Reliable Performance Analysis of a Multicore
Multithreaded System-On-Chip

Simon Schliecker', Mircea Negrean', Gabriela Nicolescu?, Pierre Paulin®, Rolf Ernst
'Technische Universitat Braunschweig, Germany
2Ecole Polytechnique de Montreal, Canada
] o 3ST Microelectronics, Ottawa, Canada] .
schliecker@ida.ing.tu-bs.de, gabriela.nicolescu@polymtl.ca, pierre.paulin@st.com

ABSTRACT

Formal performance analysis is now regularly applied in the
design of distributed embedded systems such as automotive
electronics, where it greatly contributes to an improved pre-
dictability and platform robustness of complex networked
systems. Even though it might be highly beneficial also in
MpSoC design, formal performance analysis could not easily
be applied so far, because the classical task communication
model does not cover processor-memory traffic, which is an
integral part of MpSoC timing. Introducing memory ac-
cesses as individual transactions under the classical model
has shown to be inefficient, and previous approaches work
well only under strict orthogonalization of different traffic
streams.

Recent research has presented extensions of the classical
task model and a corresponding analysis that covers perfor-
mance implications of shared memory traffic. In this paper
we present a multithreaded multiprocessors platform and
multimedia application. We conduct performance analysis
using the new analysis options and specifically benchmark
the quality of the available approach. Our experiments show
that corner case coverage can now be supplied with a very
high accuracy, allowing to quickly investigate architectural
alternatives.

Categories and Subject Descriptors C.4 [Perfor-
mance of Systems]: Computer Systems Organization—
Performance attributes

General Terms: Performance

1. INTRODUCTION AND MOTIVATION

Formal performance analysis is regularly applied in the
design of distributed embedded systems. There, it greatly
contributes to an improved predictability and platform ro-
bustness of highly complex networked systems, such as in
automotive electronics. Advances in new modular perfor-
mance analysis techniques allow to analyze large scale, het-
erogeneous systems, providing reliable data on transitional
load situations, end-to-end timing, memory usage, or packet

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CODES+1SSS’08, October 19-24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

161

losses. The corresponding methods and tools are now reg-
ularly used i.e. in automotive design at early industrial
adopters [1]. There, analysis is often combined with tracing
and simulation to cover the difficult corners of the system
state space resulting from parallel execution in distributed
applications and communication over heterogeneous networks.
Formal analysis is also used for early evaluation of architec-
tures with respect to extensibility or flexibility in combina-
tion with design space exploration support.

Improving predictability is also a major goal in MpSoC
design in order to reduce design risk and avoid performance
bottlenecks. Predicting the timing behavior of MpSoCs,
however, is fundamentally more difficult than in the dis-
tributed case: The interaction and correlation between in-
tegrated system components, such as a shared memory or
coprocessors, or cache accesses are highly dynamic and can
routinely lead to overload situations. In the application that
we present in this paper, memory transactions of 4 multi-
threaded cores are tightly interleaved partially hiding each
other’s memory transaction delays.

In this paper, we combine two techniques to solve the
performance analysis challenge of a realistic multicore multi-
threaded system. The first technique addresses performance
data acquisition and is adopted from automotive design ex-
perience. Rather than pursuing guaranteed worst case exe-
cution time analysis, the individual components (i.e. tasks
mapped to cores) are simulated individually leading to ob-
served worst case timing and memory access frequencies in-
cluding caches misses. Other than in the case of distributed
real-time systems however, the exact timing of memory ac-
cesses of a core triggered by the tasks running on the core,
shows large time variations due to architecture and fine grain
task behavior. It is therefore hardly possible to derive a
guaranteed sequence and timing of such events from mea-
surements.

In previous work, it has been proposed to aggregate the
memory accesses over the task execution time and derive
event models from such aggregate behavior rather than look-
ing at individual memory transactions. This perfectly mat-
ches the data acquisition by measurement. Therefore, we
employ the corresponding analysis as a second technique in
the multiprocessor analysis. This combination is done for
the first time.

Using this procedure we tackle three major obstacles that
have hindered the general application of formal methods in
the performance analysis of MpSoCs and the given setup in
particular: We tackle the timing feedback of memory ac-
cess on the task execution by explicitly modeling memory
accesses; we extract the dynamic run-time behavior of the

tasks by simulating each task in isolation, thus avoiding sys-
tem level distortions; and we avoid the inaccuracy of treat-
ing memory access individually by resorting to the aggregate
modeling.

The results are compared to other performance verifica-
tion techniques. A simulation of the whole multicore system
with the same application load provides a lower bound on
the resulting global system performance. We also present
a formal verification on the basis of individual transactions
which provides an upper bound and represents the previous
state of the art in formal performance modeling.

The remainder of this paper is structured as follows. First,
we present related work in Section 1.1. We then present the
investigated platform and application in Section 2. This
is followed by a description of the utilized formal analysis
procedure in Section 3. Section 4 provides the results of the
experimental application, and we conclude in Section 5.

1.1 Related Work

Most previous work has addressed the MpSoC analysis
challenges only in part. For example, to avoid the feedback
effect of memory timing on the task execution, an increas-
ingly common counter-measure is the orthogonalization of
system resources [2][3], e.g. through time-driven schedul-
ing of the memory bus. By reducing the timing interde-
pendence, system functions can then be verified separately.
While this option simplifies the verification procedure, it
implies a conservative design with in general increased re-
source and possibly also power requirements. Andrej et al
[4] have significantly reduced the cost of orthogonalization
by deriving optimal bus-schedules given the memory access
pattern of each task. Still, if the same performance can be
achieved (and verified) without such hardware mechanisms
this allows constructing more efficient and flexible systems.

Isolated task worst case execution time analysis has until
recently focused on the single-processor case (see [5] for an
overview). As memory access timing is relatively predictable
in such a setup, the problem of deriving the memory access
delay was for many years simply a matter of deriving the
amount of memory accesses (i.e. cache misses) per task exe-
cution. Due to the challenges of formally addressing single-
processor architectures (out-of-order pipelines, conditional
execution, a.s.0.), simulation and measurements are still a
common option to derive the relevant information about in-
dividual tasks [1, 6]. If these metrics are deemed unreli-
able, these values may be manually modified to compensate
for anticipated and unanticipated changes during the design
process. Siebenborn et al. [7] integrate inter-task communi-
cation into the control-flow graph representation to cover the
globally possible execution traces, covering synchronization
effects but not implicit memory delays.

Finally, memory accesses typically occur in great num-
bers, while real-time research has classically focussed on the
individual worst-case. To address this various methods have
been suggested. Stohr et al. [6] suggest a simulation-based
approach to derive the timing parameters of the arbitration
points. They are able to approach PC-like architectures but
do not address the overestimation given above. Schliecker et
al. and Henriksson et al. [8] have identified the need to in-
vestigate the aggregate delay over all memory accesses. Hen-
riksson provides extensions of network calculus to derive the
heterogeneous memory access delays. However, they do not
consider local scheduling or fully the feedback effect when
additional delays may occur due to the stretched execution

162

of a task. This has been addressed in [9] where the aggregate
memory access time is derived iteratively.

In multiprocessor systems with shared interconnects and
memories formal models can provide insight into worst-case
access delays to shared resources. But previous work has
provided only insufficient experimental data to demonstrate
its applicability to actual real-time systems. For this rea-
son, this paper investigates an industrial-grade MpSoC plat-
form with multithreaded processors. We apply the only
system-level approach that allows to address dynamic mem-
ory scheduling and its effects on local scheduling. In order to
focus on the effects of integrating multiple applications into
the same system, we chose simulation as the most efficient
method to derive the timing of individual tasks.

2. THE STEPNP PLATFORM

The StepNP platform [3] has been introduced the STMi-
croelectronics advanced system technology organization as
an experimental MpSoC target platform for the MultiFlex
platform mapping tools [10]. It is general-purpose, but can
be adopted to suit the demands of various application do-
mains. StepNP is not used in a commercial product, but it
has served as a baseline to support the exploration of plat-
form mapping tools for next generation platforms (such as
Nomadik(tm) [11]) The StepNP platform is still very inter-
esting for investigation, as it represents a realistic system. A
number of applications have already been ported to the plat-
form [12]{10] to investigate application behavior and tune
architecture design decisions.

2.1 Platform Architecture

The basic StepNP platform consists of a set of fully pro-
grammable RISC processors and a standardized intercon-
nect. Figure 1 shows the three basic components of the
platform: processor engines (in this case 4 RISC based pro-
cessors), an interconnect (the STBus communication infras-
tructure), and some specialized coprocessors (in this case,
two hardware-based scheduling engines which support SMP
and message-passing programming models [10]).

1

[Datas |
¢ | SIGN
LN]
L1 data
Program Cache #1 Program
Cache #1 Cache #N
STBus
Instruction & Data Image
SRAM SRAM

Figure 1: StepNP Base Platform

As sketched in the introduction, memory access latency
is an issue of growing concern in any embedded system de-
sign. In the given platform concept the processors are there-
fore equipped with hardware multithreading capability. It
allows effective latency "hiding” where CPU cycles are not
wasted but can be used by other threads. Such a hard-
ware multithreaded processor has a separate register bank

for each thread, allowing low-overhead context switching be-
tween threads, often with no disruption to the processor
pipeline [3].

In the original concept, a crossbar and a multi-bank mem-
ory are used to deliver orthogonal performance to each pro-
cessor. In this paper, we utilize reliable load models to
bound the impact of shared interconnect on timing. One
result is, that in the example application, a single shared
bus would also deliver sufficient performance.

2.2 Image Processing Application

The example application chosen for this investigation was
was selected and provided by the Ecole Polytechnique de
Montréal and has been mapped to the StepNP platform. It
is an image processing algorithm for video applications that
consists of 5 successive filtering and processing steps (see
Figure 2). Each of these 5 application functions fetches the
resulting image produced by the predecessor from the cache
or implicitly from the shared memory, performs its neces-
sary operations (mostly on the cached data), and leaves the
result in the shared memory for the next stage. The frames
are processed sequentially. Each processing step can be par-
allelised into n = 2% independent tasks, where x is config-
urable. The parallelization represents a spacial dissection of
the original frame into equally sized tiles. When a new frame
has arrived at the system’s input the task is forked into n
subtasks that are assigned to the available threads. After
all subtasks have completed execution the image is merged
again for the next step.

For efficiency reasons, no software multiplexing is imple-
mented, so that the number of forked threads is bounded by
the number of available hardware threads (number of CPUs
multiplied with the number of threads per CPU). The fork-
ing and merging is controlled by a user thread running on
one of the CPUs in between the pipeline functions. All mem-
ory operations pass via the same interconnect to the same
memory (see Sec. 2.1).

0>

e

T

5o P €

T OHe Wr O

PO 5 e

1»_1}»’ T 0 F 0

Gauh Corh;_)edge Reverse

o T o

5o I i G0
Application Memory Inter- Shared
Functions Ports connect Memory

Figure 2: Image Processing Application

3. FORMAL MULTIPROCESSOR PERFOR-
MANCE ANALYSIS

The traditional approach to formal performance analysis
is performed bottom up: First the individual task behavior
is investigated in detail to gather all relevant data such as the

163

execution time. This information can then be used to derive
the behavior within loosely coupled components, accounting
for local scheduling interference. Finally, the system level
timing is derived on the basis of the lower level results. This
procedure is summarized in this section.

To tackle the analysis complexity of large-scale and het-
erogeneous systems, the performance analysis can be broken
down into separate local analyses of tasks mapped to re-
sources that are then composed using a generic description
of the traffic that can lead to task activations (as is done in
[13] and [14)]).

In general, a task can be a computation, communication,
or data storage operation. A task is assumed to be activated
when it has all data required for execution available at its
inputs. After it has executed for a time no longer than
its worst case execution time (WCET), it has produced all
data at the output when it has finished. This model of a
task corresponds to common design practice in distributed
systems. Implicit memory accesses can be covered by the
extension described below.

At

Figure 3: Example Event Arrival Bounds

Event models are used to capture the possible patterns of
task-activating events in a systematic, abstract fashion. The
event models specify the minimum (™" (w)) and maximum
(n™**(w)) amount of events in a stream that may occur in
a time window of any given size w. To describe the pattern
of events in a compact fashion, event models can also be
represented through key parameters (such as period, jitter,
minimum distance) as is done in [13]. Figure 3 shows the
upper and lower bounds of an example (bursty) event model.

Every task is mapped to a resource that defines the schedul-
ing policy used to arbitrate between multiple active tasks.
A scheduling analysis (such as those derived from the fun-
damental work in [15]) can be performed for each resource if
the pattern of activating events is known. The result of this
analysis is the local task worst case response time (WCRT).
Based on this the pattern of activating events that is pro-
duced at the task output (which can be system output or
another task’s input) can be derived (e.g. by accounting for

an increased jitter).
'—‘ input traffic description |

Shared resource local analysis
access analysis per resource
i 1

| output traffic description |

I

until convergence or
non-schedulability

Figure 4: MpSoC Performance Analysis Loop

To derive the actual system performance, an iterative ap-
proach is used (shown in the outer loop at the right hand side
of Figure 4). First, the traffic imposed onto the system from
outside is characterized by the designer in the form of con-
servative event models. All other event models within the
system are initialized with optimistic guesses. These event
models are then used as the basis for the local component
scheduling analyses as described above. This provides local
response times and generated output traffic. These output
event models are then used to refine the previous estimates.

This procedure is monotonic, as the event models become
increasingly more general with each iteration, and thus each
iteration contains the previous assumptions [13]. The anal-
ysis is complete if either all event streams converge toward
a fix-point, or if an abort condition, e.g. the violation of a
timing constraint has been reached. Once the analysis has
converged, the local response times can be used to derive
end-to-end latencies, and the output event models describe
the traffic produced by the system’s outputs.

This procedure has been extended in [9] to account for
shared memory systems. The model of the task behavior
is extended to include local execution and memory trans-
actions during the execution. Such a communicating task
performs transactions during its execution as the ones de-
picted in Figure 5. The depicted task requires two chunks
of data from an external resource. It issues a request and
may only continue execution after the transaction was e.g.
transmitted over the bus, processed on the remote compo-
nent and transmitted back to the requesting source. Such
memory accesses may be explicit data fetch operations or
implicit cache misses.

The memory is considered as a separate component and
a (local) analysis must be available to predict the timing of
a set of memory requests. For this again, the event models
capturing the memory traffic are required. Each proces-
sor scheduling analysis can then account for memory access
timing by calling the memory analysis with locally derived
memory event models and additional information (such as
addresses). This is shown on the left hand side of Figure 4.

3.1 Round-Robin Scheduler

Single-processor round-robin scheduling has been covered
by previous research, most recently in [16]. The scheduler
provided in the StepNP hardware mulithreaded processor
models used in this given case is different mainly in two
ways: Firstly, all time slots are of equal size and execution
times are an integer multiple of the time slot size (which
can be exploited to derive a more compact analysis), and
secondly, tasks that are waiting for external data to arrive
are skipped (which needs to be addressed by the analysis).
This is covered in [17], but the approach can be only applied
to systems with up to two threads for which the analysis al-
ready exhibits a high computation time. Furthermore, indi-
vidual minimum memory access times must be given. The
response time analysis in the extended version of this pa-
per [18] specifically covers the given scheduler and will be
utilized for our analysis.

Almost all tasks in the application are communicating
tasks, as they require data from the shared memory dur-
ing their execution. The response time of a communicating
task is given by the sum of its ready times plus the time it
is waiting for data.

Figure 5 shows an example execution trace of a task run-

164

ning on core 0. The thread of task 1 is locally preempted by
the other active thread and delayed by its memory accesses
(“task 1 waiting”). Its memory accesses in turn are delayed
by the memory requests coming from the other cores (not
shown), but also from core 0 itself. We call the sum of the
waiting times the accumulated busy time. When the memory
request is finished, the task additionally has to wait until its
thread context is serviced again.

|
e]

< > < >

Task 1 waiting Task 1 waiting

Thread 1

Thread 0
Core 0

Memory [

[J] Execution
= Memory transaction

[Local preemption
r:a (delayed by preceding requests)

Figure 5: Example Execution Trace for a Task ac-
cessing the Shared Memory

The challenge in the given scheduling policy is to consider
the delay due to memory accesses during the execution of a
task. As discussed in the introduction, considering requests
individually will lead to a significant overestimation of the
actual worst case behavior. The key idea is to consider all
requests during the runtime of a task jointly.

This accumulated busy time can be efficiently calculated
e.g. for a shared bus: A set of requests is issued from dif-
ferent processors that may interfere with each other. The
exact individual request times are unknown and their actual
latency is highly dynamic. Extracting detailed timing infor-
mation (e.g. when a specific cache miss occurs) is virtually
impossible, and considering such details in a conservative
analysis highly exponential. Consequently, we waive such
details and focus on bounding the accumulated busy time.

Without bus access prioritization, it has to be assumed
that it is possible for every memory access issued by any
processor during the runtime of a task activation ¢ that these
will disturb the transactions issued by ¢. In the present setup
this is given by the requests issued by the other concurrently
active tasks on the other processors, as well as the tasks on
the same processor as their requests are treated first-come-
first-served.

Thus, the accumulated busy time S of a task 7;’s memory
requests can be bounded as follows:

Siw) < SN nw)e,

peEP TEP

(1)

is the set of processors in the system. 7 is a task
mapped to a processor p.

is the maximum number of requests sent by all activa-
tions of task 7 within a time window of size w.

is the maximum time that a request by task T occupies
the shared resource.

The requests of the analysed task 7; are considered in Equa-
tion 1 as n;" (w). Please refer to [18] for more detailed mod-
eling, i.e. differentiating 7;’r requests from the interference
by other tasks and options for request prioritization.

Note that the given accumulated busy time depends on
the time window size within which the requests are sent.
A stretched execution time due to memory accesses allows
for additional interference on the memory and vice versa

0

.

(increased 1, (w)). Thus, Equation 1 needs to be integrated
into the tasks response time equation and solved iteratively.
Given a certain dynamism in the system, this accumula-
tive approach will interestingly not result in excessive over-
estimations as demonstrated in the following experiments.

4. EXPERIMENTS

In the first experiment, we investigate the performance
analysis accuracy using a synthetic example. Consider a
platform configuration with 4 cores connected to a shared
memory that is arbitrated first-come-first-served. One core
executes a real-time task and the others perform latency
insensitive image processing. Due to the common memory
and interconnect, the computation on each core can not be
considered independently. Rather, the current memory load
from any of the cores impacts the run-time of tasks on the
other cores.

Assuming each processor thread can have only one open
transaction at a time, the worst case memory access time can
be straight-forwardly bounded as the product of the num-
ber of processors and worst-case delay of each access. This
time can be multiplied with the amount of memory accesses
and added to the task’s core execution time. This method is
depicted in Figure 6 (Analysis “per access”). If the same sys-
tem is executed on the simulator, a much smaller response
time is measured for the real time task (Simulation). The ca.
100% deviation shows the room for improvement. Repeating
the analysis by resorting to the new analysis options, partic-
ularly the accumulated busy time (Analysis “accumulate”),
delivers much tighter results.

Simulation
Analysis

("accumulate”) [‘\ T u‘ il u‘|
Analysis ‘

("per access") I T I I : I I
0 200 400 600 800 1000 1200 1400

Total Execution Time (kcvcles)

1600 1800

Figure 6: Formal Analysis options compared to
Measurements

For the following study of the complete system described
in Section 2, we adopt a mixed methodology. We use the
available timing aware simulators to investigate the timing of
individual components (i.e. tasks) in a reasonable amount of
time. This removes the need to derive specific models of the
tasks and their execution environment. The formal analysis
framework presented in this paper is then used to quickly
and reliably derive the integration effects on the system level
with robust accuracy. Nevertheless, formal methods such
as reviewed in [5] can be used to achieve higher confidence
in the extracted task timing and consequently the overall
analysis results.

We collected the data in isolated simulations of each ap-
plication function. A simulation run can yield the following
results between two breakpoints: Total execution time, num-
ber of cache hits, number of cache misses, number of writes.
By taking care that no other tasks are active in the system,
these values can directly be attributed to one task. In our
case study we use a benchmark input image for this purpose.
This was sufficiently accurate as the nature of the algorithm
is such that it shows no input data dependent behavior.

165

The cache offers single cycle access to the active thread,
so that we consider the cache hit delay as part of the exe-
cution time. A cache miss will incur a waiting time for the
requesting task that consists of the request latency via the
bus plus the access time to the memory. Although the de-
lays are actually input parameters to the simulator, we have
independently determined them through measurements.

12000000 m Simulation (4x1Thr)
B Analysis Crossbar
10000000 Analysis FCFS Bus
7 [~ i
g I é z m Analysis 2 FCFS Bus
: é é
E 6000000 é é
& 4000000 Z z 2
é il
2000000 % % %
LA LR AN A
. =7 7 ¢
Gauv Gauh Compedge Reverse Droot

Application Functions

Figure 7: Experiments for Singlethreaded Setup

Figure 7 shows the results of the first experiment. Each
of the 5 application functions is presented individually. The
first bar represents simulated execution time if a dissected
input image is concurrently processed by the four CPUs.
Next, we performed our formal analysis with the data pre-
viously gathered from the exclusive function simulation (sec-
ond bar). As there are no additional conflicts on processors,
crossbar, or the memory, we receive very accurate results
that closely resemble the simulation.

Now we modify the model of the bus and the memory to
exclusively treat one request at a time in a first-come-first-
served ordering. This is easily introduced into the analysis
of each task by including the memory interference in the
tasks’ accumulated busy times of Equation 1. The conser-
vative model of the interference will now contain all memory
accesses by the tasks that are active at the same time. The
third bar in Figure 7 shows the predicted response time for
each application function. The response times of the func-
tions are affected by the contention on the bus and memory
to different degrees. Depending on the amount of memory
traffic the response times increase by 25% for Gauv and up
to 41% for Droot. In a final option we assume a hypothetical
memory and bus controller that allows two parallel accesses
which reduces the interference by half (4th bar). A designer
can now choose the cheapest bus structure that is still guar-
anteed to deliver sufficient performance.

The second series of experiments assumes each application
function is parallelised into 8 subtasks. Again, we derived
single subtask behavior by simulation in isolation. The first
two bars in Figure 8 show that our approach can again pre-
cisely capture the actual behavior for 8 concurrent subtasks
on 8 cores.

We then assume that two subtasks are mapped to hard-
ware threads on the same processor. This will cause com-
petition for the processor, and also for the cache content.
The third bar shows that for most functions (Gauv, Gauh,

O Simulation (8x1Thr)
B Analysis Crossbar (8x1Thr)
W Simulation (4x2Thr)

16000000

7
14000000 Z B Analysis Crossbar
% Analysis FCFS Bus
& 12000000 g I Analysis 2 FCFS Bus
‘© 10000000+ g
£ %
$ 8000000 é
: |
& 6000000 é
i .
7
7
7
7
.
7

A Y

%

Reverse

Gauh
Application Functions

Compedge

Figure 8: Experiments for Multithreaded Setup

Compedge, and Droot) processor sharing increases the mea-
sured response time by less than 100%. This can be at-
tributed to how efficiently the memory accesses interleave
during runtime. However, the measured response time for
Reverse is more than twice as large: By mapping two tasks
to the same core, the required execution time will remain un-
affected, but the cache miss rate may increase due to cache
thrashing.

This change in cache behavior can be avoided by relying
on local cache partitioning or analytically bounded with for-
mal task analysis such as [5]. Neither method is in place in
our setup, so in order to account for this interference, we
have measured the additional cache misses for each function
observed under dualthreaded simulations. In general, sim-
ulation is unreliable to find worst-case cache misses due to
the large space of possible application and cache states. In
the given setup however, the state space is much smaller,
because a) the input data does not impact the number of
cache misses and b) the thread-offsets vary only insignifi-
cantly due to the fork-join structure of the application. The
contribution of this effect to the response time is shown in
the respective upper parts of each column.

Also for the setup with 4 dual-threaded processors, we
explore the option of utilizing shared FCFS busses which
allow only one or two simultaneous transactions. Functions
which perform more memory accesses (Compedge, Reverse,
or Droot) again suffer more severely from the resulting bus
competition (as seen in the last two bars).

The overall analysis speed was very high. Each simula-
tion run of individual task functions already took minutes
to complete and had to be repeated several times, which
becomes a severe problem if system level options are inves-
tigated. By contrast, each analysis result was calculated in
less than a second due to the abstraction from the actual
functionality.

S. CONCLUSION

In this paper a formal performance methodology and anal-
ysis has been applied to a realistic embedded multiprocessor
system on chip. This was possible by addressing and quan-
tifying the impact of the complex interdependencies that
surface when shared memories are used. We capture the lo-
cal task interaction in the multithreaded round-robin sched-

166

uler in our analysis allowing the prediction of the worst case
response times. The memory accesses are analysed with un-
matched speed and precision by relying on the concept of
accumulated busy times instead of deriving individual re-
quest timing. We have used this approach to gather worst
case performance metrics and quickly derive accurate esti-
mates for various interconnect options.

61] REFERENCES

Racu, R. Ernst, K. Richter, and M. Jersak. A Virtual
Platform for Archltecture Integration and Optimization in
Automotive Comm. Networks. SAE Congress, 2007.

M. Bekooij, O. Moreira, P. Poplavko, B. Mesman,

M. Pastrnak, and J. van Meerbergen. Predictable
embedded multiprocessor system design. In Proc. SCOPES
workshop, Amsterdam, 2004.

P.G. Paulin, C. Pilkington, and E. Bensoudane. StepNP: a
system-level exploration platform for network processors.
Design & Test of Computers, IEEE, 19, 2002.

A. Andrei, P. Eles, Z. Peng, and J. Rosen. Predictable
Implementation of Real-Time Applications on
Multiprocessor Systems-on-Chip. 21st Intl. Conference on
VLSI Design, 2008.

R. Wilhelm et al. The worst-case execution-time
problem—overview of methods and survey of tools. Trans.
on Embedded Computing Sys., 7(3):1-53, 2008.

J. Stohr, A. Bulow, and G. Farber. Bounding Worst-Case
Access Times in Modern Multiprocessor Systems. 17th
Euromicro Conference on Real-Time Systems, 2005.

Axel Siebenborn, Oliver Bringmann, and Wolfgang
Rosenstiel. Worst-case performance analysis of parallel,
communicating software processes. In Intl. Symposium on
Hardware/Software Codesign, Estes Park, 2002.

T. Henriksson, P. van der Wolf, A. Jantsch, and A. Bruce.
Network Calculus Applied to Verification of Memory
Access Performance in SoCs. Workshop on Embedded
Systems for Real-Time Multimedia, 2007.

S. Schliecker, M. Ivers, and R. Ernst. Integrated analysis of
communicating tasks in MPSoCs. Intl. Conference on
Hardware/Software Codesign and System Synthesis, 2006.
P.G. Paulin, C. Pilkington, et al. Parallel programming
models for a multiprocessor SoC platform applied to
networking and multimedia. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 2006.

M. Paganini. Nomadik(TM): A Mobile Multimedia
Application Processor Platform. In Proc. ASP - Design
Automation Conference, 2007.

[12] Y. Bouchebaba, G. Nicolescu, E. Aboulhamid, and

F. Coelho. Buffer and register allocation for memory space
optimization. In Proc. Intl. Conf. on Application-specific
Systems, Architectures, and Processors, 2006.

R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and
R. Ernst. System level performance analysis-the SymTA /S
approach. Computers and Digital Techniques, 152, 2005.
S. Chakraborty, S. Kunzli, and L. Thiele. A general
framework for analysing system properties in
platform-based embedded system designs. In Proc. Design
Automation and Test in Europe, 2003.

M. Joseph and P. Pandya. Finding Response Times in a
Real-Time System. The Computer Journal, 29, 1986.

R. Racu, L. Li, R. Henia, A. Hamann, and R. Ernst.
Improved response time analysis of tasks scheduled under
preemptive Round-Robin. In Proc. Intl. Conference on
Hardware/Software Codesign and System Synthests, 2007.
P. Crowley and J.L. Baer. Worst-Case Execution Time
Estimation for Hardware-assisted Multithreaded Processors.
In Proc. 2nd Workshop on Network Processors, 2003.
Simon Schliecker, Mircea Negrean, and Rolf Ernst. Reliable
Performance Analysis of a Multicore Multithreaded
System-On-Chip (with appendix). Technical Report 22837,
Technische Universitidt Braunschweig, 2008.

2]

(3]

(4]

[9]

(10]

(11]

(13]

(14]

(15]

[16]

(17]

(18]

