
You Can Catch More Bugs With Transaction Level Honey

Miron Abramovici
DAFCA,

Miron.abramovici@dafca.com

Neal Stollon
HDL Dynamics,

neals@hdldynamics.com

Kees Goossens,
Bart Vermeulen

NXP,
kees.goossens@nxp.com

Adam Donlin
Xilinx Research,

Adam.donlin@xilinx.com

Jack Greenbaum
Greenhills Software

jackg@ghs.com

Adam Donlin
Xilinx Research,

Adam.donlin@xilinx.com

ABSTRACT
In this special session we explore holistic approaches to
hardware/software debug that use or integrate transaction
level models (TLMs). We present several TLM-based
approaches to system-level diagnostics, ranging from use
of most popular transaction level modeling languages
through to hybrid technologies that combine TLMs with
other well known diagnostic tools like in-silicon trace
logic.

Categories and Subject Descriptors
C.5 [COMPUTER SYSTEM IMPLEMENTATION]

General Terms
Measurement, Design, Standardization, Verification.

Keywords
Transaction-level models, system diagnostics.

1. INTRODUCTION
System-level performance analysis, early software
development and pre-silicion system verification are three
popular use cases for transaction level models. In this
special session we review how TLMs can enhance system-
level diagnostics – verification that occurs post-
implementation.

This paper is a collection of four extended abstracts that
present different perspectives on the use of TLM for

system-level diagnostics. Section 2 considers how TLM
can improve diagnostics for systems with complex
interconnect. Section 3 reviews TLM standardization
efforts that extend into the field of system-level
diagnostics. In section 4, the use of TLM to support high
quality silicon instrumentation is discussed and section 5
presents the software architect’s view of TLM and its use
in software test and diagnostics.

2. Communication-centric debug by
controlling transactions in-flight

2.1 Transaction-based multi-core debug
Systems on chip (SOC) contain many tens of IP cores,
including hardware accelerators, programmable processors,
and embedded memories. Hierarchical busses or networks
on chip (NOC) implement deeply-pipelined concurrent
communication between the cores. SOCs are hard to debug,
because of the large number of concurrent processes.
Second, the interactions are complex, due to deeply
pipelined multi-threaded transactions, distributed shared
memories, memory latencies with large variations between
local and external memories, consistency and coherency for
distributed cache protocols, etc. Finally, dynamic
frequency scaling and multiple clock domains cause non-
deterministic behaviour.

To debug a SOC it is infeasible to only use a software
debugger for each processor, or use clock-cycle accurate
system simulations. Therefore we propose to focus on the
new communication complexity, i.e. the interactions
between the cores. We also abstract multiple variable clock
cycles to transactions of communication protocols such as
AXI to provide a more intuitive common
hardware/software debug interface that is more
deterministic. Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10...$5.00.

121

2.2 Hardware and Software Architecture
Our transaction-level communication-centric debug design
flow1 instruments a SOC with monitors to observe cores
and/or their communication. Monitors (◇ in Figure 1)
observe NOC transactions (flits) on the router links. They
generate events on programmed happenings of interest,
which the event-distribution interconnect (EDI) sends to
transaction run/stop control blocks (RSCB). The ⊗ symbol
indicates transaction-level RSCBs that control the flow of
requests and responses between a master and all its slaves,
or a slave and all its masters. The Ø symbols deal with
single master-slave communications, for even finer control.
An IEEE 1149.1 Test Access Port (TAP) and scan chains,
already present on our SOCs, are used to program this
infrastructure through test-point registers (TPR), and to
read and modify functional data.
Our debug software offers an API to read/write TPRs and
functional state, but also at the level of logical connections
between masters and slaves. This uses the XML description
from which the RTL of the NOC is generated. For
example, the functional state of some or all connections
between one or more masters and slaves can be retrieved
from the RSCBs and network interfaces (NI). It is then
displayed at the transaction level (active transactions or
not, which data element, state of the request/response
FIFOs, etc.), rather than a series of scanned bits. For
maximum flexibility in run/stop control, all RSCBs can be
enabled, started, or stopped independently based on any set
of active monitors or TAP control. Based on this and using
patterns, a set of “connections under debug” is easily
specified at run time, which can then be single and multi-
stepped independently.

2.3 Conclusions
Transaction-based debug will play a large role in
debugging future SOCs where the complexity is in
communication between IPs. Much research, both
conceptual and practical, remains to bring this vision to
life. This is joint research with B. Vermeulen, A. Nejad,
and A. Hansson.

3. ESL Driven Instrumentation for System
Diagnostics
Large amounts of effort and innovation in the last decade
has been focused on verification and diagnostics at diverse
levels of abstraction (ESL, RTL, gate level, emulation, in
system/ on-chip instrumentation, and others). Less focus

1 B. Vermeulen, et al. Debugging distributed-shared-memory
communication at multiple granularities in Networks on Chip (NOCS),
2008; K. Goossens, et al. The Æthereal network on chip: Concepts,
architectures, and implementations. Design and Test of Comp., 22(5),
2005.

has been applied to the related area of integration and reuse
of the verification and diagnostics information and
supporting tool integration as part of a capability for the
overall system validation and debug process that evolves
through a product design and life cycle. As a result, system
validation and diagnostic activities at different stages in a
design are often performed in a state of isolation from any
prior related analysis activities. While there are some
arguable merits in creating independent tests and
diagnostics at each design stage, the value of being able to
access validation and diagnostic data from prior stages in
the design flow has many advantages, from reduction in
time to create new tests and diagnostic scenarios, to
improving consistency between design stages, to improved
abilities in automatically and formally correlating and
cross-validating analysis from multiple design abstractions
and views.

1:N or N:1 transactions

1:1 transactions

NOC transactions (flits)

ED
I

master

master

slave

slave

network
interface

network
interface

network
interface

network
interface

network
interface

routerrouter

TAP

local bus

local bus

scan chains

Figure 1: Masters, slaves, NoC and debug infrastructure

In the best of worlds, each stage of a design effort should
be able to access, in a common format and description,
analysis information and diagnostic results from prior
stages in the design process. The reality of most design

122

flows falls far short of this goal. This is, in part, due to the
historical legacy of a variety of different design
descriptions being used at different stages in the analysis
(ie. ESL (SystemC), RTL (Verilog), gate (EDIF), etc.) and
modeling limitations of being able to resolve issues like
timing resolution and model abstraction between different
domains. Nevertheless, it can be argued that this “tower of
babel” syndrome in being able to reuse all of the prior
information available for a design is a contributor to the
verification and validation shortfall crisis that faces many
complex designs.
As an example for brevity, consider two steps in the design
flow, ESL and in On-Chip System Instrumentation. These
provide an interesting comparison since they occur at the
diametric ends of a system design - ESL focused on the
initial concepts of the design, and On-Chip Instrumentation
utilized at the final physical product stages where
integration of (physical) hardware and software make up a
system. They share common concerns (focus on the end to
end operation and performance of a system) and scope
(addressing both hardware and software integration and
optimization) that are not typically addressed at other
design stages (RTL as an example, while arguably the most
comprehensive area of focus for design verification and
validation activities, does not easily integrate software
analysis and is often limited in analysis to partitioned sub-
systems of a design, than analysis of the total system).
ESL modeling and system analysis, used at the conceptual
front end of SoC design for initial functional and
performance analysis, allows parallel hardware (although
abstracted) and software analysis and verification and
system parameter (bus, memory) optimization. ESL based
design, as arguably the first stage where substantive
analysis of a design is done, becomes a prime mover for
improving access to validation and diagnostic information
that can be reused in subsequent design stages. ESL
provides additional potential to be extended to drive a
range of subsequent analysis activities, as it is still in
formative stages of development and standardization.
Instrumentation and hardware-based analysis is used to
facilitate system verification and performance analysis of
physical (FPGA and/or ASIC) implementations.
Instrumentation capabilities include varieties of system
trace, triggering, and other monitoring and run control.
While instrumentation is applied to a range of scenarios
ranging from logic analysis to performance monitoring,
modern ASSP devices focus most instrumentation
resources on software related analysis (ex. processor
breakpoints, run control and trace) and access, control, and
monitoring of on-chip system (bus and memory) resources.
So given this common set of analysis goals and needs
between ESL and Instrumentation, are there common tools
and flows to encourage consistency and reuse of validation
and related diagnostics. With very limited exception, even

tools (ex. GDB) and data formats (ex. VCD) that may be
commonly used, do not provide a useful infrastructure for
end to end integrated system analysis. This is a promising
area for research and commercial development that can
make a significant impact of current design flows.

4. Using Transactions for In-system Silicon
Validation and Debug
Since complete pre-silicon system-level verification is
practically impossible, in-system silicon validation must
tackle many aspects of the behavior of a new SoC, such as
hardware-software integration, corner cases not reached in
verification, operation under stress conditions, adaptive
control of temperature, voltage, and power, and digital-
analog interactions. In-system silicon validation is done
with severely limited observability and controllability of
the internal activities in the chip, and has to deal with non-
deterministic system operation and lack of time-specific
expected values. Because of these reasons, silicon
validation and debug has become the most time-consuming
and the most unpredictable phase of the development cycle
of a new SoC.
First we review a new silicon validation approach. Pre-
silicon, instrumentation tools guide the insertion of
reconfigurable instruments into the RTL model of the SoC,
and generate an instrumented RTL model that is processed
by standard synthesis-based design flows. The
instrumentation creates an infrastructure platform that is
dynamically configured and operated post-silicon by post-
silicon tools. Dynamic in-system configuration enables
continuous reuse of the instrumentation for a variety of
applications including logic analysis, assertions in silicon,
on-chip functional block test, performance monitoring,
programmable fault and error injection, and hardware-
software co-debug.
Then we present the use of transactions for in-system
silicon validation and debug. Transactions have been used
to raise the level of abstraction in analyzing the operation
of an SoC for pre-silicon verification. The new approach
brings the advantages of transactions to the silicon domain.
We show how reconfigurable on-chip instruments are
dynamically configured as different transaction engines
that detect, record, and analyze transactions. Following the
activity of the SoC as sequences of transactions is much
more effective for validation and debug than analyzing bit-
level waveforms. Transaction engines can also generate on-
chip user-specified transactions to increase the
controllability of the SoC.
We also show the results obtained in validating and
debugging five chips using the new silicon validation and
debug technology. Subsections

123

5. TLM Diagnostics and Embedded Software
Development
A key problem in embedded systems is access patterns on
external bus interfaces. The issues to be analyzed relate to
both software testing after the system is implemented, and
to performance in the architecture/partitioning phase. From
a performance point of view questions to answer include
“is there enough bandwidth available in my system to move
the data I need to move? Back when we built board level
systems, visibility of the hardware/software interface was
easy. One connected a logic analyzer to the busses, and all
was revealed. But today’s systems have hidden busses, and
complex interactions between software and busses. Virtual
platforms today run as fast as many of the embedded
systems they simulate. TLM Diagnostics with these virtual
platforms provide visibility to design and analyze today’s
systems.
Take for example a system that provides video over USB.
Questions to answer include “Can a given processor be
used to implement this system?” and “How much memory
is required for this system?”. A designer may be looking at
several hardware solutions including a custom SoC or a
COTS device either with an on-chip USB interface or a
less expense COTS device and external USB interface. One
might try to do back of the envelop calculations to
determine if the processor has enough “MIPS” and if the
peripheral bus interface has enough bandwidth to transfer
the chosen video format from the video source to the USB
interface. In theory the bus bandwidth questions are easy to
answer by considering the amount of data to transfer and
the speed of the connection between the USB interface and

the processor. But USB isn’t that simple. There is a great
deal of control traffic between the USB Device interface
driver above and beyond the data payload. How does one
estimate that? This is where TLM Diagnostics come in.
Using a virtual platform one can run the exact driver and
application code and get real bandwidth and CPU “MIPS”
numbers. Using this information a low-risk hardware BOM
can be derived. Without this virtual platform, you must
either take large risks, provide large and costly margins in
performance, or build several physical systems and analyze
them.
The same visibility that allows bandwidth analysis in the
partitioning phase provides important visibility when
testing software. Code coverage testing provides assurance
that a given set of test cases actually tests, or covers, the
functionality of the software under test. Many high
reliability and high security systems require not just that
every instruction is covered, so called “statement
coverage”, but also that paths through conditionals have
been covered. In the extreme every path through multiple
conditionals is verified, but more restricted metrics like
Modified Condition/Decision Coverage (MCDC) are more
common. This type of coverage analysis requires either
instrumenting the code, or access to the program counter
sequence actually executed during the execution of the test.
Instrumenting the code is intrusive, so it is highly desirable
to observe the system externally. While many processors to
provide trace ports, when hardware trace isn’t available,
Virtual Platforms provide the necessary visibility.

124

