
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10...$5.00.

Holistic Design and Caching in Mobile Computing
Mwaffaq Otoom and JoAnn M. Paul

Electrical and Computer Engineering
Virginia Tech

Blacksburg, VA 24061
{motoom, jmpaul}@vt.edu

Abstract
We utilize application trends analysis, focused on webpage content,
in order to examine the design of mobile computers more
holistically. We find that both Internet bandwidth and processing
local to the computing device is being wasted by re-transmission of
formatting data. By taking this broader view, and separating
Macromedia Flash content into raw data and its packaging, we
show that performance can be increased by 84%, power
consumption can be decreased by 71%, and communications
bandwidth can be saved by an order of magnitude.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures – Mobile
processors

General Terms
Performance and Design.

Keywords
Webpages, Mobile Computing, Application-level Caching, Single
Chip Heterogeneous Multiprocressing.

1. Introduction
Two trends are dominating the computing landscape. First,
computing devices, overall, are becoming more mobile from both
the top down as well as the bottom up; laptops are shrinking in size
at the same time cell phones and other personal computing devices
are taking on the capability of more general kinds of computing.
Second, webpages are becoming the standard of information
exchange; many users of computers only or primarily need to know
how to access webpages.
At the same time, major design decisions continue to be done in
isolation, where architects focus on improving against benchmarks,
EDA professions seek to improve design time given the
requirements, and communications experts do not think in terms of
power and performance impacts on the local device [1].
While the computing industry has utilized trends analysis for many
years, the focus has been on technology. Application trends
analysis is not a common part of the computer design process. We
utilized trends analysis of the application space under the
assumption that it might lead to a more holistic way of looking at
how the applications, Internet communications and device design
intersect in the rapidly changing landscape of mobile computing.

Webpage content is becoming computationally more intensive even
as that same content is changing more rapidly. Even a few years
ago, real-time information exchange on the Internet was done via
very simple formatting. Currently, consumers demand that the
formatting is user-friendly, and this is happening in Macromedia
Flash files (which we will refer to simply as “Flash” in the rest of
the paper). Through our analysis, we observe that Flash formats
tend to encapsulate relatively simple data with complex formatting.
At the same time, the raw data changes much more rapidly than the
formatting of the data.
Our contribution is three-fold. First is the observation that a holistic
examination of mobile computing from the perspective of
computing application trends can lead to novel application-
architecture solutions. Second is our proposed altered Flash
structure, itself – introduced here, but which we also intend to
further develop. Third is the observation that the overall design of
mobile computers will likely be heavily impacted by webpage
content and as well as the way webpages are accessed.

2. Webpage Trends Analysis
In addition to overall web content, our investigation focuses on
www.mlb.com, a popular webpage that represents 0.023% of the
total daily Internet traffic in the world [2], chosen for three reasons.
First, sports is a leader in creating demand for real-time information
exchange in consumer electronics. Second, sports has an interesting
combination of news and entertainment, where information changes
rapidly, but packaging is important to the consumer. Finally, we
chose to focus on a single website because past observations led us
to believe that a few websites are harbingers of trends, and we
wished to avoid the inclusion of data that would mitigate this kind
of effect. Our particular focus on www.mlb.com was the Flash file
used for following a game in progress, which is available during
baseball season when there are games to follow. Internet Archive
[3] was used to obtain historical webpages. The data has course
granularity, but computing trends must be established over short
time periods.

Figure 1. Webpage Total Complexity

Figure 1 shows that total complexity of 2007 webpages is more than
5 times that of 2001 webpages. Our projection is likely conservative
– all of our estimates will tend to be conservative.

115

Multimedia content (still images and movies) are becoming more
dominant than text. In 2007, 76% of webpage content is multimedia
which represents 1.5 times the 2001 percentage. The trend of future
webpage content tends to be media oriented as in image or
movie/animation files, a trend which will continue as network
bandwidths increase allowing the transfer of large media files to
clients in a timely fashion. In 2007, 57% of the multimedia content
was Flash, but more importantly, that Flash can be expected to
dominate the non-text formatting of webpages ever further, as
demand for other kinds of non-textual information on webpages is
projected to flatten out by comparison. Image data extracted
directly from the outside world (pictures and movies) is slower to
generate than forms of raw data which can be computer generated
or manipulated.

Figure 2. Number of Blocks per Page

Figure 2 shows that the number of blocks (typically files of data) on
webpages is decreasing while Figure 3 shows that the number of
elements within a single Flash file is increasing. In other words,
webpage elements like text, links, images, etc. are becoming
increasingly encapsulated in Flash formats.

Figure 3. Number of Elements on Flash

Since we are interested in the way Flash will impact mobile
computing devices, we are also interested in the dynamic aspects of
Flash content, that is, how frequently Flash content is updated. We
will refer to the relative frequency of update of information content
as time bins, so that we may use the concept later.
Figure 4 shows three time bins, where elements are updated every
minute, day or year. It also shows that the time bins of these
elements are getting smaller. In other words, webpage contents are
becoming more dynamic. Webpages are delivering approximately
the same raw data complexity as in the past, but this raw data is
becoming encapsulated with packaging to include presentation
data which is far more computationally intensive than raw data and
far less frequently updated. (We will define these terms further in
the following sections where we examine them in the context of
Flash structure.) Raw data is projected to maintain the same level of
complexity while the presentation data grows exponentially over
time. This is reasonable; the raw data is used to convey information

content from a world that is changing at a much slower pace than a
computer’s ability to present it.

Figure 4. Time Bins

At the same time, the raw data being conveyed by a given Flash file
is becoming more frequently updated, which, given the current
Flash structure, forces more static presentation data to be
transmitted and processed far more than it needs to be. Figure 5
shows that 42% of the 2007 webpage is Flash, where only 17% of
the content of these Flash files is dynamic.

Figure 5. Flash Content Statistics

Overall our trends analysis shows that the increase in information
being transmitted across the Internet and processed by mobile
computing devices is largely due to formatting – and this trend will
likely increase. Since the processing of formatting information is
highly bandwidth and compute-intensive, the separation of the raw
data being conveyed from its formatting suggests that a caching
scheme might save processing time, power and bandwidth. In the
next section we examine this further.

3. Flash Structure
Macromedia Flash Player is distributed among over 99% of Web
browsers, exceeding that for other media players [4]. The
advantages of Flash over other existing animation formats (e.g.,
GIF) are interactivity, relative small size due to content
compression, and efficient rendering through vector graphics. A
typical Flash file contains heterogeneous media ingredients
(graphics, images, sounds, text, etc).
Figure 6 shows an example of a Flash object (on the left), a stock
ticker that shows stock prices both numerically and graphically.
These prices are changing every second causing the whole Flash
object to change. Our breakdown of the structure of the Flash file is
shown on the right, informed by the analysis of the previous
section. Our Flash content consists of: raw data (stock prices),
presentation data (graphics) and code to process the two (program).
We explain these in more detail later. Significantly, conventional
Flash processing does not have this structure.

116

Figure 6. Our Flash Animation File Structure

Conventionally, the client browser pulls the Flash file from the
server using the refresh command. The timestamp between pulls is
embedded into the HTML document in the header’s meta-
information that the server sends along with the HTTP response.
When time has elapsed the browser requests the webpage content
again. When the client requests the Flash file, the server pushes it to
the client after generating it. The server utilizes streaming for
transferring the Flash file to the client. This means that for the stock
market example, the browser will be busy pulling the entire Flash
file every second in order to keep the user updated, even though
only a small amount of actual content will have changed.
By breaking the Flash file down into constituent parts of: raw data,
presentation data, and code, we are able to address the increasingly
large disparity in time bins associated with how frequently those
parts of Flash actually change. Since presentation data and code
have approximately the same time bins, we will define the two of
them, together, as packaging. Thus, Flash content can be broken
down into raw data and its packaging.
An example of presentation data content is the format (font, color,
sound, animation, etc) and images used to portray raw data. This
data can be encapsulated in Cascading Style Sheets (CSS) or
JavaScript (JS) files. Both raw data and presentation data are
processed by the Flash program to generate the Flash object by the
code, which we consider a part of the packaging. The packaging
represents the majority of the Flash files and is far more static in
nature than the raw data – even as the raw data is becoming more
dynamic. This means that the coupling of the raw data and
packaging could be causing tremendous waste in communications
bandwidth, processing and power consumption. The Flash file of
Figure 6 has raw data size of 0.2KB, while the packaging is 10KB
(the presentation data size is 4KB and the program codes size is
6KB).
Figure 7(a) shows the current memory hierarchy and the
corresponding theoretical bandwidth [5]. Based on the observation
that the dynamic part of the Flash file is on average 10% of the total
file size, if a scheme can be introduced to reduce the amount of
information communicated on the Web by 90%, the effective
bandwidth of the Web is increased an order of magnitude. This is
shown in Figure 7(b). Previously, any caching of Flash content was
done on a computer’s disk because it posed no bottleneck to
performance. With a more sophisticated caching scheme, such as
the one we propose, the hard disk will become the bottleneck in the
memory hierarchy as shown in Figure 7(b). Since hard disks are not
found in all mobile devices yet, a caching scheme that eliminates

the need for storage to disk while effectively improving Internet
bandwidth has two-fold value. Also, since Web bandwidth is
improving faster than memory bandwidth [6], we expect that the
main memory will be the bottleneck in the next a few years as
shown in Figure 7(c). Our experiments, discussed later, will take
this into account.

Figure 7. Memory Hierarchy

4. Proposed Caching Scheme
The ultimate goal for mobile computing is to increase device
performance while saving communication bandwidth and power
consumption. Thus, it seems reasonable to investigate how a
caching scheme within Flash structure can address the increasing
use of mobile computing devices to process information conveyed
in Flash. The cost of caching schemes is in the increased
complexity of protocol and the cost of storage. We will investigate
these in the context of architecture design later in this paper. In this
section, we introduce our scheme.

Figure 8. Webpage Object Structure

Figure 8 shows sample webpage object structure format with the
suggested tag. In addition to the tag, a simple modification is also
required in the Flash protocol between client and server. In our
proposed model, the client generates the Flash file locally by
executing the code on both the raw data as well as the cached
presentation data. A request is made to the web server, the web
server then serves up or pushes Flash application code (HTML) up
to the client with the presentation data. The web server will also
embed pointers back to the web server that will allow the Flash
application program to acquire the raw data. Thus, two requests are
made to the web server. The first request is for the initial web page
that contains a Flash program and presentation data (INIT). The
program on the client then makes a second request to the server for
the raw data (UPDATE). Once the Flash program on the client side
receives the data it will then process the data and generate the Flash
file locally.
If we define P for packaging and R for raw data, more attributes are
motivated, which can be leveraged for more intelligent design. The
size of the Flash file, FS, can be defined by two parameters – the
packaging and raw data sizes at a given time. The update of the
Flash file, FU, can be defined by the change of the presentation and
raw data at a given time. These will be impacted by the nature of the
data, as well as the way the mobile computer is utilized, i.e. user
preferences [7]. The access frequency of the Flash file, FF, models

117

how many times the presentation and raw data are requested due to
the change of their content and/or user demand.

))(,)((

))(),((
))(),((

11
∑∑
==

ΔΔ
M

i
i

N

i
iF

U

S

tRtPF

tRtPF
tRtPF

Using our framework for analysis of application and usage trends,
much potential exists to exploit application knowledge in order to
impact design decisions of mobile devices, beyond the scope of this
paper. Here, we introduce a simple concept for Flash in order to
illustrate the need to consider mobile device applications in a more
holistic way, even to include the way they are used by individuals
and not simply a program or an application (or even sets of
programs or applications) at a time. The modification to Flash
structure is relatively simple. The real test is whether the cost of
storage of packaging in the mobile device will, in general, be a
design win. If so, additional usage factors can be considered, such
as those outlined in this section.

5. Background
Many surveys about web caching schemes exist [8,9,10]. Current
web caching schemes assume that most web access patterns are
HTML text and images [11,12,13], none of them have effectively
explored web multimedia caching techniques, especially Flash.
Conventional page-level caching cannot effectively address our
observations about Flash content, because they do not break up the
content of blocks – a small change in raw data will still lead to
renewed Web content generation and transmission [14].
A number of new caching strategies have been proposed. The
fragment-level caching strategy has been proven to be the most
practically effective. Conceptually, a fragment unit is a portion of a
page that is distinguishable from other parts of the page. This
method also does not work for our purposes because in Flash, the
fragments are not otherwise distinguished. Prefix Caching
[14,15,16] permits the cache proxy to store only the initial frames of
popular clips, depending on the received requests for those streams.
In addition to prefix caching, grouping the number of block media
streams received by the proxy server into variable sized segment,
distance-sensitive with initial segment cache, has been utilized. In
the Segment-Based scheme, the less popular media is partially
cached while the most popular media is fully cached. These
schemes are based on popularity [17], which does not correlate well
with the form of the rapidly changing data within Flash files.
Conventional caches are ineffective for stream-type data structure,
where prefetching may pollute the cache if the prediction is not
accurate. Thus, hardware prefetching techniques have been
proposed [18]. A simple prefetching mechanism to improve the
memory performance of multimedia applications has also been
proposed [19]. Each stops short of our proposal to remove
streaming from real-time Flash. Our proposal is more consistent
with the view that many MPEG implementations of video data are
“un-cacheable” [20]. Most data-dominated multimedia applications
do not use their cache efficiently [21], largely due to the streaming
nature of video, which our approach avoids.
While other efforts focus on the structure of the cache memory, we
propose a broader view that encompasses application patterns –
specifically multimedia structure and usage patterns.

6. Experiments
Our experiments are designed to investigate whether our proposed
technique for Flash reorganization has positive impact on

communications bandwidth, processing time, and power
consumption. Our experiments cull data from the Web for both
architectures and Flash applications. More detailed data for mobile
devices as well as future plans for webpage designs are proprietary.
However, this paper also has a broader objective – to illustrate how
system-level design concerns require designers to think holistically
and about application trends when they consider mobile device
design.
We designed our experimental system to execute a heterogeneous
application set, consisting of three application types with widely
varying computational requirements and characteristics. These
applications are JPEG, text and Flash which represent the current
webpage content types. We used the data we collected from
www.mlb.com as an input to the experiment system. The relative
performance for each task on each processor is taken from EEMBC
[22].
Our target implementation is a single-chip heterogeneous
multiprocessor with a fixed area budget. We divided the chip into
four regions, to be populated by four categories: Media Processors
(M), Digital Signal Processors (D), General Purpose Processors (G)
and Chip-Level Cache (C), intended to support the Flash content.
Sets A and B consider processor arrangements that fit on a chip
when there is no cache on chip. Set C considers processor
arrangements that fit on a chip with a 1024K cache set aside for
Flash content. These sets produce a total of 41 different
architectures, as described in Table 1. Architectures in the table are
differentiated by the numbers and types of processors they contain.
Future computing devices are expected to have hundreds of
heterogeneous processors [23].
Three different processors were chosen for our experiment because
of the diversity of the computational capabilities, power
consumption, and area requirements. Philips PNX1700 is the Media
(M), Blackfin533 is the DSP (D) and the AMD K6-2E+ is the GPP
(G). These processors are inadequate for use in a mobile device
such as a cell phone due to area and power requirements. However,
they are adequate to represent the key relative system-level design
trade-offs for fixed-area devices, since they are consistent with each
other. Lack of access to proprietary information makes a detailed
examination of processors used in mobile computing devices
impossible. The area and power consumption for these processors
were derived from information available from [24,25,26].
Our experiments are broken down into three parts. These three parts
correspond to the three parts of Figure 7, except that we do not
include a hard disk since we presume that many future mobile
computing devices will not have them. In part A, we consider
traditional Web caching only. An object with a time bin tag equal to
or is greater than one day is saved in the main memory. Based on
the data which was gathered from www.mlb.com, 345KB of the
entire webpage content (all of the content on the Website, not just
Flash) can be cached for one day, main memory size is sufficient to
host hundreds of times this amount. Currently, Apple iPhone has
128MB of main memory [27]. This produced 25 different
architectures as shown in Set A and B of Table 1.
In part B, we combine the Web caching with our suggested Flash
file structure where a Flash file is broken into raw data and
presentation data. The caching is again done in the main memory.
Based on the collected data from www.mlb.com, 640KB is the data
which can be cached in main memory for one day. In this part we
are able to cache the packaging content of the Flash file. The same
architecture set is produced as in part A since the caching is done in
main memory.

118

Table 1. Processing Elements for Sets A, B and C

Finally, in part C, we again combine the Web caching with our
suggested Flash file structure. In this part, the caching is done on
chip. We anticipate that if caching can effectively be done on the
chip, we may be able to find additional power savings. This results
in 16 additional architectures to consider as shown in Set C of Table
1. The 1024K cache was chosen to fit the contents collected from
www.mlb.com home page, where each Flash file can represent a
different game in progress. The data which can be cached for one
day is 640KB – the same data as in Part B.
eCacti [28] was used to determine the cache area and cache power
consumption based on the selected cache size, block size and
technology. We assumed a 0.13µ manufacturing technology. Also,
we assumed that the power consumption when a processor is in an
idle state is 20% of its active power consumption [29]. Furthermore,
we assumed a perfect memory system, i.e., caches always have the
requested data. This is reasonable, since we are interested in the
many applications which persist in the system for hours or even
days, constantly updating information in real time. While we do not
consider the initial cost of loading the packaging data for the Flash,
it would only be significant if the entire working set of Flash
content did not fit into the device’s cache.
For simulation, we used a C-based simulation tool called MESH
(Modeling Environment for Software and Hardware), which
permits performance and power evaluation when threads execute on
sets of heterogeneous resources under a variety of custom
schedulers [30]. Energy consumption is calculated as the
summation of the power consumed during ON and IDLE times
[30]. We added energy consumed by cache or main memory, thus,

() ()∑ ∑
= =

++=
N

i

M

i
iiiii CAIPWPEIDLEPEAPWPEONPEE

0 0
_*__*_

Where, N is the number of processors in a specific architecture. M
is the number of cache or main memory accesses. PEi_ON is the
total time where PEi is in ON state, PEi_IDLE is the total time

where PEi is in idle state, PEi_APW is the active power for PEi
processor, PEi_IPW is the idle power for PEi processor and CAi is
the power consumed by the cache or main memory when cache
read happened.
Our scheduling strategy is the best available resource scheduler –
each task is scheduled on the best available resource by order of
appearance in the queue. Scheduling overhead is not included in the
model. Our prior work has shown that scheduling overhead for
single chip heterogeneous multiprocessors is insignificant without
inter-job data dependences [30]. In Figures 9 - 11, the best
performer is normalized at 1; thus lower numbers are always poorer
performers. Table 1 architectures are on the independent axes with
Sets and Experiments grouped as A, B, and C.

Figure 9. Loading Time

Figure 9 shows the normalized webpage loading time. Normalized
speed is the reciprocal of dividing the architecture speed by the
lowest speed among all architectures. Parts B and C, which are our
proposed approach for caching Flash content, shows a significant
improvement over that of part A. It also shows the effects of
picking an optimal architecture even within the optimized Flash
caching structure.
Figure 10 shows the normalized energy consumption over all
architectures. Normalized energy consumption is the reciprocal of
dividing the architecture consumed energy by the lowest consumed
energy among all architectures. The decrease in energy
consumption is significant when using our approach and, again,
there is an interesting variation – and the potential for future work –
for architectural optimization within our new framework. Part C –
caching the data including the Flash file breakdown in on chip
cache – results in significant improvement in energy consumption.
This is in part due to the use of fewer processors. But it also points
in the direction of the possibility that more aggressive caching
schemes could result in further performance improvements.

Figure 10. Energy Consumption

119

Our scheme used a relatively simple separation of raw data and
packing – more sophisticated vector schemes could ultimately
reduce network bandwidth even further, posing the possibility that
main memory may actually become the performance bottleneck in
the future.
Figure 11 shows the normalized value of speed and energy
consumption or)(NENSNNV += , where, NV is the
Normalized Value resulting from the two values; NS which is the
Normalized Speed and NE which is the Normalized Energy. This
graph shows an even more significant advantage for our approach –
especially Part C – as well as interesting variation between
architectures that utilize our system-level caching scheme.

Figure 11. Loading Time and Energy Consumption

While we focused on www.mlb.com for the reasons previously
described, these results are more broadly applicable. We found
similar results for the stock ticker example of Figure 6. There, the
raw data is 0.2KB and is changing every minute or even every
second. The presentation data is 4KB and is changes every week or
more. The code is 6KB and is rarely changes.

7. Conclusions
We illustrated a simple caching scheme, which resulted in a
performance increase of 84%, a decrease in power consumption by
71%, and an order of magnitude savings in communications
bandwidth for mobile computing devices that process webpages.
We did this by observing and then leveraging the trends in the time
granularity and content of “raw data” from “packaging” in
Macromedia Flash files.
More significantly, we illustrated that mobile computing devices
must be designed using more holistic techniques than in the past.
An analysis of how applications interact with Internet bandwidth
and the processing and storage capabilities of mobile devices is a
start. We utilized an examination of application trends so that we
would be able to find an application hot-spot, thereby bringing
together several major facets of mobile computer design. In so
doing, our hope is to open up a new dialogue in computer design
methodology, less narrowly focused on isolated, and often
incremental, performance improvements, instead taking a broader
view in pursuit of new ideas for the next frontier in computing.

8. Acknowledgements
This work was supported in part by the National Science
Foundation (grant 0607934). Opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the NSF.

9. References
[1] J.M. Paul, D.E. Thomas, A. Bobrek. “Scenario-Oriented Design for

Single-Chip Heterogeneous Multiprocessors.” IEEE Trans. VLSI, pp.
868-880. Aug. 2006.

[2] Alexa – the web information company, http://www.alexa.com
[3] Internet Archive, http://www.archive.org
[4] http://www.adobe.com/products/player_census/flashplayer/
[5] www.phy.duke.edu/~rgb/Beowulf/beowulf_book/beowulf_book/
[6] D. Patterson. “Latency lags bandwidth,” ICCD, pp. 3, 2005.
[7] M. Somers, J.M. Paul. “Webpage-Based Benchmarks for Mobile

Device Design,” ASPDAC, pp. 795-800, 2008.
[8] J. Wang. “A survey of web caching schemes for the Internet,” ACM

Computer Communications Review, 29(5), pp. 36 - 46, 1999.
[9] B. D. Davison. “A Survey of Proxy Cache Evaluation Techniques,”

4th International Web Caching Workshop, pp. 67-77, 1999.
[10] P. Stefan and B. Laszlo. “A Survey of Web Cache Replacement

Strategies,” ACM Computing Surveys, 35(4), pp. 374 - 398, 2003.
[11] A. Mahanti, C. Williamson, D. Eager. “Traffic analysis of a Web

proxy caching hierarchy,” IEEE Network, 14(3), pp. 16-23, 2000.
[12] C. Cunha, A. Bestavros, M. Crovella. “Characteristics of WWW

Client-based Traces,”TR-95-010, Boston University, CS, 1995.
[13] M. Arlitt, C. Willliamson. “Web Server Workload Characterization:

The Search for Invariants,” ACM Sigmetrics Conf. on Measurement
and Modeling of Computer Systems, pp. 126-137, 1996.

[14] S. Sen, J. Rexford, D. Towsley. “Proxy prefix caching for multimedia
streams,” IEEE INFOCOM, pp. 1310-1319, Mar 1999.

[15] S. Gruber, J. Rexford, A. Basso. “Protocol Considerations for a
Prefix-Caching Proxy for Multimedia Streams,” Computer Networks,
33(1-6), pp. 657-668, 2000.

[16] K. Wu, P. S. Yu, J. Wolf. “Segment-based proxy caching of
multimedia streams,” Intl. conf. on WWW, pp. 36-44, 2001.

[17] S. Jin, A. Bestavros, "Popularity-aware Greedy Dual-Size Web proxy
caching algorithms," IEEE ICDCS, pp. 254-261, 2000.

[18] J. Lee, C. Park, S. Ha. “Memory access pattern analysis and stream
cache design for multimedia applications,” ASP-DAC, 2003.

[19] H. Sbeyti, S. Niar, L. Eeckhout. “Adaptive prefetching for multimedia
applications in embedded systems,” DATE, 2004.

[20] C. Kulkarni, C. Ghez, M. Miranda, F. Catthoor, H. De Man. “Cache
conscious data layout organization for embedded multimedia
applications,” DATE, pp. 686 – 691, 2001.

[21] H. Van Antwerpen, N. Dutt, R. Gupta, S. Mohapatra, C. Pereira, N.
Venkatasubramanian, R. von Vignau. “Energy-aware system design
for wireless multimedia,” DATE, pp. 1124-1129, 2004.

[22] www.eembc.org
[23] http://www.eetimes.com/showArticle.jhtml;?articleID=206105179
[24] www.analog.com/en/epProd/0,,ADSP-BF533,00.html
[25] PNX17xx Series, www.nxp.com/pip/PNX17XX_SER_N_1.html
[26] AMD-K6 Series, www.amd.com/epd/processors/6.32bitproc
[27] http://www.semiconductor.com/resources/reports_database/

view_device.asp?sinumber=18016
[28] M. Mamidipaka, N. Dutt, “eCacti: An Enhanced Power Estimation

Model for On-chip Caches,” Technical Report #04-28, UCI, 2004.
[29] P. Babighian, L. Benini, E. Macii. “Sizing and characterization of

leakage-control cells for layout-aware distributed power-gating,”
DATE, vol. 1, pp. 720-721, 2004.

[30] B.H. Meyer, J.J Pieper, J.M. Paul, J.E. Nelson, S.M Pieper, A.G.
Rowe. “Power-performance simulation and design strategies for
single-chip heterogeneous multiprocessors,” IEEE Trans. Computers,
Vol. 54, No. 6, pp. 684- 697, 2005.

120

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

