
Dynamic Coprocessor Management for FPGA-Enhanced
Compute Platforms
Chen Huang and Frank Vahid*

Department of Computer Science and Engineering
University of California, Riverside

{chuang/vahid}@cs.ucr.edu

*also with the Center for Embedded Computer Systems, Univ. of California, Irvine

ABSTRACT
Various commercial programmable compute platforms have their
processor architecture enhanced with field-programmable gate
arrays (FPGAs). In a common usage scenario, an application
loads custom processors into the FPGA to speed up application
execution compared to processor-only execution. Transient
applications, changing application workloads, and limited FPGA
capacity have led to a new problem of operating-system-
controlled dynamic management of the loading of coprocessors
into the FPGAs for best overall performance or energy. We define
the Dynamic Coprocessor Management problem and provide a
mapping to an online optimization problem known as Metrical
Task Systems. We introduce a robust heuristic, called the fading
cumulative benefit (FCBenefit) heuristic, that outperforms other
heuristics, including a previously developed one for MTS. For
two distinct application sets, we generate numerous workloads
and show that the FCBenefit heuristic provides best results across
all considered workloads. In our simulations, the heuristic’s
results were within 9% of the offline optimal for performance,
and within 3% for energy. The heuristic may be applicable to a
wide variety of dynamic architecture management problems.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Adaptable architectures,
heterogeneous systems.

General Terms
Algorithm, Performance, Design.

Keywords
FPGAs, dynamic optimization, runtime configuration,
coprocessing, acceleration, online algorithms.

1. INTRODUCTION
Much research during the past decade has investigated the
benefits of architectures supporting field-programmable gate
arrays (FPGAs) as supplements to processors [5][15]. Several
commercial computing platforms now supplement processors

with FPGAs, at the system level [8][20], board level [10][17][22],
and even integrated within a single chip [1][25]. As an example,
the SGI Altix machine includes dozens of Itanium processors
coupled with several Xilinx Virtex FPGAs, all having nearly
equal access to the memory system. Benefits of FPGAs include
speedups, due primarily to parallelism from the process level
down to the bit level, of 10x-1000x for certain applications
[13][15], such as for image processing, encryption, particle
simulation, and other data-intensive parallelizable computations.
Such applications may be accelerated using coprocessors
executing on the FPGA that replace processor execution of
critical code regions; the processor instead transfers control to the
FPGA coprocessors and then waits for results.

Figure 1 shows a general reconfiguration architecture.
Configuration data can be transferred to an FPGA by a
specialized configuration controller. FPGA and CPU can
communicate through the memory.

In most commercial products today containing FPGAs, such
as TV set top boxes, medical devices, giant LED displays, or
cellular base stations, the FPGA’s coprocessing role is
predetermined and thus static during the product’s lifetime. Even
in the case of dynamically reconfigurable systems, in which
coprocessors are swapped in and out of the FPGA as an
application executes to provide the illusion of a logically larger
FPGA, the swapping schedule is usually statically determined.
With the advent of FPGAs in general-purpose compute platforms,
FPGAs become a resource that can be dynamically managed, akin
to managing the contents of a cache memory. In particular, an
application targeting an FPGA-enhanced compute platform may
be written to optionally load and utilize a coprocessor on an
FPGA. When the application attempts to run on the platform, if

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CASES’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-469-0/08/10...$5.00.

Figure 1: General reconfiguration architecture.

CPU

Configuration
controller

Configuration
request

Configuration
data

Configuration
control

FPGA

Memory

71

the application’s coprocessor is not already resident in the FPGA,
the platform’s operating system may dynamically determine
whether to run the application without the coprocessor, or to incur
the overhead of loading the coprocessor into the FPGA (possibly
replacing existing coprocessors to make room), a problem we
refer to as dynamic coprocessor management.

A factor governing such management is the non-negligible
time and energy cost involved in loading a coprocessor. The cost
must be outweighed by the benefit for the current and/or future
executions of the application. Another factor is the impact of such
loading on other applications whose coprocessors are already
resident in the FPGA, since removing other coprocessors to make
space can have a negative impact on future executions of other
applications. Without a priori knowledge of future application
workloads, an OS must make decisions based on incomplete
information, forming what is known as an online computing
problem.

 Figure 2 provides a simple example. At the current time
(indicated by the arrow), the CPU has executed application a1
twice and application a3 once, and coprocessors c1 and c3 for
applications a1 and a3 are resident in the FPGA. The current
application to execute is a2. The future applications that will
execute are unknown, though they are shown in the figure. The
problem is thus to decide whether to load a2’s coprocessor c2 into
the FPGA, and if so, which of c1 or c3 to remove to make room,
without knowledge of the future applications. If c2 provides little
speedup or its loading time is very large, it could be better to not
load c2 and instead to execute a2 on the CPU, so that c1 and c3
remain resident for the future executions of a1 and a3.

The main contribution of this paper is the development of an
online heuristic, the fading cumulative benefit heuristic, that
achieves effective dynamic coprocessor management. The
heuristic outperforms other heuristics we developed, as well as a
previous heuristic developed for the online optimization problem
known as Metrical Task Systems. The heuristic may be applicable
to a variety of dynamic architecture management problems. The
paper first defines the problem, introduces various heuristics, and
describes experiments. The experiments show the fading
cumulative benefit heuristic to consistently outperform other
heuristics, and to be robust in the presence of different application
workload scenarios.

2. PROBLEM DEFINITION
We assume that applications written for a particular compute
platform (e.g., for an SGI Altix machine) can include a custom
coprocessor design for the platform’s FPGA. The application may
run entirely on the platform’s processor, or it may run using the
coprocessor on the FPGA to speed up the application’s execution.
Throughout most of this paper, we refer to processor, FPGA, and
coprocessor in the singular. However, such reference includes
situations where the platform contains multiple processors on
which a single application may run, where the platform contains
multiple FPGAs that are logically treated as one large FPGA, and
where multiple coprocessors exist for a single application (which
we collectively refer to as one coprocessor for the application).
Such reference also includes the situation where a coprocessor
entirely executes an application. Presently, programming systems
with FPGA coprocessors uses techniques custom to each
platform. Standardized techniques are an area of research [11].

We define the dynamic coprocessor management problem as
follows. Given are:

� An application set A= {a1, a2, a3, ...an} containing the n
application types that will run on the platform.

� A set of execution times Tp={tp1, tp2, tp3,…, tpn}
containing the execution time of each application type i
on the platform’s processor only.

� A set of execution times Tc={tc1, tc2, tc3,…,tcn} for
each application type i when the application’s
coprocessor is FPGA-resident (meaning the coprocessor
is in the FPGA) and utilized. These times include any
additional communication times introduced by dividing
an application between processor and FPGA, excluding
reconfiguration time.

� A set of energies Ep={ep1, ep2, ep3,…, epn} giving the
energy for each application type running on the
platform’s processor only.

� A set of energies Ec={ec1, ec2, ec3,…, ecn} giving the
energy for each application type running when the
application’s coprocessor is FPGA-resident.

� A set of sizes S={s1 ,s2, s3,…, sn} giving the size of each
application type’s coprocessor in terms of equivalent
gates in the FPGA.

� The total size capacity SF of the FPGA, in equivalent
gates.

� The time for reconfiguration TR per gate of the FPGA,
from which the total coprocessor loading time, written as
loading time(i)=TR*si, can be computed for a
coprocessor of a given size. Unloading a coprocessor
takes negligible time, as it consists merely of invalidating
an FPGA region.

� The energy for reconfiguration ER per gate of the FPGA,
from which loading energy(i)=ER*si can be computed
for a coprocessor of a given size.

The dynamic input to the problem is an application queue Q,
such as <a2, a1, a4, a2, a1, a1….> that lists and orders the
application instances that run on the platform.

The dynamic coprocessor management (DCM) problem for
time is defined as an online problem: For each application in the

Figure 2: Dynamic coprocessor management. Given the
sequence of past applications and current queue of pending
applications, but without knowledge of future applications,

determine whether to load the current application’s non-resident
coprocessor and which resident coprocessor(s) to remove (if

necessary), such that total execution time (including loading time)
of the entire sequence (including the future) is minimized.

CPU
Memory

FPGA

c1 c2

c3

c1
c3

Q = <a1, a1, a3, a2, a2, a1, a3>
Application sequence:

Load c2? If so, remove which
of c1 or c3 to make room?

Past Current Future

72

application queue, using only knowledge of prior and current
applications in the queue, determine whether to load that
application’s coprocessor, such that time for the entire queue
(including future applications) is minimized. When a coprocessor
is in the FPGA, we refer to the coprocessor as being FPGA
resident. The current application is the application that at a given
time is to be executed next and for which the coprocessor load
determination must be made. Thus, the solution to the DCM
problem consists of a coprocessor management decision for each
application instance in the queue. Each decision is either: load,
don’t load, or already loaded. For a decision to load, the decision
also lists any coprocessors that are to be unloaded to make room
for the new coprocessor being loaded.

An analogous DCM problem can be defined for energy
minimization.

We assume that tci < tpi; if not, then application i is removed
from consideration by the DCM problem for time minimization
(likewise for eci and epi for energy minimization).

Limitations: The above problem definition has some
limitations. Application execution time on a platform’s processor
or processors may vary depending on what other applications are
simultaneously executing. An application may have several
possible coprocessor configurations that tradeoff size and
performance. Future work may consider multiple simultaneously
executing applications and multiple coprocessor options per
application. Today’s FPGAs are not reconfigurable at the
granularity of gates, but rather have coarser regions (e.g., stripes)
that can be independently reconfigured. FPGA capacity is not
solely characterized by (equivalent) gates, but also involves hard-
core resources like multipliers, block RAM, and input/output pins.
Future work may deal with more device-specific reconfiguration
and capacity details. The problem formulation requires that an
application be pre-characterized on the platform’s processor and
FPGA; ideally, such pre-characterization would not be required.
Finally, the present formulation does not consider the possibility
of running the application during reconfiguration, an
improvement also left for future work.

3. HEURISTICS

3.1 Offline optimal
To determine the offline optimal solution, which will serve as the
golden standard to which the online heuristics will be compared,
we first map the problem to a known online problem called
Metrical Task Systems (MTS). The MTS problem, defined by
Borodin [7] is a well-known formulation of a class of online
problems. The problem involves a task system (S,d) for
processing sequences of tasks. S is a set representing states, and d
is a cost matrix where d(i, j) is the cost of changing from state i to
state j, assumed to satisfy the triangle inequality, and assumed to
have 0s on the diagonal. In a metrical system, state transition
costs are symmetric, i.e., d(i, j) equals d(j, i). The cost of
processing a task depends on the system state, and thus a task can
be viewed as a vector T=(T(1), T(2), ..., T(j)), where T(j) is the
(possibly infinite) cost of processing the task while in state j. A
schedule for a sequence T1, T2,…, Tk of tasks is a sequence s1,
s2,…,sk of states where si is the state in which Ti is processed.
The cost of a schedule is the sum of all task processing costs and
the state transition costs incurred. An on-line scheduling
algorithm is one that chooses si only knowing T1T2…Ti.

We can map the dynamic coprocessor management (DCM)
problem to the MTS problem as follows. DCM’s platform
represents MTS’s system. An MTS system can be configured to
any state in a set of states S. Thus, in DCM, each possible subset
of coprocessors in the FPGA results in a unique system
configuration state (including the situation of no coprocessors in
the FPGA), and hence represents MTS’s set of states S. All
possible subsets of the set of coprocessors could be large, but in
practice is significantly reduced due to FPGA constraints
(otherwise, if FPGA constraints are lax, the DCM problem is
greatly simplified). Nevertheless, all possible subsets have
factorial complexity, namely all possible subsets of the
coprocessors, or 2n.

For the problem mapping, each application’s execution time
must be specified for each system state. Because each
application’s execution time depends only on whether or not its
coprocessor is FPGA resident, computing the time is linear with
respect to the number of applications. The rest of the mapping
follows straightforwardly.

An optimal solution to the MTS problem can be obtained
using a dynamic programming algorithm, as described in [7]. We
omit details here. The time complexity is O(m2) for each
application in the application queue Q, or O(Km2) for the entire
sequence, where m is the number of configurations and K is the
total length of the input sequence. Note that the number of
configurations m could be very large if coprocessors are small
relative to FPGA capacity, approaching 2n (all possible
combinations of coprocessors in the FPGA).

3.2 A greedy heuristic
A greedy heuristic can be defined that, given a current
application, always loads the application’s coprocessor into the
FPGA before executing the application. When the FPGA is full,
the heuristic swaps out the lowest-speedup coprocessors until the
FPGA capacity is sufficient for the current coprocessor. A
coprocessor’s speedup is defined as tpi / tci, representing the
speedup obtained when implementing an application with a
coprocessor versus without, ignoring the coprocessor’s loading
time. The time complexity for the greedy heuristic for a current
application includes O(log n) to insert the new coprocessor’s
speedup into a sorted list of resident coprocessor speedups, plus
time proportional to the number of coprocessors that must be
swapped out, which is typically a small constant (but conceivably
could be n).

3.3 The work function heuristic
The work function heuristic, defined in [7] for the metrical task
system problem, is similar to the offline optimal dynamic
programming algorithm, but only applies to an application
sequence up to and including the current application in the queue
only. The algorithm incrementally updates the table used in
dynamic programming as each application is encountered. The
time complexity of the heuristic for the current application is
O(m2), where m is the number of configurations.

3.4 The cumulative benefit heuristic
We improved on the greedy heuristic as follows. The heuristic
maintains a cumulative benefit table, containing one entry per
application i. Initially, all entries are 0. When processing a current
application i in the queue, the heuristic updates the cumulative
benefit table for entry i using the following equation: cbenefit(i) =

73

cbenefit(i) + (tpi – tci). In other words, the cbenefit(i) entry
maintains the cumulative time that using a coprocessor would
have saved up until this point in the application queue had that
coprocessor been used for every execution of application i.

The heuristic uses the cumulative benefit to determine
whether or not to load the current application’s coprocessor. In
particular, the heuristic chooses to load a coprocessor if the
inequality cbenefit(i) > loading_time(i) is satisfied. This
approach follows a common solution to the well-known online
computing problem known as the ski-rental problem [12]. In that
classic problem, a skier must decide whether to rent or purchase
skis, not knowing how many times he will ski in the future.
Renting is cheaper if he will ski infrequently, but purchasing is
cheaper if he will ski frequently. A well-known solution with
many desirable online properties is to rent until the cumulative
amount spent renting equals the cost of purchasing, at which point
a purchase is made. The skier is thus guaranteed to never pay
more the 2x the cost of a purchase, and this approach works well
for various frequency scenarios. The ski-rental and DCM
problems differ, but the intuition behind the use of the above
inequality satisfaction is similar.

If the FPGA lacks current capacity for coprocessor, the
heuristic searches for a subset CP of FPGA-resident coprocessors
such that removing CP yields sufficient FPGA capacity for the
current coprocessor. The subset must satisfy the constraint that
cbenefit(i) – loading_time(i) > cbenefit(CP). This constraint seeks
to avoid swapping out a coprocessor deemed to be of greater
benefit than the current coprocessor. Finding the best subset CP –
where best is defined as yielding the greatest difference between
the left and right sides of the constraint equation above, as
yielding the smallest size capable of making room for the
coprocessor, or some combination thereof – is a hard problem.
We currently use a greedy heuristic for finding CP. The heuristic
adds to CP the FPGA-resident coprocessor having the smallest
current benefit, and continues to add such coprocessors until the
size of CP’s coprocessors equals or exceeds the size of the current
coprocessor, or until cbenefit(i) – loading_time(i) <=
cbenefit(CP). In the former case, the current coprocessor is loaded
and the coprocessors in CP are unloaded. In the latter case, the
heuristic decides not to load the coprocessor, because doing so
would require removing coprocessors deemed to be of greater
benefit (and adding more coprocessors to CP would only further
increase CP’s benefit). The time complexity for a current
application is O(n), where n is the number of different
coprocessors.

3.5 Fading cumulative benefit heuristic
Real application sequences tend to exhibit temporal locality –
recently-executed applications are more likely to execute again in
the near future than are applications that executed long ago. The
cumulative benefit heuristic does not account for such locality.
One way to account for temporal locality is to apply a “fading
process” to the cumulative benefits table. At every step in the
application queue, the process multiplies all entries in the table by
a fading factor f, where 0 < f < 1. Thus, if an application that
executed long ago has not executed recently, its cumulative
benefit value will approach 0, making it more likely to be
replaced by a currently-executing application. Recently executed
applications would not have been faded as much, and such
executions would serve to “refresh” the cumulative benefit value
too.

The choice of a good value for f depends in part on the
overhead of reconfiguration. If reconfiguration overhead is very
small, fading should be more aggressive (meaning a small f)
because reconfigurations can be done freely without much impact,
and thus current applications should be strongly preferred. On the
other hand, if reconfiguration overhead is very large, fading
should be more conservative (meaning a large f) to be sure that an
earlier executed application really hasn’t executed for a long time
before incurring the high cost of replacing its coprocessor. We
thus define f to be proportional to the relative overhead of
reconfiguration time versus average application execution time on
the processor, namely f = min{TR*SF/(∑tpi/n), 1}.

When considering the current application, a fading process is
performed for each coprocessor: cbenefit(j) = cbenefit(j)*f for
each j. Then, for the current application i, the benefit table is
updated as before, cbenefit(i) = cbenefit(i) + (tpi – tci). The
replacement policy is the same as the cumulative benefit heuristic.

Because this heuristic adjusts the benefit values via fading, we
refer to it as the fading cumulative benefit heuristic (FCBenefit).
The time complexity for a current application is O(n).

Figure 3 shows an example: There are four coprocessors (c1,
c2, c3, c4). On the left is the benefit table, listing the coprocessors
and their benefits; on the right is the FPGA and resident
coprocessors. The shaded area is the vacant area in the FPGA.

When application c4 arrives, there is a fading phase.
cbenefit(i)=cbenefit(i)*f for all coprocessors. Because tp4-
tc4=100, cbenefit(c4)=cbenefit(c4)+(tp4-tc4)=140, and loading
time(c4) = 40, then the current cbenefit(c4) = 140-40=100
 Since the coprocessor with the least benefit in the FPGA is c3,
we swap out c3. Now, the current benefit is reduced to 75 by
subtracting cbenefit(c3). But, coprocessor c4 still cannot be
swapped in, because c4 is still too big. Since the current benefit is
larger than cbenefit(c2), we can further swap out coprocessor c2,
which makes room to place coprocessor c4.

Figure 3: Coprocessor replacement policy in the fading
cumulative benefit heuristic. The fading factor f is 0.5, tp4-tc4

is 100 cycles, loading time(c4) is 40 cycles.

coprocessor Cbenefit

80
50

100
500 c1

c2
c3
c4

coprocessor Cbenefit

140
25
50

250 c1
c2
c3
c4

c1 c2 c3

c1 c4

Before replacement

After replacement

Application c4 arrives

Cumulate benefit table FPGA

74

The fading cumulative benefit heuristic is shown in Figure 4.
If we want to optimize energy rather than performance, we can
use a similar algorithm to optimize energy instead of time.

4. EXPERIMENTS

4.1 Framework
We developed a simulator in C++ to test our heuristics, and
applied the simulator to two benchmark sets. For each benchmark
set, to evaluate the algorithms across a spectrum of application
sequence scenarios, we created a generator capable of creating
three categories of application sequences:

� Random: Applications are randomly inserted into the
sequence.
� Biased: A small number of applications appear most of

the time. We defined two percentages A and B, and then
generated the sequence such that A percent of the
applications executed B percent of the time. For our
experiments, we used A=20% and B=80%.

� Periodic: We defined a length T, and generated a random
subsequence of length T that then repeats. For our
experiments, we used T=15.

Each sequence’s length was 1,000. For all experiments, because
sequences involve some random ordering, we generated 50
sequences, and report the average. For this work, execution time
data does not include the time to run the heuristics themselves.
For our experiments, the FCBenefit heuristic’s runtimes were
negligible relative to the benchmark and reconfiguration times.
With tens of coprocessors, the heuristic required approximately
1,000 microprocessor cycles, compared to hundreds of thousands
or millions of cycles of runtime for each a benchmark. The greedy
and cumulative benefit heuristics’ runtimes were similarly
negligible. The WorkFunction heuristic’s runtimes were also

negligible due to our selected FPGA capacities only supporting a
small number of coprocessors, making the number of possible
configurations m, which determines the heuristic’s runtime, small.
Future work may incorporate heuristic runtime into execution
time data using different benchmark runtimes and
microprocessor/FPGA platforms where the heuristic runtimes
may be non-negligible.

4.2 Benchmarks
Powerstone/EEMBC benchmarks: We obtained data from Stitt
[23] and other sources for nine embedded system benchmarks
from the Powerstone and EEMBC benchmark suites. The data is
from earlier experiments seeking to show the energy advantages
of partitioning applications among microprocessor and FPGA.
The data included execution time, power, and size data for each
benchmark, running on a microprocessor alone, or partitioned to
use a coprocessor on a particular Xilinx FPGA device. Figure 5
shows the time and size data that we used. Benchmark execution
time on a microprocessor (a 100 MHz MIPS processor) alone
averaged 5,498 milliseconds, reduced to 2,225 milliseconds when
using an FPGA, for an average speedup of 2.5x. The number of
equivalent gates used on the FPGA per benchmark was 3,105, and
we set the total FPGA capacity to 7,000 gates, such that
coprocessor swapping would be required (a very large FPGA that
can hold all or most coprocessors does not require much dynamic
coprocessor management). The magnitudes of these numbers are
somewhat arbitrary due to each benchmark internally being
iterated a constant number of times and due to running on older
microprocessor and FPGA technologies; however, the relative
values of the numbers are useful for purposes of testing our
heuristics.

RAW benchmarks: We obtained data from the RAW
benchmark suite [2]. The suite consists of twelve programs and 37
benchmarks for comparing, validating and improving
reconfigurable computing systems. We randomly chose the
bheap15, bubble64, des4, fft4, Jacobi8x8, life32x6, matmult4x4,
merge8, nqueens16, ssp16, and spm16 benchmarks for our
experiments. Microprocessor runtimes were in the tens of
milliseconds. Runtimes on FPGAs (the partitioning for these
benchmarks consisted of implementing the benchmark entirely on
FPGAs) averaged 10x. (Again, the execution time magnitude is
somewhat arbitrary due to using older microprocessor and FPGA
technologies. FPGA gate counts per benchmark averaged 48,000,
and the total FPGA capacity was set to 60,000. Thus, these

Fading cumulative benefit heuristic()
/*fading factor is proportional to reconfiguration time*/
f = min{TR*SF/(∑tpi/n), 1}
For each application in Q, assuming application type is i
 For each application type j
 cbenefit(j)=cbenefit(j)*f /*fading process*/
 End for
 cbenefit(i)=cbenefit(i)+(tpi-tci) /*update benefit table*/
 If coprocessor i is already in FPGA
 Run the program with coprocessor
 Else /* coprocessor i is not in the FPGA*/
 If coprocessor i can be put in FPGA
 and cbenefit(i) > TR*si
 Put coprocessor i in FPGA and run the program
 Else /* no space for coprocessor i*/
 If cbenefit(i)-TR*si > cbenefit(CP)
 and such coprocessors set CP exists
 Swap coprocessors CP out
 Put coprocessor i in and run the program
 Else /*no such coprocessors CP exists */
 Run the program without coprocessor i
 End if
 End if
 End if
End for

Figure 4: Fading cumulative benefit heuristic.

Figure 5: Information on EEMBC (upper case) and
Powerstone (lower case) benchmarks. Original time is on a

microprocessor only. New time is after partitioning frequent
kernels to FPGA. Size is FPGA gates for those kernels.

Benchmark Orig Time
(ms)

New time
(ms)

Size
(gates)

AIFIRF01 805 340 5770
BITMNP01 3,490 238 3393
IDCTRN01 1,500 70 2991
TTSPKR01 703 449 2759

insert 27 4 1889
binary 29 9 2232

matmul 254 26 4513
g3fax 41,974 18,836 2122
brev 701 52 2274

Average: 5,498 2,225 3,105

75

benchmarks required less execution time and exhibited more
speedup than the Powerstone/EEMBC benchmarks, while using
more gates and thus requiring more reconfiguration time.

4.3 Evaluation
Execution time: Figure 6 and Figure 7 provide results of running
the various heuristics for the two benchmark suites, for the three
styles of application sequences, for full-FPGA reconfiguration
times ranging from 10 ms to 500 ms (thus, reconfiguration times
per gate are computed by dividing the full-FPGA reconfiguration
time by the total FPGA capacity). We used a range to account for
a wide variety of present and future FPGA reconfiguration
technologies. As can be seen, the fading cumulative benefit
heuristic (FCBenefit) achieves results closest to optimal in nearly
every scenario. In a few scenarios, the WorkFunction heuristic
outperforms FCBenefit, but only very slightly; and the
WorkFunction performs rather poorly in a couple scenarios. On
average, FCBenefit comes within 9.2% of the offline optimal.
FCBenefit outperforms the non-fading cumulative benefit
heuristic (Cbenefit) when reconfiguration times are small, due to
FCBenefit reconfiguring more frequently, because FCBenefit puts
more weight on recent applications when reconfiguration time is
small and thus when reconfigurations should be made more
frequently. The WorkFunction heuristic performs poorly when
reconfiguration times are large. When reconfiguration times are
large, a heuristic should make fewer reconfigurations, but
WorkFunction does not adjust decisions based on reconfiguration
time, instead evenly considering the entire application sequence
history.

Energy: Figure 8 shows energy results for the Powerstone
benchmarks. Again, FCBenefit outperformed the other heuristics.
FCBenefit was on average within 2.9% of the offline optimal.
Similar results obtained for the RAW benchmarks are omitted.

Number of reconfigurations: We also recorded the number
of reconfigurations incurred by each algorithm, summarized for
the Powerstone/EEMBC benchmark suite in Figure 9. Observing
the number of reconfigurations provides insight into each
algorithm’s behavior. The FCBenefit heuristic tends to match the
offline optimal algorithm’s number, sometimes slightly different.
WorkFunction often performed many more reconfigurations,
while still remaining competitive in total execution time. Greedy
of course performed the most reconfigurations. Cbenefit heuristic
usually makes much fewer reconfigurations when reconfiguration
time is low, because doesn’t put enough weight on the current
application.

5. RELATED WORK
Reconfiguration management for real-time embedded systems has
been studied in several previous works. Balarin [3] presents a
survey of real-time embedded system scheduling, which classifies
the problem into static scheduling and dynamic scheduling. Lu
[19] describes a static task scheduling algorithm to reorder tasks
to save power in a system whose components are reconfigurable
in the sense of having multiple power states. Hauck [14] proposed
configuration prefetching techniques to minimize reconfiguration
overhead. The idea is to load the next configuration context
before it is required. Horta [16] presented a partially
reconfigurable architecture in which reconfiguration is partially
done within the FPGA, to reduce reconfiguration time and energy.
Compton [9] proposed a relocation technique to solve the
fragmentation problem of partial reconfiguration. Noguera [21]
proposed dynamic run-time hardware/software scheduling
techniques for FPGAs emphasizing dynamic scheduling of task
graphs with runtime varying execution times. Dynamic
coprocessor management is complementary to most of these
techniques; integration with previous methods represents possible
future directions. Vahid, Stitt, and Lysecky [24] introduced warp

0

100

200

300

400

500

10ms 50ms 100ms 200ms 500ms

Opt i mal
FCbenef i t
Wor kf unct i on
Cbenef i t
Gr eedy

0

50

100

150

200

10ms 50ms 100ms 200ms 500ms
0

100
200
300
400
500
600
700

10ms 50ms 100ms 200ms 500ms

Figure 6: Powerstone/EEMBC execution times (seconds) for the various online algorithms for random (left), biased (center), and
periodic (right) application sequences, for reconfiguration times for the whole FPGA ranging from 10ms to 500 ms.

0

50

100

150

200

250

10ms 50ms 100ms 200ms 500ms

Opt i mal
FCbenef i t
Wor kf unct i on
Cbenef i t
Gr eedy

0

50

100

150

200

250

300

10ms 50ms 100ms 200ms 500ms
0

50

100

150

200

250

10ms 50ms 100ms 200ms 500ms

Figure 7: RAW execution times (seconds) for the various online algorithms for random (left), biased (center), and periodic (right)
application sequences, for reconfiguration times for the whole FPGA ranging from 10ms to 500 ms.

76

processing, the dynamic generation of FPGA coprocessors via
runtime binary decompilation and synthesis; warp processing
could be coupled with dynamic coprocessor management in an
approach that generates and characterizes coprocessors
dynamically, stores those coprocessors, and then dynamically
manages those coprocessors.

The metrical task system problem has been the focus of much
online algorithm research since its definition in 1992 [7]. Many
such works focus on developing K-competitive algorithms –
algorithms guaranteed not to be worse than a factor of K from the
offline optimal – and/or extending the problem definition (e.g.
[4][6]).

6. CONCLUSIONS
We defined the dynamic coprocessor management (DCM)
problem for processors with FPGA. We introduced a new
cumulative benefit heuristic inspired by a commonly used
accumulation approach in online algorithm work. We extended
the heuristic to take advantage of the temporal locality common in
real application sequences using a fading process, with the fading
amount dependent on the reconfiguration overhead of a particular
system. The resulting fading cumulative benefit heuristic has
linear time complexity O(n), dependent only on the number of
different types of applications n. The heuristic is more efficient
than the previously-developed work function heuristic having
complexity O(m2), where m is the number of configuration types,
which is also usually much bigger than n. The fading cumulative
benefit heuristic proved best in nearly all scenarios we examined,
for two different benchmark sets. The heuristic’s results were
within 9% of the offline optimal for performance, and within 3%
for energy. The heuristic’s simplicity and good results may lead
to it being useful for a wide variety dynamic architecture
management problem beyond dynamic FPGA coprocessor
management.

7. ACKNOWLEDGEMENTS
This research was supported in part by the National Science
Foundation (CNS-0614957).

8. REFERENCES
[1] Altera Excalibur FPGAs, http://www.altera.com.
[2] J. Babb, M. Frank, V. Lee, E. Waingold and R. Barua. The

RAW Benchmark Suite: Computation Structures for General
Purpose Computing. IEEE Symposium on Field-
Programmable Custom Computing 1997.

[3] F. Balarin, L. Lavagno, P. Murthy. Scheduling for
Embedded Real-Time Systems. IEEE Design and Test of
Computers, 1998.

[4] Y. Bartal, A. Blum, C. Burch and A. Tomkins. A polylog(n)-
competitive algorithm for metrical task systems. ACM
Symp. on Theory of Computing, 1997, pp. 711-719.

[5] D. Benitez. Performance of remote FPGA-based
coprocessors for image-processing applications. Digital
System Design, 2002.

[6] A. Blum, C. Burch. On-line Learning and the Metrical Task
System Problem. Machine Learning, 2000.

[7] A. Borodin, N. Linial, and M.E. Saks. An optimal on-line
algorithm for metrical task system. Journal of the ACM
(JACM), Volume 39, Issue 4 (Oct. 1992), pp. 745 – 763.

[8] Celoxica, http://www.celoxica.com.
[9] K. Compton, Z. Li, J. Cooley, S. Knol and S. Hauck.

Configuration relocation and defragmentation for run-time
reconfigurable computing. IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, 2002.

[10] DRC Coprocessors for AMD Opteron Platforms,
www.drccomputer.com, 2008.

0.0E+00

1.0E+03
2.0E+03

3.0E+03

4.0E+03
5.0E+03
6.0E+03

7.0E+03

8.0E+03

0.01J 0.1J 1J 10J 100J

Optimal

FCbenefit

Workfunction

Cbenefit

Greedy

0.0E+00

5.0E+02

1.0E+03

1.5E+03

2.0E+03

2.5E+03

3.0E+03

0.01J 0.1J 1J 10J 100J
0.0E+00

1.0E+03

2.0E+03

3.0E+03

4.0E+03

5.0E+03

6.0E+03

7.0E+03

8.0E+03

0.01J 0.1J 1J 10J 100J

Figure 8: Powerstone/EEMBC energy consumed (J) for the various online algorithms for random (left), biased (center), and
periodic (right) application sequences, for reconfiguration energy ranging from 0.01J to 100J. Certain values extend off the chart

top.

0

200

400

600

800

1000

10ms 50ms 100ms 200ms 500ms

Opt i mal
FCbenef i t
Wor kf unct i on
Cbenef i t
Gr eedy

0

100
200
300
400
500
600
700
800

10ms 50ms 100ms 200ms 500ms
0

200

400

600

800

1000

10ms 50ms 100ms 200ms 500ms
Figure 9: Powerstone/EEMBC total number of reconfigurations for random (left), biased (center), and periodic (right) application

sequences, with reconfiguration times ranging from 5 ms to 200 ms.

77

[11] J. Frigo, M. Gokhale and D. Lavenier. Evaluation of the
streams-C C-to-FPGA compiler: an applications perspective.
FPGA, pp. 134-140.

[12] H. Fujiwara, K. Iwama. Average-Case Competitive Analyses
for Ski-Rental Problems. ISAAC 2002.

[13] S. Hauck, T.W. Fry, M.M. Hosler and J.P. Kao. The
Chimaera reconfigurable functional unit. IEEE Trans. on
Very Large Scale Integration (VLSI) Systems, 2004.

[14] S. Hauck. Configuration prefetch for single context
reconfigurable coprocessors. Proceedings of the 1998
ACM/SIGDA Int. Symp. on Field Programmable Gate
Arrays, 1998.

[15] J.R. Hauser, J. Wawrzynek. Garp: A MIPS Processor with a
Reconfigurable Coprocessor. IEEE Symposium on FPGAs
for Custom Computing Machines, 1997.

[16] E.L. Horta, J.W. Lockwood, D.E. Taylor and D. Parlour.
Dynamic Hardware Plugins in an FPGA with Partial Run-
time Reconfiguration. Design Automation Conference
(DAC), 2002.

[17] Intel QuickAssist Technology,
http://www.intel.com/technology/platforms/quickassist/,
2008.

[18] D. Isaacs, E. Trexel and B. Karsten. Accelerate System
Performance with hybrid multiprocessing and FPGAs.
Embedded Systems Design, 8/15/2007.

[19] Y. Lu, L. Benini and G. Micheli. Low Power Task
Scheduling for Multiple Devices. Int. Workshop on
Hardware/Software Codesign (CODES), 2000.

[20] Mitrionics, http://www.mitrionics.com.
[21] J. Noguera, RM. Badia. Dynamic run-time HW/SW

scheduling techniques for reconfigurable architectures. Int.
Symp. on Hardware/Software Codesign (CODES), 2002.

[22] SGI Altix, http://www.sgi.com/products/servers/altix/.
[23] G. Stitt, F. Vahid. Energy advantages of microprocessor

platforms with on-chip configurable logic. Design & Test of
Computers, IEEE, 2002.

[24] F. Vahid, G. Stitt, R. Lysecky. Warp Processing: Dynamic
Translation of Binaries to FPGA Circuits. IEEE Computer,
July 2008.

[25] Xilinx Virtex-4 FPGAs, http://www.xilinx.com.

78

