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ABSTRACT 
In this special session we explore holistic approaches to 
hardware/software debug that use or integrate transaction 
level models (TLMs).   We present several TLM-based 
approaches to system-level diagnostics, ranging from use 
of most popular transaction level modeling languages 
through to hybrid technologies that combine TLMs with 
other well known diagnostic tools like in-silicon trace 
logic.    

Categories and Subject Descriptors 
C.5 [COMPUTER SYSTEM IMPLEMENTATION] 

General Terms 
Measurement, Design, Standardization, Verification. 

Keywords 
Transaction-level models, system diagnostics. 

1. INTRODUCTION 
System-level performance analysis, early software 
development and pre-silicion system verification are three 
popular use cases for transaction level models.  In this 
special session we review how TLMs can enhance system-
level diagnostics – verification that occurs post-
implementation.  

This paper is a collection of four extended abstracts that 
present different perspectives on the use of TLM for  

system-level diagnostics.   Section 2 considers how TLM 
can improve diagnostics for systems with complex 
interconnect.  Section 3 reviews TLM standardization 
efforts that extend into the field of system-level 
diagnostics.   In section 4, the use of TLM to support high 
quality silicon instrumentation is discussed and section 5 
presents the software architect’s view of TLM and its use 
in software test and diagnostics. 

2. Communication-centric debug by 
controlling transactions in-flight 

2.1 Transaction-based multi-core debug 
Systems on chip (SOC) contain many tens of IP cores, 
including hardware accelerators, programmable processors, 
and embedded memories. Hierarchical busses or networks 
on chip (NOC) implement deeply-pipelined concurrent 
communication between the cores. SOCs are hard to debug, 
because of the large number of concurrent processes. 
Second, the interactions are complex, due to deeply 
pipelined multi-threaded transactions, distributed shared 
memories, memory latencies with large variations between 
local and external memories, consistency and coherency for 
distributed cache protocols, etc. Finally, dynamic 
frequency scaling and multiple clock domains cause non-
deterministic behaviour. 

To debug a SOC it is infeasible to only use a software 
debugger for each processor, or use clock-cycle accurate 
system simulations. Therefore we propose to focus on the 
new communication complexity, i.e. the interactions 
between the cores. We also abstract multiple variable clock 
cycles to transactions of communication protocols such as 
AXI to provide a more intuitive common 
hardware/software debug interface that is more 
deterministic. Permission to make digital or hard copies of all or part of this work for 
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CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA. 
Copyright 2008 ACM 978-1-60558-470-6/08/10...$5.00. 

121



2.2 Hardware and Software Architecture 
Our transaction-level communication-centric debug design 
flow1 instruments a SOC with monitors to observe cores 
and/or their communication. Monitors (◇ in Figure 1) 
observe NOC transactions (flits) on the router links. They 
generate events on programmed happenings of interest, 
which the event-distribution interconnect (EDI) sends to 
transaction run/stop control blocks (RSCB). The ⊗  symbol 
indicates transaction-level RSCBs that control the flow of 
requests and responses between a master and all its slaves, 
or a slave and all its masters. The Ø symbols deal with 
single master-slave communications, for even finer control. 
An IEEE 1149.1 Test Access Port (TAP) and scan chains, 
already present on our SOCs, are used to program this 
infrastructure through test-point registers (TPR), and to 
read and modify functional data. 
Our debug software offers an API to read/write TPRs and 
functional state, but also at the level of logical connections 
between masters and slaves. This uses the XML description 
from which the RTL of the NOC is generated. For 
example, the functional state of some or all connections 
between one or more masters and slaves can be retrieved 
from the RSCBs and network interfaces (NI). It is then 
displayed at the transaction level (active transactions or 
not, which data element, state of the request/response 
FIFOs, etc.), rather than a series of scanned bits. For 
maximum flexibility in run/stop control, all RSCBs can be 
enabled, started, or stopped independently based on any set 
of active monitors or TAP control. Based on this and using 
patterns, a set of “connections under debug” is easily 
specified at run time, which can then be single and multi-
stepped independently. 
 

2.3 Conclusions 
Transaction-based debug will play a large role in 
debugging future SOCs where the complexity is in 
communication between IPs. Much research, both 
conceptual and practical, remains to bring this vision to 
life. This is joint research with B. Vermeulen, A. Nejad, 
and A. Hansson. 

3. ESL Driven Instrumentation for System 
Diagnostics 
Large amounts of effort and innovation in the last decade 
has been focused on verification and diagnostics at diverse 
levels of abstraction (ESL, RTL, gate level, emulation, in 
system/ on-chip instrumentation, and others). Less focus 
                                                                 
1 B. Vermeulen, et al. Debugging distributed-shared-memory 
communication at multiple granularities in Networks on Chip (NOCS), 
2008;  K. Goossens, et al. The Æthereal network on chip: Concepts, 
architectures, and implementations. Design and Test of Comp., 22(5), 
2005. 

has been applied to the related area of integration and reuse 
of the verification and diagnostics information and 
supporting tool integration as part of a capability for the 
overall system validation and debug process that evolves 
through a product design and life cycle. As a result, system 
validation and diagnostic activities at different stages in a 
design are often performed in a state of isolation from any 
prior related analysis activities. While there are some 
arguable merits in creating independent tests and 
diagnostics at each design stage, the value of being able to 
access validation and diagnostic data from prior stages in 
the design flow has many advantages, from reduction in 
time to create new tests and diagnostic scenarios, to 
improving consistency between design stages, to improved 
abilities in automatically and formally correlating and 
cross-validating analysis from multiple design abstractions 
and views. 
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Figure 1: Masters, slaves, NoC and debug infrastructure 

In the best of worlds, each stage of a design effort should 
be able to access, in a common format and description, 
analysis information and diagnostic results from prior 
stages in the design process. The reality of most design 
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flows falls far short of this goal. This is, in part, due to the 
historical legacy of a variety of different design 
descriptions being used at different stages in the analysis 
(ie. ESL (SystemC), RTL (Verilog), gate (EDIF), etc.) and 
modeling limitations of being able to resolve issues like 
timing resolution and model abstraction between different 
domains. Nevertheless, it can be argued that this “tower of 
babel” syndrome in being able to reuse all of the prior 
information available for a design is a contributor to the 
verification and validation shortfall crisis that faces many 
complex designs. 
As an example for brevity, consider two steps in the design 
flow, ESL and in On-Chip System Instrumentation. These 
provide an interesting comparison since they occur at the 
diametric ends of a system design - ESL focused on the 
initial concepts of the design, and On-Chip Instrumentation 
utilized at the final physical product stages where 
integration of (physical) hardware and software make up a 
system. They share common concerns (focus on the end to 
end operation and performance of a system) and scope 
(addressing both hardware and software integration and 
optimization) that are not typically addressed at other 
design stages (RTL as an example, while arguably the most 
comprehensive area of focus for design verification and 
validation activities, does not easily integrate software 
analysis and is often limited in analysis to partitioned sub-
systems of a design, than analysis of the total system). 
ESL modeling and system analysis, used at the conceptual 
front end of SoC design for initial functional and 
performance analysis, allows parallel hardware (although 
abstracted) and software analysis and verification and 
system parameter (bus, memory) optimization. ESL based 
design, as arguably the first stage where substantive 
analysis of a design is done, becomes a prime mover for 
improving access to validation and diagnostic information 
that can be reused in subsequent design stages. ESL 
provides additional potential to be extended to drive a 
range of subsequent analysis activities, as it is still in 
formative stages of development and standardization. 
Instrumentation and hardware-based analysis is used to 
facilitate system verification and performance analysis of 
physical (FPGA and/or ASIC) implementations. 
Instrumentation capabilities include varieties of system 
trace, triggering, and other monitoring and run control. 
While instrumentation is applied to a range of scenarios 
ranging from logic analysis to performance monitoring, 
modern ASSP devices focus most instrumentation 
resources on software related analysis (ex. processor 
breakpoints, run control and trace) and access, control, and 
monitoring of on-chip system (bus and memory) resources. 
So given this common set of analysis goals and needs 
between ESL and Instrumentation, are there common tools 
and flows to encourage consistency and reuse of validation 
and related diagnostics. With very limited exception, even 

tools (ex. GDB) and data formats (ex. VCD) that may be 
commonly used,  do not provide a useful infrastructure for 
end to end integrated system analysis. This is a promising 
area for research and commercial development that can 
make a significant impact of current design flows. 

4. Using Transactions for In-system Silicon 
Validation and Debug 
Since complete pre-silicon system-level verification is 
practically impossible, in-system silicon validation must 
tackle many aspects of the behavior of a new SoC, such as 
hardware-software integration, corner cases not reached in 
verification, operation under stress conditions, adaptive 
control of temperature, voltage, and power, and digital-
analog interactions. In-system silicon validation is done 
with severely limited observability and controllability of 
the internal activities in the chip, and has to deal with non-
deterministic system operation and lack of time-specific 
expected values. Because of these reasons, silicon 
validation and debug has become the most time-consuming 
and the most unpredictable phase of the development cycle 
of a new SoC.  
First we review a new silicon validation approach. Pre-
silicon, instrumentation tools guide the insertion of 
reconfigurable instruments into the RTL model of the SoC, 
and generate an instrumented RTL model that is processed 
by standard synthesis-based design flows. The 
instrumentation creates an infrastructure platform that is 
dynamically configured and operated post-silicon by post-
silicon tools. Dynamic in-system configuration enables 
continuous reuse of the instrumentation for a variety of 
applications including logic analysis, assertions in silicon, 
on-chip functional block test, performance monitoring, 
programmable fault and error injection, and hardware-
software co-debug.  
Then we present the use of transactions for in-system 
silicon validation and debug. Transactions have been used 
to raise the level of abstraction in analyzing the operation 
of an SoC for pre-silicon verification. The new approach 
brings the advantages of transactions to the silicon domain. 
We show how reconfigurable on-chip instruments are 
dynamically configured as different transaction engines 
that detect, record, and analyze transactions. Following the 
activity of the SoC as sequences of transactions is much 
more effective for validation and debug than analyzing bit-
level waveforms. Transaction engines can also generate on-
chip user-specified transactions to increase the 
controllability of the SoC.  
We also show the results obtained in validating and 
debugging five chips using the new silicon validation and 
debug technology. Subsections 
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5. TLM Diagnostics and Embedded Software 
Development 
A key problem in embedded systems is access patterns on 
external bus interfaces. The issues to be analyzed relate to 
both software testing after the system is implemented, and 
to performance in the architecture/partitioning phase. From 
a performance point of view questions to answer include 
“is there enough bandwidth available in my system to move 
the data I need to move? Back when we built board level 
systems, visibility of the hardware/software interface was 
easy. One connected a logic analyzer to the busses, and all 
was revealed. But today’s systems have hidden busses, and 
complex interactions between software and busses. Virtual 
platforms today run as fast as many of the embedded 
systems they simulate. TLM Diagnostics with these virtual 
platforms provide visibility to design and analyze today’s 
systems. 
Take for example a system that provides video over USB.  
Questions to answer include “Can a given processor be 
used to implement this system?” and “How much memory 
is required for this system?”. A designer may be looking at 
several hardware solutions including a custom SoC or a 
COTS device either with an on-chip USB interface or a 
less expense COTS device and external USB interface. One 
might try to do back of the envelop calculations to 
determine if the processor has enough “MIPS” and if the 
peripheral bus interface has enough bandwidth to transfer 
the chosen video format from the video source to the USB 
interface. In theory the bus bandwidth questions are easy to 
answer by considering the amount of data to transfer and 
the speed of the connection between the USB interface and 

the processor. But USB isn’t that simple. There is a great 
deal of control traffic between the USB Device interface 
driver above and beyond the data payload.  How does one 
estimate that? This is where TLM Diagnostics come in. 
Using a virtual platform one can run the exact driver and 
application code and get real bandwidth and CPU “MIPS” 
numbers. Using this information a low-risk hardware BOM 
can be derived. Without this virtual platform, you must 
either take large risks, provide large and costly margins in 
performance, or build several physical systems and analyze 
them.  
The same visibility that allows bandwidth analysis in the 
partitioning phase provides important visibility when 
testing software. Code coverage testing provides assurance 
that a given set of test cases actually tests, or covers, the 
functionality of the software under test. Many high 
reliability and high security systems require not just that 
every instruction is covered, so called “statement 
coverage”, but also that paths through conditionals have 
been covered. In the extreme every path through multiple 
conditionals is verified, but more restricted metrics like 
Modified Condition/Decision Coverage (MCDC) are more 
common. This type of coverage analysis requires either 
instrumenting the code, or access to the program counter 
sequence actually executed during the execution of the test. 
Instrumenting the code is intrusive, so it is highly desirable 
to observe the system externally. While many processors to 
provide trace ports, when hardware trace isn’t available, 
Virtual Platforms provide the necessary visibility. 
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