
Profiling of Lossless-Compression Algorithms for a Novel
Biomedical-Implant Architecture

Christos Strydis
christos@ce.et.tudelft.nl

Georgi N. Gaydadjiev
georgi@ce.et.tudelft.nl

Computer Engineering Laboratory, Electrical Engineering Dept.
Delft University of Technology
Postbus 5031, 2600 GA, Delft

The Netherlands

ABSTRACT

In view of a booming market for microelectronic implants,
our ongoing research work is focusing on the specification
and design of a novel biomedical microprocessor core target-
ing a large subset of existing and future biomedical applica-
tions. Towards this end, we have taken steps in identifying
various tasks commonly required by such applications and
profiling their behavior and requirements. A prominent fam-
ily of such tasks is lossless data compression. In this work
we profile a large collection of compression algorithms on
suitably selected biomedical workloads. Compression ratio,
average and peak power consumption, total energy budget,
compression rate and program-code size metrics have been
evaluated. Findings indicate the best-performing algorithms
across most metrics to be mlzo (scores high in 5 out of 6
imposed metrics) and fin (present in 4 out of 6 metrics).
Further mlzo profiling reveals the dominance of i) address-
generation, load, branch and compare instructions, and ii)
interdependent logical-logical and logical-compare instruc-
tions combinations.

Categories and Subject Descriptors

I.6.6 [Simulation and modeling]: [Simulation Output
Analysis]; C.3 [Computer Systems Organization]: Special-
purpose and application-based systems—Real-time and em-
bedded systems; E.4 [Data]: Coding and Information The-
ory—Data compaction and compression

General Terms

Performance, Measurement

Keywords

Implantable devices, ultra-low power, lossless compression,
microarchitectural profiling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

1. INTRODUCTION
Biomedical microelectronic implants have been around for

more than 50 years. Their most popular instance, the im-
plantable pacemaker, apart from saving lives, has acted as
a catalyst on the general public closed-mindedness against
biomedical implants. To illustrate, in the U.S. alone, a to-
tal number of 180,000 implantable pacemakers have been
registered for the year 2005 (source: American Heart Asso-
ciation [5]). Nowadays, biomedical implants are being de-
signed for a large, and constantly increasing, range of ap-
plications. Two prominent reasons for this boom are the
rapid increase in healthcare costs and the population aging
in advanced countries. A future where people are moving
around performing their everyday tasks while tiny implants
are monitoring or assisting their body may not be so far.
Implants are expected to monitor and log biological data
in-vivo and, depending on the application, to act on those
readouts by regulating some physiological quantity in the
body e.g. to release insulin to the blood stream when high
blood-glucose levels are detected. In this context, an as-
pect of implants which has been largely overlooked so far
is compression of sensed biological data. Given their highly
resource-constrained nature (e.g. memory size), data com-
pression is considered a crucial area of focus.

Our long-term work focuses on designing a novel, mini-
malistic, low-power processor suitable for a large subset of
biomedical applications. Currently, various tasks related to
implant functionality are being profiled. A study of encryp-
tion algorithms has already been performed [17]. In this
paper, we profile various popular lossless-compression algo-
rithms against suitable metrics. We, then, select the ones
with the best characteristics for the targeted application do-
main and investigate their respective instruction frequencies
and mixes. We, thus, offer insights on the design and imple-
mentation of the targeted processor. Concisely, the contri-
butions of this work are:

• To identify compression algorithms achieving the high-
est compression ratios and rates on suitably selected
biomedical workloads;

• To identify algorithms with the lowest average and
peak power consumption when compressing biomed-
ical workloads;

• To identify instruction mixes and frequencies of the
best scoring algorithms for guiding microarchitectural

109

source name size (Bytes) samples (#) duration (sec) sample rate (Sml/sec) sample rate (KB/sec)
Electromyogram II (EMGII) 1147/9605 144/1201 0,288/2,402 500/500 3,89/3,91

Electroencephalogram (EEGI) 984/9616 123/1202 0,615/6,010 200/200 1,56/1,56
Electrocardiogram (ECGI) 912/9615 114/1202 0,114/1,202 1000/1000 7,81/7,81
Respiratory Cycle I (RCI) 1192/9520 149/1191 1,490/11,910 100/100 0,78/0,78

Pulmonary Function I (PFI) 1184/9240 148/1155 1,480/11,550 100/100 0,78/0,78
Skin Temperature (AEP) 1120/9736 140/1217 0,700/6,085 200/200 1,56/1,56

Blood Pressure (BP) 1128/9545 141/1198 0,282/2,396 500/500 3,91/3,89

Table 1: 1-KB and 10-KB biomedical workloads. Double-precision (8-Byte) data samples are used.

and architectural optimizations in the envisioned im-
plant processor.

The rest of the paper is organized as follows: section 2
gives an overview of related works in the field. Section 3
outlines the framework onto which this profiling study has
been built. Section 4 provides the details of our selected
compression algorithms as well as the profiling testbed used.
Section 5 contains, in detail, the findings of this work. Over-
all conclusions and future work are drawn in section 6.

2. RELATED WORK
Barr and Asanovic [1] have worked extensively towards

the power trade-off between compression and Tx/Rx power
of data on a testbed functionally similar to the popular Com-
paq iPAQ handheld. Their analysis reveals that with sev-
eral typical compression algorithms, there actually is a net
increase in energy. They propose the use of asymmetric com-
pression, that is, use of a low-energy compression algorithm
on the transmit side and a different algorithm for the receive
side to cope with the problem.

In the area of wireless sensor networks (WSNs), Maniezzo
et al. [11] work on surveillance sensor networks and seek to
define an online energy trade-off mechanism between com-
pressing image data in a sensor or forwarding (i.e. transmit-
ting) them to the next sensor closer to the base station. Fer-
rigno et al. [6] attempt to balance between local and central
data processing in an effort to minimize sensor energy con-
sumption. They investigate various lossy image-compression
algorithms and make an educated selection based on its per-
formance and energy needs. Kimura and Latifi [10] perform
a survey on data compression for WSNs and profile four
compression algorithms specifically designed for WSNs.

The work presented here is original in that it targets
a different class of low-power devices with particular id-
iosyncrasies. To the best of our knowledge, no similar ef-
fort has been reported so far in explicitly provisioning an
implant processor with data compression. We have inves-
tigated other fields of highly resource-constrained systems
such as WSNs, however implants present distinct traits. To
exemplify, the energy efficiency of data decompression is not
our priority in this work since the largest fraction of wire-
lessly transmitted data in implants is outbound traffic, i.e.
telemetry of biomedical data to an ex-vivo monitoring sys-
tem. Further issues applying to WSNs such as total energy
cost for data hopping through a network of nodes do not
apply in our case, too.

3. IMPLANT CHARACTERISTICS
This work primarily focuses on profiling a number of data

compression algorithms for biomedical, microelectronic im-
plants. The special nature of such devices has set the fol-
lowing parameters to our profiling experiment.

feature value
ISA 32-bit ARMv5TE-compatible
Pipel. depth / Datap. width 7/8-stage, super-pipelined / 32-bit
RF size 16 registers
Issue policy/Instr.window in-order/single-instruction
I/D-Cache, L1 (separ) 32B 1-entry, 1-cc hit/170-cc miss lat.
BTB/TLB 2-entry direct-mapped/1-entry
Branch Predictor 2-bit Bimodal
Write/Fill Buffer (separ) 2-entry/2-entry
Mem. bus width 1 Byte
INT/FP ALUs 1/1
Clock freq. 2 MHz
Implem. tech. 0.18 µm @ 1.5 Volt

Table 2: XTREM (modified) architecture details.

A large class of biomedical implants performs periodic,
in-vivo measurements of physiological data through biosen-
sors. The collected data need either to be stored inside the
implant for later telemetry to an external monitoring de-
vice, e.g. a treating physician’s office computer, or to be
periodically transmitted to an external data-logging system
such as a PDA, laptop computer etc.. This pattern of be-
havior indicates that outbound biological-data traffic almost
always dominates inbound traffic. In effect, the most im-
portant aspect of the pair data compression-decompression
is the former, thus this work deals only with compression.
Further, the sensitive nature of biomedical signals dictates
that, in the general case, no information can be afforded to
be lost or altered during data acquisition, compression and
transmission. We are, therefore, inclined to consider solely
lossless compression to ensure information integrity.

Typical biomedical readouts are often highly periodic sig-
nals (e.g. heart beat) or stable signals (e.g. blood tempera-
ture) which can, under specific circumstances, display grad-
ual or abrupt changes in value (e.g. a sudden muscle con-
tortion). We have collected and used various representative
workloads capturing both stable as well as rapidly chang-
ing patterns. The original data has been provided from the
BIOPAC (R) Student Lab PRO v3.7 Software. Paper-size
limitations do not allow for an extensive description of the
various workloads; a concise overview of workload details is
provided in Table 1. Reported literature and an extensive
study [16] on implants have further revealed that typical
data-memory sizes inside the implants range from 1 KB
to 10 KB. Therefore, workloads of both sizes (1 KB and
10 KB) have been profiled.

4. EXPERIMENTAL SETUP
Profiling has been based on XTREM [3], a modified ver-

sion of SimpleScalar. The XTREM simulator is a cycle-
accurate, microarchitectural, power- and performance- func-
tional simulator for the Intel XScale core [8]. It models the
effective switching node capacitance of various functional
units inside the core, following a similar modeling method-
ology to the one found in Wattch [2]. XTREM has been
selected for its straight-forward functionality but mostly for
its high performance- and power-modeling precision. It ex-

110

compression algorithm benchmark name details
Static-Huffman Coding [13] huff Huffman coding with static symbol table
Adaptive-Huffman Coding [13] ahuff Huffman coding with adaptive symbol table
Arithmetic Coding, Order-0 [13] arith Simple arithmetic coding
Arithmetic Coding, Order-1 [13] arith1 Order-1 arithmetic coding
Arithmetic Coding, Order-1e [13] arith1e Order-1 arithmetic coding with escape characters
LZSS (12-bit sliding window) [13] lzss Storer & Szymanski’s slightly modified LZ77 version
LZW (fixed 12-bit) [13] lzw12 LZW with fixed 12-bit symbols
LZW (variable up to 15-bit) [13] lzw15v LZW with variable-size symbols, up to 15 bits
Run-Length Encoding [7] bclrle Simple run-length encoding
Shannon-Fano [7] bclsf -
Finish [12, 4] fin LZ77-variant with 2-character memory window
Splay-Tree Compression [4, 9] splay Similar to Huffman encoding, locally adaptive
LZSS w/ Adaptive-Huff. Coding [4] lzhuf oku LZSS with binary-tree symbol table
LZSS w/ Adaptive-Arith. Coding [4] lzari oku -
Urban [12] urban High-order arithmetic coder working at the bit level
MiniLZO [14] mlzo Light-weight subset of the LZO library (LZ77-variant)
S-LZW [15] slzw Memory-constrained modification of LZW for Sensor-nodes

Table 3: Benchmark suite of lossless compression algorithms.

hibits an average performance error of only 6.5% and an
average power error of only 4%.

Many of the XScale architectural features have been inte-
grated into XTREM. XTREM allows monitoring of 14 differ-
ent functional units of the Intel XScale core: Instruction De-
coder (DEC), Branch-Target Buffer (BTB), Fill Buffer (FB),
Write Buffer (WB), Pend Buffer (PB), Register File (REG),
Instruction Cache (I$), Data Cache (D$), Arithmetic-Logic
Unit (ALU), Shift Unit (SHF), Multiplier Accumulator (MAC),
Internal Memory Bus (MEM), Memory Manager (MM) and
Clock (CLK). To better much our application field, many of
XTREM’s architectural parameters have been cut down or
disabled to better reflect the highly constrained implantable
processors. The modified XTREM characteristics are sum-
marized in Table 2. Performance/power figures have been
checked and scale properly with the changes.

When putting together our benchmark suite of compres-
sion algorithms, we have made an effort to include sources
adhering to the following principles: i) large range of lossless
data compression techniques and styles, from high-performing
to compact flavors; ii) mature implementation code base; iii)
various algorithm complexities; iv) suitability: the XTREM
simulator can only handle C and Java sources. Further-
more, in its current version it does not support an OS on
top of the simulated hardware, thus prohibiting the use of
compression sources - such as the excellent bzip2 algorithm
- that require high-level, OS features; and v) availability:
all collected benchmarks comprise utterly free, published or
free under the GNU General Public License sources, readily
available to the research community.

The implementation of a given compression algorithm plays
as crucial a role for the performance and behavior of the
algorithm as its underlying structure. While adhering to
the above principles, in order to offer the best possible fair-
ness in our selection process, we have attempted to include
algorithms built with the same implementation philosophy
(e.g. algorithm suite implemented by the same author(s))
and/or algorithms being top representatives in their cate-
gory. Paper-size limitations do not allow for an extensive
discussion; Table 3 summarizes the selected algorithms.

5. PROFILING ANALYSIS
In this section, we present the findings of our profiling

study. Due to the limited paper space, we report cumulative
figures based on the averaged results across all profiled work-
loads. That is to say, we do not favor any of the workloads

presented in Table 1. Further, all reported average values in
fact are median values unless stated otherwise, since we can-
not guarantee normal data distribution in the general case.
Last, results have been grouped in two main categories of
1-KB and 10-KB data so as to capture also the variation in
behavior when increasing the input size.

The first metric to discuss is compression ratio and
findings are illustrated in Fig. 1. For the case of 1-KB data,
our compression algorithms perform worse (−0.08% on av-
erage) that for the 10-KB data (10.14% on average). For the
1-KB case we actually see an expansion of data, on average.
Given that workloads in this case are 10 times smaller, an
overall approx. 100% poorer compression is performed. To
put it simply, attempting to compress 10 consequent 1-KB
readouts results in a compressed output double the size of
a compressed, single, contiguous 10-KB readout. Clearly,
compression of larger files is favored. This claim has to be
backed also with energy-expenditure results in order to make
it attractive for ultra-low-power (ULP) systems such as im-
plants are. We will address this topic later.

The difference in compression ratios for different workload
sizes is justified by the fact that for small inputs, many com-
pression algorithms do not simply have sufficient context to
become efficient; symbol tables may not have the time to be
filled thus impacting compression efficiency. In short, it is a
”cold start”problem. Overall, the most compression-efficient
algorithms, as the figures indicate, are lzari oku, lzhuf oku
and mlzo. urban and arith1 are contesting with lzss and fin
for the 4th and 5th positions, respectively.

Another interesting attribute of the compression algorithms
is how fast they are able to pack data, i.e. their com-
pression rate. In Fig. 2 average compression rates in
KB/sec are reported. Overall, the average compression rate
for 1-KB data is 0.051 KB/sec while for 10-KB data it is
0.095 KB/sec, or about double the speed. The reason for
this difference is anticipated to be the fact that with 1-KB
data, compression algorithms do not have the time to create
and traverse excessively large data structures such as the
symbol table. For instance, with a typical size of 256 Bytes
which is comparable to the input data size of 1 KB, the
symbol table does not have the time to fill and become ef-
ficient. Of course, this has adverse effects on compression.
Best-scoring algorithms for this metric are bclrle, slzw, fin,
mlzo and lzw12. bclrle achieves by far the most impressive
results due its simplistic design but does so at the cost of
poor or no compression.

111

-25

-15

-5

5

15

25

35

lz
a

ri
_

o
k

u

lz
h

u
f_

o
k
u

m
lz

o

u
rb

a
n

a
ri

th
1

a
ri

th
1
e

lz
s

s

fi
n

s
lz

w

b
c

lr
le

lz
w

1
5

v

s
p

la
y

a
h

u
ff

a
ri

th

h
u

ff

b
c
ls

f

lz
w

1
2

a
v

g

lz
a

ri
_

o
k

u

lz
h

u
f_

o
k
u

m
lz

o

lz
s

s

fi
n

a
ri

th
1
e

u
rb

a
n

a
ri

th
1

lz
w

1
5

v

a
ri

th

h
u

ff

a
h

u
ff

lz
w

1
2

b
c
ls

f

s
lz

w

b
c

lr
le

s
p

la
y

a
v

g

1 KB 10 KB

(%)

Figure 1: Averaged compression ratios for 1-KB and 10-KB datasets.

0

0,2

0,4

0,6

0,8

1

b
c

lr
le

s
lz

w fi
n

m
lz

o

lz
w

1
2

s
p

la
y

lz
w

1
5

v

lz
s

s

a
h

u
ff

h
u

ff

lz
h

u
f_

o
k
u

b
c
ls

f

lz
a

ri
_

o
k

u

a
ri

th

a
ri

th
1
e

a
ri

th
1

u
rb

a
n

a
v

g

b
c

lr
le

s
lz

w

m
lz

o

fi
n

lz
w

1
2

b
c
ls

f

lz
w

1
5

v

h
u

ff

s
p

la
y

a
h

u
ff

lz
h

u
f_

o
k
u

lz
s

s

lz
a

ri
_

o
k

u

a
ri

th

a
ri

th
1
e

a
ri

th
1

u
rb

a
n

a
v

g

1 KB 10 KB

(KB/sec)

Figure 2: Averaged, average compression rates for 1-KB and 10-KB datasets.

Average power consumption is an important metric
of an algorithm’s performance. It reveals the average rate at
which the executed algorithm draws energy from the system.
An implant battery may have sufficient charge to support a
whole compression operation, however, it might not be able
to sustain the energy rate needed by the compression algo-
rithm. Another interesting metric in this context is peak
power consumption. A battery able to support a com-
pression algorithm with a given average power consumption
may be unable to deliver the required output at a given
point in time if the algorithm sporadically presents peak
power values which are largely deviating from its average
power needs. To address both aspects of the profiled algo-
rithms, we have plotted Fig. 3. The algorithms are ordered
in order of increasing average-power profiles. Bars indicate
average (overall and per-processor-component) power while
black dots indicate peak power.

We can readily see that the memory-manager unit (MM)
is the power-hungriest component with a rough 94% frac-
tion of overall power consumed throughout both workload
groups. The MM unit is activated each time the core is
stalled because of a main-memory instruction or data fetch.
A high power consumption in the MM is expected for resource-
constrained devices with small or totally absent I/D-caches
as the ones we consider here. Next follows the clock struc-
ture (CLK) consuming about 5% of the overall power.

From the figure we can further observe that average power
consumption increases marginally with workload size. In
effect, the algorithms’ power needs are unaffected by the
workload size they operate on. We can also see that most
algorithms converge to a consumption threshold of roughly
95 mW . We have performed some further tests whereby
some of the processor’s characteristics have been enhanced,
e.g. cache sizes have been increased. In that case, a large
variation among the power profiles of the various algorithms
has resulted. This indicates that the constrained version
of the processor we currently use essentially ”chokes” the

performance of many algorithms forcing them to slow their
execution down and, thus, demand less power from the un-
derlying machine. This is a crucial observation since it ex-
cludes from selection those algorithms whose performance
enhancements will not bring any benefit to a highly resource-
constrained, implant processor. Outright best performing
algorithms in terms of average power consumption are mlzo,
arith, arith1e, arith1 and urban. When peak power con-
sumption is considered, the ranking changes with lzw15v,
lzss, fin, mlzo and slzw scoring best, indicating large devia-
tions between average and peak power figures.

An interesting point to make here is that implantable sys-
tems would greatly benefit from power-aware compression
techniques. In effect, compression algorithms that dynami-
cally adapt their actual compression speed and/or ratio de-
pending on the amount of energy they spend in a given time
interval. When this amount surpasses a preset (or dynam-
ically set) threshold value, they lower their performance to
make it back to the threshold. Of course, this presumes a
way for the algorithm (thus, software) of tapping into pro-
cessor (thus, hardware) power figures at run-time. None of
the profiled algorithms in this study has such capabilities,
yet it would be a crucial adaptation for future ULP systems.

Knowing the overall energy budget needed for com-
pleting a single compression task is important for battery-
operated implants. It directly tells us how much stored en-
ergy the given task needs in order to execute and, in effect,
what stored-energy amount will be deduced from the bat-
tery. It also tells us if the compression computation is worth
the effort compared to simply transmitting the data uncom-
pressed over the air. Accordingly, in Fig. 4 averaged, overall
energy expenditures for both workload sizes have been plot-
ted. urban and arith1 display very large energy costs and
have, thus, been omitted from the plots to give better reso-
lution for the rest of the algorithms.

From Fig. 4, we can readily observe that the energy bud-
get does not scale linearly with workload size. The cost

112

0

20

40

60

80

100

120

m
lz

o

a
ri

th

a
ri

th
1
e

a
ri

th
1

u
rb

a
n

lz
w

1
2

b
c
ls

f

a
h

u
ff

lz
a

ri
_

o
k

u

lz
h

u
f_

o
k
u

lz
w

1
5

v

lz
s

s

s
lz

w

h
u

ff

fi
n

b
c

lr
le

s
p

la
y

a
v

g

m
lz

o

a
ri

th

a
ri

th
1
e

a
ri

th
1

u
rb

a
n

lz
w

1
5

v

lz
w

1
2

a
h

u
ff

b
c
ls

f

s
lz

w

h
u

ff

lz
s

s

lz
a

ri
_

o
k

u

lz
h

u
f_

o
k
u

fi
n

b
c

lr
le

s
p

la
y

a
v

g

MM

CLK

OTHER

peak power

1 KB 10 KB

(mW)

Figure 3: Averaged, average and peak power consumption for 1-KB and 10-KB datasets.

0

5

10

15

20

25

30

35

m
lz

o

b
c

lr
le

s
lz

w fi
n

lz
w

1
2

s
p

la
y

lz
w

1
5

v

lz
s

s

a
ri

th

a
h

u
ff

h
u

ff

lz
h

u
f_

o
k
u

b
c
ls

f

lz
a

ri
_

o
k

u

a
ri

th
1
e

a
v

g

m
lz

o

b
c

lr
le

s
lz

w fi
n

lz
w

1
2

b
c
ls

f

lz
w

1
5

v

h
u

ff

s
p

la
y

a
h

u
ff

lz
h

u
f_

o
k
u

lz
s

s

a
ri

th

lz
a

ri
_

o
k

u

a
ri

th
1
e

a
v

g

MM

CLK

OTHER

1 KB 10 KB

(Joule)

Figure 4: Averaged, total energy expenditure for 1-KB and 10-KB datasets.

of compressing one 10-KB workload (9.541 J) as opposed to
that of successively compressing 10 1-KB workloads (1.684 J
for one) is about 55% smaller. This agrees also with our
compression-ratio results; that is, rarer compression of larger
input data is energy- and compression-wise preferable to fre-
quent compression of smaller input data. Agreeing with
the previous discussion on power, we can further see that
the MM and CLK components indeed are the overall most
energy-consuming parts of the processor. The best perform-
ing algorithms in this case are mlzo, bclrle, slzw, fin and
lzw12 and they preserve their ranking for both workload
sizes. Interestingly, with the exception of mlzo, these are
not the same algorithms as the top-ranking ones in terms of
average power consumption, as one might expect. The rea-
son for this difference lies in the actual algorithm execution
times. An algorithm might consume little power on aver-
age but might do so for a disproportionately large amount
of time, thus canceling all benefits of its low-power nature.
For instance, arith consumes only 32.58 mW on average
while compressing a 10-KB workload but it completes its
task in 456.63 sec on average while the overall average com-
pression time for 10-KB workloads is only 86.28 sec. Hence,
its excessive energy budget and resulting poor ranking.

A last metric we evaluate is the binary size of the al-
gorithms’ executables, as a measure of program-memory
needs. Executables have been built with the GNU ARM-
GCC v4.1.2 cross-compiler and optimization level O2. Fur-
thermore, executables have been statically linked (this is
an ARM requirement) and, therefore, are expected to be
somewhat larger in size than their dynamically linked coun-
terparts. In Table 4, the code complexities of the selected
compression algorithms are shown in ascending order. Obvi-
ously, results shown in the table are heavily implementation-
dependent and should be considered with caution. However,
as we have mentioned also in section 4, many different al-
gorithms have been based on the same infrastructure (or

alg. size alg. size alg. size
(KB) (KB) (KB)

fin 10.4 bclrle 15.7 arith1 17.1
splay 12.5 bclsf 15.7 arith1e 17.1
urban 13.5 huff 16.2 lzhuf oku 17.4
lzw12 13.8 mlzo 16.3 arith 17.4
slzw 14.0 lzw15v 16.7 ahuff 21.5
lzss 14.6 lzari oku 17.0

Table 4: Compression algorithms’ program sizes.

suite), built by the same author(s). Therefore, the difference
in sizes (rather than the actual sizes), can give an indication
of the program-memory needs, regardless of the underlying
implementations. Best scoring algorithms in this case are
fin, splay, urban, lzw12 and slzw.

To summarize our analysis results, we present in Table 5
the 5 best-performing algorithms on each one of our profiled
metrics, for both workload sizes. The undisputed winner is
mlzo, followed by fin and slzw. Accordingly, we take a closer
look at the underlying instruction mix of mlzo.

By design, the XTREM simulator internally breaks up
executed ARM instructions to ”uops”. This quirk in fact
is useful to us since it allows us to capture microarchitec-
tural details at the smallest granularity possible. In Table
6, the on average most frequent (> 5%) uops for both work-
load sizes are listed. The address-generation (”agen”) uop
is by far the most common and, although it is specific to
ARM-based microarchitectures, it reveals the importance of
implementing an efficient address-generation mechanism in
the envisioned processor. Loads (”ldp”) follow in frequency,
justifying the previously observed large power component of
the MM unit and hinting towards a power-efficient MM de-
sign. Branch/jump (”b”) and compare (”cmp”) instructions
follow and expectedly have similar occurrence frequencies.
They indicate that even small optimizations in the compare-
and-branch mechanism will improve power and performance
significantly.

113

ratio avg. avg. peak total code
rate power power energy size

lzari oku bclrle mlzo lzss mlzo fin
lzhuf oku slzw arith lzw15v bclrle splay
mlzo fin arith1e fin slzw urban
urban mlzo arith1 mlzo fin lzw12
arith1 lzw12 urban slzw lzw12 slzw
lzari oku bclrle mlzo lzw15v mlzo fin
lzhuf oku slzw arith lzss bclrle splay
mlzo mlzo arith1e fin slzw urban
lzss fin arith1 mlzo fin lzw12
fin lzw12 urban slzw lzw12 slzw

Table 5: Best-performing compression algorithms in
descending order (top: 1-KB, bottom: 10-KB).

uop avg(1KB) uop avg(10KB)
agen 30.00% agen 26.88%
ldp 19.89% ldp 20.57%
b 9.94% b 12.18%
cmp 8.53% cmp 9.65%
stp 8.29% add 7.39%
mov 5.90% stp 5.91%
add 5.66% eor 5.77%

Table 6: Popular mlzo uop frequencies.

instr. pairs / triplets avg(1KB) avg(10KB)
and eor - 14% 17%
eor eor - 8% 5%
and eor and - 7%
eor cmp - - 6%
beq add add - 6%

Table 7: Popular mlzo instruction pairs/triplets.

We finally report Table 7 which lists popular dynamic in-
struction pairs/triplets during mlzo execution for both work-
load sizes. Instruction pairs or triplets are consecutive in-
structions whereby data generated by the first instruction
is consumed by the second and/or third instruction; i.e.
whereby data dependencies occur. The table reveals that
by far the most popular pair is ”and-eor” (eor: exclusive
or) followed by ”eor-eor”. We, thus, get a clear indica-
tion that data-forwarding in the logical-operation part of
the ALU, interlock-collapsing-ALU techniques [18] or other
(micro)architectural optimizations will significantly benefit
the implant processor. Further, the ”and-eor-and” triplet
falls in the above category of optimizations. However, the
”eor-cmp”and ”beq-add-add”combinations relate also to the
previous discussion on optimizing the compare-and-branch
subsystem of the processor. Last but not least, all above
observations on instruction/uop frequencies can give clear
directions as to which instructions should be explicitly im-
plemented in hardware and which ones can be afforded to
be implemented in software (compiler-side conversion).

6. CONCLUSIONS
Based on a number of suitably selected metrics, in this

work, we have offered quantitative insights on the relative
behavior of various general-purpose, lossless-compression al-
gorithms running on a highly resource-constrained proces-
sor simulator, compressing a variety of biological workloads.
Based on this behavior, we have selected best-performing
algorithms and we have further profiled the microarchitec-
tural characteristics of the top-ranking one, mlzo. Along
with our previous profiling studies, the current work is the
first stage in a two-step research effort towards the design of
a novel digital processor for microelectronic implants. The

presented work gives clear directions for (micro)architectural
features and optimizations of such a processor. Future work
concerns drawing the detailed specifications for the proces-
sor and developing a first, proof-of-concept design.

7. ACKNOWLEDGEMENTS
This work has been partially supported by the ICT Delft

Research Centre (DRC-ICT) of the Delft University of Tech-
nology. Many thanks are due to Christopher Sadler for the
interesting SLZW compression algorithm.

8. REFERENCES
[1] Barr, K., and Asanovic, K. Energy-aware lossless

data compression. ACM TCS 24, 3 (2006), 250–291.

[2] Brooks, D., et al. Wattch: A Framework for
Architectural-Level Power Analysis and
Optimizations. In ISCA’00 (2000), pp. 83–94.

[3] Contreras, G., et al. XTREM: A Power Simulator
for the Intel XScale Core. In LCTES’04 (2004),
pp. 115–125.

[4] de Vries, N. Lossless Data-Compression Kit, LDS
v1.3. http://www.nicodevries.com/nico/lds13.zip.

[5] Ector, H., and Vardas, P. Heart disease and stroke
statistics - 2008 Update. AHA (2008).

[6] Ferrigno, L., et al. Balancing computational and
transmission power consumption in wireless image
sensor networks. In VECIMS’05 (2005), pp. 61–66.

[7] Geelnard, M. Basic Compression Library, BCL
v1.2.0. http://bcl.comli.eu/.

[8] Intel Corp. Intel XScale Microarchitecture for the
PXA255 Processor: User’s Manual, March 2003.

[9] Jones, D. Application of splay trees to data
com-pression. Communications of the ACM 31, 8
(1988), 996–1007.

[10] Kimura, N., and Latifi, S. A survey on data
compression in wireless sensor networks. In ITCC’05
(2005), pp. 8–13.

[11] Maniezzo, D., et al. Energetic trade-off between
computing and communication ressource in
multimedia surveillance sensor network. In 4th
IWMWCN (2002), pp. 373–376.

[12] Nelson, M. DDJ Data Compression Contest results.
Dr. Dobb’s Journal 16, 11 (Nov. 1991), 62–64.

[13] Nelson, M., and Gailly, J.-L. The Data
Compression Book, 2nd Ed. M&T Brooks, 1995.

[14] Oberhumer, M. ”LZO v2.0.2”.
http://www.oberhumer.com/opensource/lzo/.

[15] Sadler, C., and Martonosi, M. Data compression
algorithms for energy-constrained devices in delay
tolerant networks. In SenSys’06 (2006), pp. 265–278.

[16] Strydis, C., et al. Implantable microelectronic
devices: A comprehensive review. CE-TR-2006-01,
Computer Engineering, TU Delft, Dec. 2006.

[17] Strydis, C., Zhu, D., and Gaydadjiev, G. Profiling
of symmetric encryption algorithms for a novel
biomedical-implant architecture. In ACM CF’08
(2008), pp. 231–240.

[18] Vassiliadis, S., et al. Interlock collapsing ALU’s.
IEEE Transactions on Computers 42, 7 (Jul 1993),
825–839.

114

