement block. Garbage collection
is invoked either when the NAND flash runs out of space
(which does a fold across several blocks) or using a heuris-
tic. Interested reader can find more details on mapping and
garbage collection heuristics in [9, 4].

For the rest of the paper, the term flash refers to NAND
flash. The following terminology is used throughout the pa-
per: Twrpg is the time to write a page and the OOB area;
Trdpg is the time to read a page; Trdoob is the time to read an
OOB area; Ter is the time erase a block; π is the number of
pages per block; N is the total number of blocks on a flash;
and L is the length of the write pending queue.

3. PROBLEM FORMULATION
We model an I/O request (incoming from file system to

the FTL) as a real-time task τ = {p, e, d} where p is the peri-
odicity, e is the execution time and d is the deadline. With-
out loss of generality, we assume that p is equal to d. We
have two kinds of tasks: a read request task τr = {pr, er},
and a write request task τw = {pw, ew}. pr and pw denote
“how often” a read or write request arrives from the file sys-
tem. er is the time taken to search for a given sector, read
the corresponding 〈block, page〉 of the flash, and return a
success/failure to the file system. Similarly, ew is the time
taken to write a sector to a given 〈block, page〉 . The bounds
on p and e are determined by the FTL. Specifically, a lower
bound on p (denoted by L(p)) determines the maximum re-
quest arrival rate that an FTL can handle. The worst case
execution time, i.e., an upper bound on e (denoted by U(e)),
determines the worst case rate at which requests are serviced
by the FTL. For a file system, U(e) represents the average
memory access time (AMAT) for read/write and L(p) rep-
resents the maximum rate at which requests are issued to
the flash.

We now present a hypothetical ideal case that serves as
a baseline for comparison. In an ideal case, the read/write
access takes constant time. The bounds on U(e) for such
an ideal case is shown in Table 2, i.e., there are no addi-
tional flash management overheads other than the actual
page read/write 1 Note that, Ter is the longest atomic op-
eration on a flash, i.e., when a block is being erased, the
flash is locked and hence non-interruptible. Therefore, Ter

is the limiting factor that decides the inter-arrival time (pe-
riodicity) of requests. Therefore, in an ideal case, L(p) is
at least Ter. The latency due to Ter could be hidden by
having buffers in the RAM. However, while this solution
works for an average case, in a worst case scenario (i.e.,
when every access results in a block erase), one would re-
quire an infinitely large buffer in RAM as the arrival rate
would exceed the service rate. This leads us to the follow-
ing axiom: “In the presence of flash management in a single
chip flash, the block erase time Ter provides the lower bound
on inter-arrival request time”. Although non-realtime block

Table 2: Service Guarantee Bounds
Bounds Ideal GFTL
U(ew) Twrpg Twrpg

U(er) Trdpg + Trdoob πTrdoob + Trdpg

L(pr) L(pw) Ter Ter+max{U(ew), U(er)}

based FTLs like NFTL provide a write time close to Twrpg

in an average case, flash management results in a drastic,
unpredictable variation. The motivation behind GFTL is to
reduce this variation thereby enabling flash to be used in
real-time applications. GFTL guarantees (Table 2) a worst
case execution time for writes that is as good as an ideal case

1Without loss of generality and for simplicity, we exclude the flash
controller execution time which is at least an order of magnitude
less than flash access times (for microcontrollers used in FTLs)

20



and a worst case execution time for reads that is marginally
((π − 1)Trdoob) larger than an ideal case. Further, GFTL
provides service guarantees for requests that have an inter-
arrival time [L(p)] that is only slightly larger than an ideal
case while performing garbage collection. The next section
explains the technical details behind providing guarantees
in Table 2.

4. TECHNICAL APPROACH
GFTL is a block based approach. A sector is treated as a

logical address and a logical block is derived from the most
significant bits of the logical address (Figure 1). A block
mapping table is used to map a logical block to a physical
block on the flash. For a given flash with N blocks, there is
a 1 : 1 mapping between the logical blocks and the physical
blocks, resulting in N entries in the block mapping table. Q
additional blocks are required to serve pending writes.

.........

0 1 2 3 4 N+Q-2 N+Q-1

0

1

2
3

4

N-1
Block mapping

table

logical address
(sector)

indexphysical 
block

write queue
      tail

Page written

Write queue 
block

NAND
Flash

logical
block

...     ...

L

Write queue
map

Free page

Single block

GCQ

2

Figure 1: GFTL Data Structures

4.1 GFTL Writes
The first write to a given virtual block is written to a

free physical block. Due to a 1 : 1 mapping, a free physical
block is guaranteed to be available. Once a physical block is
found, pages are written sequentially starting from page 0.
The sector number is written in the OOB area and serves
as an inverse page table. After π writes, the physical block
becomes full. The full physical block is added to a garbage
collection queue called as GCQ. Additional writes that map
to a full physical block are written to pages in the write
queue (shown as dark gray in Figure 1). The write queue
serves as a buffer for writes from the time a physical block
becomes full until that physical block is garbage collected.
A write queue tail serves as the index to the next available
page in the write queue. There is only one write queue for
the entire flash, thus, there exists a write queue map which
maps the logical address (sector) to a 〈block, page〉 of the
write queue.

A write either goes to the next available location pointed
to by the index field of block mapping table (Figure 1) or into
the write queue in case of a full physical block. In either case
the time taken is constant i.e., Twrpg. In case of a full block,
the size of write queue is such that a page is guaranteed to
be available. (shown in subsection 4.4.1). Thus, both the
best and worst cast AMAT for writes is Twrpg.

4.2 GFTL Reads
A read to a given sector is first searched in the write queue

map since it holds the most recent copy. In case of a write
queue map miss, the block mapping table is used to deter-
mine the physical block corresponding to the sector. The
OOB area of the physical block is searched backwards A

read from the write queue will result in one OOB read and
one page read. A read from block mapping table on the other
hand will result in π OOB reads in the worst case followed
by the actual page read. Therefore, the best case AMAT for
reads is Trdpg +Trdoob and the worst case is πTrdoob +Trdpg.

4.3 GFTL Flash Management
The only flash management performed in GFTL is based

on partial block cleaning which takes care of both garbage
collection and wearleveling. The idea behind partial block
cleaning is to perform garbage collection on a single block
at a time. Further, each such single block garbage collection
is divided into “partial” steps such that the time taken to
perform each step is no longer than the longest atomic flash
operation i.e., Ter. The partial steps are interleaved between
servicing read/write requests. The garbage collection of a
single block, say Bi, amounts to the following phases:

1. Block Read: In this phase, the pages that belong to
Bi are first read from the write queue followed by reading
the remaining valid pages out of the block Bi. In a worst
case, this step can result in reading (π − 1) pages from the
write queue followed by π OOB reads of Bi to search the
remaining valid page. Thus, the worst case time is (2π −
1)Trdoob + πTrdpg.

2. Block Erase: Block Bi is erased in time Ter.
3. Block Write: The pages that were read in phase 1 are

written to a free block, say, Bnew. In a worst case, π pages
will be written resulting in a worst case time of πTwrpg.

Since Ter is the longest atomic operation, we divide the
block read and block write phases into partial steps, each of
which is of a duration equal to Ter as shown in Figure 2(a).
Let α = d(2π − 1)Trdpg/Tere denote the number of partial
steps into which a read phase can be split as multiple of Ter.
Similarly, β = dπTwrpg/Tere denotes the number of partial
steps that a block write can be broken into. Thus partial
block cleaning divides the three block cleaning phases into
κ = (α + 1 + β) steps, each of a duration Ter.

The core of GFTL acts as a real-time executive that im-
plements the finite state machine shown in Figure 2(b). As
shown in Figure 2(a), GFTL first dispatches any read/write
request followed by performing a step of partial block clean-
ing (if the GCQ is non-empty). This approach lets GFTL
provide read/write service guarantees shown in Table 2 while
accepting requests at a rate equal to L(p). The wearlevel is
automatically taken care by GFTL due to a round robin
approach to allocating free blocks.

Over a period of time, blocks that belong to the write
queue need to be erased. This is due to the fact that every
page that belongs to a write queue block has been garbage
collected. GFTL determines such blocks by scanning the
write queue map. If a write queue block has no pointers
pointing to it from the write queue map, the block is added
to GCQ. The cost of garbage collecting a write queue block
is only Ter.

4.4 Deterministic Guarantees
The read guarantees are implicit based on GFTL design.

The write guarantees are based on an assumption that there
is space readily available in the write queue when a physical
block corresponding to the logical block becomes full. This
assumption holds true if it can be shown that − in case of a
worst case arrival sequence, the write queue growth is finite
and can be determined apriori.

21



Figure 2: Partial Block Cleaning and FSM

Input params

NAND 
Simulator

FTLs

Trace
Results

Stats

Simulation Framework/proc/flashUSB FAT32

Benchmarks

Linux Kernel
rd/wr sector#

Figure 3: Setup

The following is a worst case scenario: N×π write requests
arrive making all N blocks full. Subsequent write requests
arrive in a sequence (filling up the write queue) such that
each request belongs to a different logical block, and two
requests that belong to the same logical block are spread
out as far apart as possible in the write queue, i.e., sepa-
rated by a distance of N . Therefore the worst case sequence
of logical blocks to which writes arrive are {0, 1, 2, ..., N −
1, 0, 1, 2, ..., N − 1, ...} (Figure 4 “Block Numbers Arrival
Sequence”). This results in each write queue block being
filled with π pending writes, each of which belongs to a
unique logical block. Therefore, a write queue block can-
not be reclaimed until π blocks are first garbage collected
(i.e., worst case for a write queue block). Since each in-
coming write request is a pending write, the write queue
grows at a rate equal to 1/L(p). Every κ× L(p) time units
(where κ = α + β + 1), a block is garbage collected (Figure
4 “Service Rate”). Each block that is garbage collected also
renders the page(s) in write queue (which belong to the logi-
cal block) obsolete. Since the arrival rate, 1/L(p), is greater
than the service rate, 1/(κ×L(p)), theoretically this leads to
an infinite queue length (Figure 4 “Theoretical Write Queue
Length”). However, in our worst case arrival model, after
first N writes, every incoming write request already has at
least one or more pending write(s) in the write queue that
belongs to the same logical block.

 0

 50

 100

 150

 200

 250

 300

 0  50  100  150  200  250  300

G
ro

w
th

 (W
rit

e 
Q

ue
ue

 L
en

gt
h)

Time (Requests)

L = N x (kappa + 1)/2

Theoretical Write Queue Length

Write Queue Length
Block Numbers Arrival Sequence (ramp function)

Service Rate
Theoritical Write Queue Length

L = N x (kappa + 1)/2
Arrival Rate

Figure 4: Write Queue Length Growth

Specifically, after first N request, every incoming write
request already has one page in the write queue from the
past, that belongs to the same logical block as the incoming
write. Similarly, after 2N writes, every write request has 2
pending requests and so on. Thus, with time, the growth of
the write queue length decreases every N requests reaching
a steady state value (Figure 4 “Write Queue Length”). It
can be proven that the growth of the write queue length is
bounded by max(L) = N×(κ+1)/2, where κ = α+β+1 in

the worst case arrival sequence (Figure 4) “L”). The details
of proof for such a bound is in [7].

Thus, the write queue length can be calculated at design
time by looking at the flash specs. Note that though L is
greater than N (total blocks), the actual write queue length
in terms of the number of additional blocks is [N × (κ +
1)/2]/π as each block can store π pending writes.

5. EXPERIMENTAL SETUP
Figure 3 shows our experimental setup. A USB flash disk,

formatted as a FAT 32 file system was connected to a PC
running Linux kernel 2.6.16. The kernel was modified to sniff
low level file read/write requests being issued to the USB
flash and log the requests (sector, read/write operation) into
/proc/flash. A series of benchmarks were run to generate
trace data. The trace, along with input parameters (block
size, page size, etc) is fed to our simulation framework.

We used the following benchmarks representing a vari-
ety of workloads. The Andrew benchmark [10] consists of
five phases involving creating files, copying files, searching
files, reading every byte of a file and compiling source files.
The Postmark benchmark measures performance of file sys-
tems running networked applications like e-mail, news server
and e-commerce [11]. The iozone benchmark [14] is a well
known synthetic benchmark. We ran iozone to do read,
write, rewrite, reread, random read, random write, back-
ward read, record rewrite and stride read on file sizes ranged
from 64KB to 32MB in strides of 2×. Besides these stan-
dard benchmarks, we used our own benchmark called con-
sumer. The consumer benchmark simulates flash activities
commonly used in consumer electronics devices such as im-
age manipulation, data transfer, audio and video playback.

A set of benchmarks were run in sequence to generate a
file system trace. The first trace, called the synthetic trace
was generated by running the following sequence: format
flash → andrew → postmark → iozone. Similarly, consumer
trace was generated by formating a flash followed by run-
ning the consumer benchmark. In order to perform a rigor-
ous evaluation of GFTL, each read/write in the trace was
simulated with a periodicity of L(p) i.e., there is no idle
period. Further, the synthetic trace consists of 4.3 million
writes and 27, 841 reads and the consumer trace consists of
125, 596 writes and 76, 479 reads. The flash size at 100%
utilization for synthetic trace is 136 MB and 260 MB for the
consumer trace. The simulations are based on data sheet
values for large page flash (Table 1). Details on benchmark
characteristics can be found in [6].

6. RESULTS
Table 3 depicts a summary of runs for the two traces based

on varying utilization and pages per block (π). The first
two columns under ēwr and ērd denote the average write

22



Table 3: GFTL Performance
π ēwr emax

wr σe
wr ērd emax

rd σe
rd wi ∆

% usec usec usec usec %

S
y
n
th

et
ic 50

16 244 300 116 231 425 119 0.43 16
32 217 300 133 428 825 239 1.11 14
64 212 300 136 789 1625 474 3.05 14

100
16 244 300 116 231 425 119 3.29 16
32 217 300 133 428 825 239 8.17 14
64 212 300 136 789 1625 474 14.2 14

C
o
n
su

m
er

50
16 299 300 11 237 115 425 0.00 16
32 299 300 13 237 425 115 0.01 13
64 299 300 14 836 1625 462 0.01 12

100
16 299 300 11 237 425 115 0.01 16
32 299 300 13 437 825 231 0.02 13
64 299 300 14 836 1625 462 0.02 12

and read access times (AMAT) for each run of the trace.
Similarly, emax

wr and emin
rd denote the maximum and mini-

mum recorded AMAT. The standard deviation is denoted
by σe

wr for writes and σe
rd for reads. The effectiveness of

wearleveling is measured using wear index denoted by wi.
wear index is a quantitative measure of wearlevel calculated
as (σerase/N)× 100, where σerase is the standard deviation
of the number of erases per block. σerase takes into account
the “variation” in number of times a block is erased. To
take into account the size of flash in determining wearlevel,
we used σerase/N as an indicator of wearlevel.GFTL incurs
overhead due to the write queue. This overhead is measured
as the percentage increase in flash size denoted by column
entitled ∆ in Table 3. The following observations are made
based on Table 3: (i) As mentioned in Table 2, the maxi-
mum write time is equal to Twrpg. The average write time
is less than Twrpg because some of the writes occur during
the FSM state change resulting in being written to a block
buffer (written later on to the flash and accounted in partial
garbage collection time). The maximum read time depends
on pages per block for a given flash. This is due to the fact
that larger π implies longer chain of OOBs to read. The
maximum values observed are equal to πTrdoob+Trdpg which
is equivalent to searching the entire block for a given page.
The standard deviation for reads also shows a similar trend
i.e., increasing with larger π (ii) The average read/write
service times ( ¯erd/ ¯ewr) are independent of the flash utiliza-
tion. This result departs from conventional approaches such
as NFTL where the AMAT varies as the flash utilization
increases. The standard deviation is higher in case of the
synthetic trace because of the rewrites and rereads made to
the flash by the iozone benchmark. Note that if a block is
in the middle of partial garbage collection, additional reads
and writes are serviced by the in memory block buffer result-
ing in an almost zero service time. This leads to the high
variation in the average values. (iii) The wearlevel index
depends on the flash utilization and the number of pages
per block, π. As the flash utilization increases, blocks get
recycled more often. However, blocks that are read-only are
not erased leading to the large gap between minimum and
maximum values. This shows as an increase in the wear
index. (iv) The value of ∆ reflects the additional blocks
used by GFTL to maintain the write queue. This value was
calculated (and used in simulation) based on the equation
L = N×(κ+1)/2. Given the lowering cost per GB of NAND
flash, such an overhead is tolerable.

Figure 6 shows the distribution of execution time and par-
tial GC in a given period. The total length of a histogram
represents a single period i.e., L(p). The “Rd/Wr request”

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 1  10  100  1000  10000  100000  1e+06

Q
ue

ue
 L

en
gt

h

Runs (Log Scale)

1 GB 16 Pgs/Blk
1 GB 32 Pgs/Blk
1 GB 64 Pgs/Blk

1 GB 128 Pgs/Blk
2 GB 32 Pgs/Blk
2 GB 64 Pgs/Blk

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0  100000  200000  300000

Q
ue

ue
 L

en
gt

h

Runs (Linear Scale)

Figure 5: Write Queue Length Growth Simulation

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 Wr  Rd  Wr  Rd  Wr  Rd  Wr  Rd  Wr  Rd  Wr  Rd 

Ti
m

e 
(in

 u
se

c)

Synthetic
Pgs/Blk 16

Synthetic
Pgs/Blk 32

Synthetic
Pgs/Blk 64

Consumer
Pgs/Blk 16

Consumer
Pgs/Blk 32

Consumer
Pgs/Blk 64

Rd/Wr request
Partial GC

Idle
Time erase

Figure 6: Average Time Distribution per Period

bar denotes the average service time i.e., ē. The remain-
ing time is spent doing either partial GC or being idle (i.e.,
when GC queue is empty). Though GFTL guarantees an ar-
rival rate equal to the length of the histogram, a fraction of
partial GC time is spent idle because the guarantees are cal-
culated based on worst case scenario. For the given traces,
the sum of service time and partial GC is less than the Ter.
This idle time decreases with increasing π as the value of
κ increases which implies that the number of states in the
FSM (Figure 2) also increases leading to longer time spent
in GC. Note that in case of the consumer benchmark, the
amount of time spent in performing partial GC is negligible
compared to L(p). Though the consumer trace represents a
larger flash size the number of read/writes performed is less
than the synthetic trace. The efficacy of GFTL is shown by
keeping the flash busy for time that is close to the largest
non-interruptible time, Ter (Figure 6) while still giving ap-
plications a service time that is close to ideal and indepen-
dent of the flash utilization (Table 3).

Figure 5 analyzes the overhead of GFTL in terms of write
queue length. The x-axis is the number of runs simulated
and the y-axis shows the growth of write queue length L.
Initially, the write queue grows at a rate that is close to
the incoming request rate and after every N requests, the
slope decreases to a final “steady state”. During this state,
the write queue length varies depending on the value of
N and π. Figure 5 shows the growth for a specific large
page flash from Table 1. The growth depends on the values
of Ter, Twrpg and Trdpg. Specifically, the larger the differ-
ence between the block erase time and the block read/write

23



 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 100 16pgs

 50 16pgs

 100 32pgs 

 50 32pgs

 100 64pgs 

 50 64pgs

 100 16pgs

 50 16pgs

 100 32pgs

 50 32pgs

 100 64pgs

 50 64pgs

S
ta

nd
ar

d 
D

ev
ia

tio
n 

(L
og

 s
ca

le
)

Ti
m

e 
(u

se
c)

 (L
og

 s
ca

le
)

                      Synthetic                                       Consumer

Std. Dev. GFTL (Writes)
Std. Dev. NFTL (Writes)

Max write time NFTL
Std. Dev. NFTL (Reads)
Std. Dev. GFTL (Reads)

Max write time GFTL
Max read time NFTL
Max read time GFTL

Figure 7: NFTL vs. GFTL

time, the larger the value of L as GFTL would require more
states.Figure 7 compares GFTL with NFTL. The variation
in write times is more than an order of magnitude less for
GFTL due to deterministic guarantees. The only standard
deviation in GFTL is due to some of the writes going into an
in memory buffer during the times of partial block cleaning.
The maximum write time of GFTL is constant (as opposed
to NFTL) and the maximum read time is proportional to π.

The GFTL RAM overhead over traditional block based
FTLs is largely due to the write queue map. Specifically,
the write queue map takes L × 32 bytes. For a 1 GB, 32
pages/block flash, the size of write queue map is 1.5 MB. In
terms of reliability, in case of a power failure, the required
mapping structures can be recreated by scanning flash OOB
during startup. In terms of scalability, we ran GFTL for a
flash size of over 1 GB on iozone benchmark with similar
results and adherence to bounds from Table 2.

7. RELATED WORK
While there have been several FTLs, the real time aspect

of NAND flash was first investigated by [5]. The authors pro-
posed an innovative approach towards using a garbage col-
lector thread (instance) for each real time task. The garbage
collector thread has a execution time of (π − α)× (Trdpg +
Twrpg) + Ter+cpu time). Each garbage collector invocation
takes at least (π−1)(Trdpg+Twrpg)+Ter) time (ignoring cpu
time) in the best case. In our approach, the overhead of par-
tial GC is Ter in the worst case. Moreover, with GFTL we do
not associate an additional GC task thereby avoiding over-
head. [5] requires file system support for special ioctl calls.
GFTL can be run on top any unmodified file system. Results
from [5] are based on two tasks T1 = (3, 20) and T2 = (5, 20)
resulting in creation of two GC tasks G1 = (22, 160) and
G2 = (22, 600) at 50% utilization. The execution time of
GC thread is comparable to 10 times Ter. GFTL on the
other hand provides a delay that is around Ter. Moreover,
we provide a rigorous evaluation where each request is con-
sidered a real-time task along with high utilization.

In [1], the authors address soft real-time issues by modi-
fying the file system; the focus being commonly used access
patterns and not strict guarantees. In [9], the authors sur-
vey a wide range of garbage collection algorithms as part of
their study. However, the garbage collectors are not aimed
at real-time systems. An exhaustive research on flash memo-
ries for real time systems was done by [16]. The conclusions
in [16], supports our motivation for the lack of real-time,
deterministic guarantees for flash.

8. CONCLUSION
In this paper we presented GFTL which provides O(1)

write time and a read time that takes π (pages per block)
searches of the flash OOB in the worst case. Partial block
cleaning lets requests arrive at a rate comparable to Ter, the
block erase time which is a theoretical limit on responsive-
ness of a flash. Benchmark results show that GFTL sticks
to the theoretical limits independent of the flash utilization
or state. GFTL lets a developer calculate the service guar-
antees and size requirements from the flash specifications
during design time. The flash overhead from experiments
is 16% on average. The comparisons made against NFTL
(with increased size) and previous work on real-time garbage
collection show the efficacy of our approach. In summary,
GFTL enables a highly responsive flash with strict guaran-
tees. In our future work, we will look at ways to reduce
block erases performed by GFTL and the power consump-
tion aspects.

9. ACKNOWLEDGMENT
This work was in part supported by grant #0749508 from

the National Science Foundation.

10. REFERENCES

[1] New techniques for real-time FAT file system in
mobile multimedia devices. IEEE Transactions on
Consumer Electronics, 52:1–9, 2006.

[2] A. Ban. Flash file system optimized for page-mode
flash technologies. US Patent 5,937,425, Aug 10, 1999.

[3] Canon. Vixia HD Camcoder, January 2008.
[4] L.-P. Chang and T.-W. Kuo. Efficient management for

large-scale flash-memory storage systems with resource
conservation. Trans. Storage, 1(4):381–418, 2005.

[5] L.-P. Chang, T.-W. Kuo, and S.-W. Lo. Real-time
garbage collection for flash-memory storage systems of
real-time embedded systems. TECS, 3(4):837–863,
2004.

[6] S. Choudhuri and T. Givargis. Performance
improvement of block based NAND flash translation
layer. In IEEE/ACM CODES+ISSS ’07, pages
257–262, New York, NY, USA, 2007. ACM.

[7] S. Choudhuri and T. Givargis. Real-time access
guarantees for NAND flash using partial block
cleaning. In SEUS ’08. Springer Verlag LNCS, 2008.

[8] F. Douglis, R. Caceres, M. F. Kaashoek, K. Li,
B. Marsh, and J. A. Tauber. Storage alternatives for
mobile computers. In OSDI, pages 25–37, 1994.

[9] E. Gal and S. Toledo. Algorithms and data structures
for flash memories. ACM Comp. Surv., 37(2):138–163,
2005.

[10] J. H. Howard and et. al. Scale and performance in a
distributed file system. ACM Trans. Comput. Syst.,
6(1):51–81, 1988.

[11] J. Katcher. Postmark: A new file system benchmark.
Technical report, Net App. Inc, TR 3022, 1997.

[12] G. Lawton. Improved flash memory grows in
popularity. Computer, 39(1):16–18, 2006.

[13] MemCon. MemCon, July 2007.
http://linuxdevices.com/news/NS6633183518.html.

[14] W. Norcutt. IOZONE benchmark, www.iozone.org.
[15] One Laptop Per Child Project. http://laptop.org.
[16] D. Parthey. Analyzing real-time behavior of flash

memories. Diploma Thesis, Chemnitz University of
Technology, April, 2007.

24


