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ABSTRACT
The Discrete Wavelet Transform (DWT) is a means to ana-
lyze the frequency content of a signal and has extensive uses,
including the JPEG2000 codec. Many portable and battery
operated applications of DWT are expected in the near fu-
ture that require a low power implementation of this trans-
form. In this paper, a parallel VLSI implementation of a
2D lifting-based DWT processor is presented that is scalable
from 2 to 256 parallel units. This design benefits from an
efficient data distribution module to the parallel units, which
constitutes a small overhead, and is able to significantly ben-
efit from voltage scaling to achieve energy efficiency. In our
design, the number of parallel units is increased and their
speed is reduced through voltage scaling, while maintaining a
constant throughput. Our results show that the optimal op-
erating voltage of the parallel units, for a target throughput
of 200MHz, is 386mV. This is below the threshold voltage,
which is the voltage that turns the transistors on. Since oper-
ating a circuit in subthreshold voltage consumes 100+ times
less power than running it at nominal voltage, our design is
able to provide the same throughput as a reference pipelined
implementation with 26 times less power consumption.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose
and Application Based Systems

General Terms
Design, Measurement, Performance

Keywords
Wavelet, Subthreshold, Parallel, Low Power
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1. INTRODUCTION AND BACKGROUND
The Wavelet Transform (WT) is a method for analyz-

ing the frequency content of a signal, and is similar to the
Fourier Transform (FT)[5]. The wavelet transform, unlike
fourier transforms, can provide temporal information about
when frequencies occur. It also provides better resolution
for both high and low frequencies and has uses in many
fields such as image processing. However, even in its more
efficient forms, the wavelet transform requires a significant
amount of processing power. To facilitate its use on battery
powered system on chip applications or in signal process-
ing, fast and efficient transform hardware is desirable. One
portable application involving the use of wavelet transform is
devices that use the JPEG2000 codec. Cameras, digital pic-
ture frames, cell phones, and mobile internet browsers are all
predicted to eventually use the new JPEG2000 codec instead
of JPEG[18]. Portable sensing applications can also make
use of the signal processing applications that use wavelet
transforms.

In this paper we propose a parallel implementation for
the discretized form of the wavelet transform: the DWT.
Because of its efficient parallel architecture with low over-
head, this design is able to significantly benefit from voltage
scaling to achieve energy efficiency. In our design, the num-
ber of parallel units is increased and the speed is reduced
while maintaining a desired throughput. Our results show
that the optimal operating voltage of the parallel units is
well below the threshold voltage, which is the voltage that
turns the transistors on. In this section, we provide the back-
ground to two of the topics related to this work: Discrete
Wavelet Transform and subthreshold voltage operation.

1.1 DWT
The Discrete Wavelet Transform (DWT) is a discretized

form of the continuous wavelet transform, performed on
1-Dimensional (1D) and 2-Dimensional (2D) arrays. The
original method used to perform a DWT is convolution, a
method which requires a large amount of processing. The
lifting scheme [6] was proposed as a method of reducing the
amount of computation. Two lifting based techniques, the
(5,3) and (9,7) transforms, were chosen as the transform
coders for JPEG2000 due to their advantages in compres-
sion and flexibility over the methods used in JPEG. In this
paper, we focus on implementing the (5,3) transform that
unlike the (9,7) version, uses integer coefficients and there-
fore performs lossless transformation.

The 1D transform operates on a 1D array and produces
an output that is the same size as the input. Equations 1
and 2 describe the 1D (5,3) DWT, and are derived using
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Figure 1: Row and Column DWT Transform Figures A-B show a row transform performed on an input image.

Figures C-D show a column transform performed on row-transformed data

the lifting scheme in [6]. If a pixel’s index is odd, a high
pass transformation is performed on it. As seen in Equa-
tion 1, it depends on its two neighbors. The low pass cal-
culation performed on even indexed pixels is dependent on
the transformed high pass result of its two neighbors. This
means that if a pixel is on an even index, it depends on its
four closest untransformed neighbors. For data at the edges,
mirroring is used to produce a reversible result [20].

HP (2n+1) = Input(2n+1)− 1

2
[Input(2n)+Input(2n+2)] (1)

LP (2n) = Input(2n) +
1

4
[HP (2n− 1) + HP (2n + 1) + 2] (2)

With a 2D transformation, these equations will be applied
twice to each pixel: once in the row direction and once in the
column direction. A 2D transform operates on a 2D array
by first treating all of the rows of an image as 1D arrays
and performing a 1D DWT on them. The columns of the
resulting transformed array are then treated with another
1D DWT. Figure 1 shows the progression of a 2D DWT.
In the first step shown in parts A and B of the figure, the
pixels are processed row-wise. In the second step shown in
parts C and D of the figure, the columns are processed. The
arrows in the figure represent data dependencies. In this
figure, the original untransformed pixels are shown in white,
while the row-transformed and row-and-column-transformed
pixels are shown in green and blue respectively.

1.2 Subthreshold Voltage Operation
Figure 2(a) shows a CMOS transistor identifying its source

and gate. When the source voltage is above a certain thresh-
old, the transistor effectively functions like a switch respond-
ing to the changes that come from gate voltage. Lowering
the voltage source or voltage scaling has been a prevalent
method for improving the energy efficiency of microproces-
sors [3, 2]. This is due to the fact that reducing the voltage
drops the energy consumption of a microprocessor quadrat-
ically, while decreasing its performance linearly. Figure 3
clearly shows this effect which presents the energy, power,
and frequency trends with respect to voltage scaling 1 for

1In order to obtain these graphs, we simulated an inverter

the DWT parallel unit discussed in Section 3 and shown in
Figure 6. It has been known for some time that CMOS gates
operate seamlessly from full-voltage source to well below the
threshold voltage - the voltage that turns the transistor on -
at times reaching as low as 100mV [10, 14]. Recently, a num-
ber of prototype designs have shown that with careful design
and replacement of these analog-like devices with standard
switching counterparts, it is possible to extend the tradi-
tional voltage-scaling limit to below the threshold voltage,
i.e. subthreshold-voltage2 region [22, 19, 12].
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Figure 2: Overview of sub/superthreshold opera-
tion.

Figure 2(b) provides an overview of subthreshold and su-
perthreshold operation differences. First, the transistors are
not switching as normal in the subthreshold region; instead
they simply modulate leakage current to charge or discharge
their load capacitance and eventually perform computation.
This, in turn, results in exponential degradation of perfor-
mance in the subthreshold region as opposed to linear degra-
dation when voltage is reduced in superthreshold. Moreover,
because the system operates at much lower voltages, it be-
comes more susceptible to some manufacturing and oper-
ational problems such as process variation and soft errors.
These issues as well as accurate modeling of subthreshold
leakage are currently under investigation by several research

chain by applying a pulse input using SPICE and fitted mod-
els for leakage current and delay with respect to Vdd. Then,
we applied the fitted models to our synthesized DWT pro-
cessor. This methodology has been used before in [7, 25, 15,
16] and validated against actual silicon measurements in [7,
25].
2 In this document, we may use super/subthreshold words
in place of super/subthreshold-voltage for brevity.
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Figure 3: Energy, power, and frequency trends w.r.t. voltage for a parallel DWT unit.

groups in the VLSI and digital electronics area who have
shown promising results [17, 11, 13, 8, 9, 22].

Figure 3 reveals another difference between the two re-
gions: unlike in the superthreshold region, voltage scaling
does not necessarily improve energy efficiency over the en-
tire subthreshold region. While the active (dynamic) com-
ponent of the energy is reduced by decreasing the voltage
in both regions, the leakage (static) component eventually
starts to increase exponentially in the subthreshold region.
As shown in Figure 3, these two contrasting energy trends
create a voltage point with minimum energy consumption
[24], called optimum-energy voltage, where a particular
design reaches its maximum energy efficiency. In the follow-
ing sections, we will argue that based on the above charac-
teristics of the subthreshold region, it can be adapted as a
great candidate for low-energy hardware design.

2. STATE-OF-THE-ART PIPELINED
IMPLEMENTATION OF DWT

Memory

Pipelined
Processor

Adder

Register 1

Shiter

Register 2

Add/Sub

Register 3

Input Pixels 
(1st Cycle)

Processed 2D 
Coeffecients (2nd,3rd

Cycle)

Processed 1D and 2D 
Coeffecients 

Processed 1D and 2D 
Coeffecients (2nd ,3rd Cycle)

Figure 4: Reference Pipeline Implementation The

reference implementation uses a single pipelined proces-

sor to perform row and column transforms. It must store

intermediate values in an SRAM bank.

As can be seen by Equations 1 and 2, a 1D (5,3) transform
requires 2 add/subtracts and a shift that is used for division
by 2 or 4. The ’+2’ for the low pass step is a rounding op-
eration and is present for JPEG2000 compatibility. It can
be implemented using additional logic within an adder and
therefore would not require another adder. The reference

implementation, described in [21], breaks the DWT opera-
tions into three pipeline stages, where each stage represents
a mathematical operation from equations 1 and 2. The sin-
gle processor scans and processes an entire row, then moves
onto the next row and repeats.

The data is fed into the reference implementation serially
from memory at a certain throughput. A single input pixel
of a 2D-DWT is processed twice; once for the row transform
and once for the column transform. When the processor is
operating on an even row, it cannot perform a column trans-
form because the operation requires processed data from the
next row, which is not available. The result of this depen-
dency is that while the pipelined design is on odd rows, it
must perform three transforms for every pixel: A row trans-
form, a column transform for an odd row and an additional
column transform for an even row. To facilitate the abil-
ity to perform a 1D DWT three times in one data clock
cycle, the DWT processor runs at three times the speed of
the data clock. Hardware utilization is not optimal because
when the processor is working on even rows, 67% of the time
no operations are being carried out.

2.1 Memory Organization of Pipelined
Implementation

All column transformations require 1D row transformed
data, and column transformations for even indices require
column transformed data from the odd neighboring indices.
This dependant data needs to be temporarily saved in an
external memory bank. Three memory banks are required:
one bank stores column transformed data for even column
transformation, and two banks store row transformed data.
These banks are implemented using SRAM. The pipelined
design also requires 6 internal registers that save previous
values and input values.

2.2 Potential Weaknesses
Using a single DWT processor to perform all of the row

and column transforms has its drawbacks. There are three
inputs into the DWT processor, but there are a number of
different sources for these inputs. For row transforms, the
inputs come from the input registers and internal registers.
For column transforms, the inputs come from the memory
banks. The edges and corners further complicate things be-
cause they are special cases that require mirrored data. The
inputs are also different depending on if the processor is op-
erating on an even or odd row or column. The end result is
that each input to the DWT processor has up to 9 different
possible sources. This requires a multiplexer for each input.
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3. PROPOSED PARALLEL
IMPLEMENTATION

The parallel implementation is designed so that multiple
columns are processed at the same time. This means the par-
allel system will require more hardware, but will be faster
and through voltage scaling techniques, the power consump-
tion of the system as a whole can potentially be reduced.

3.1 Design Overview
Figure 5 shows a 1D parallel transformation system. Each

column has its own dedicated (5,3) processing unit. This
unit, which we call a DWT processor, performs the com-
plete DWT operations mentioned in Equations 1 and 2 in
one single clock cycle. The odd column (high pass) results
depend on the untransformed data of their neighbors so the
odd DWT processors are wired as such. The even columns
(low pass) depend on the transformed data of their neigh-
bors so they are wired to a register that is connected to the
output of the high pass DWT processors next to them. This
is relatively simple, but it only performs a 1D transforma-
tion. To perform a 2D transformation, the row transformed
data needs to be saved and processed a second time. Our
proposed parallel design uses another set of DWT processors
for this purpose. We call the DWT processors that trans-
form the input pixels row processors, and the ones that work
on the result of these row processors column processors.

Input Register Input Register

DWT Processor

DWT Processor

Register

Register A

Register A

Odd Column Even Column

Input Register

DWT Processor

Register A

Odd Column

Input Register

DWT Processor

Register

Register A

Even Column

Input Register

DWT Processor

Register A

Odd Column

Figure 5: A parallel version of a 1D (5,3) processor.

High pass data from the odd columns are saved in a

register. In the next clock cycle, the even columns use

that data to process the low pass data.

Figure 6 shows how row and column processors are or-
ganized in a simple 2x2 design. A chain of 5 registers is
connected to the output of a row DWT processor. The
row transformed data shifts up through these registers. A
column DWT processor connects to these and performs a
second DWT on the row transformed data. Like the row
transform, a column high pass and column low pass result
is produced. During one clock cycle, the column processor
is connected to the bottom three registers of the register
chain. These registers all contain row transformed data and
the result is a column high pass result. Because the col-
umn low pass transformation requires the already processed
column high pass result, when a column high pass result is
produced, it is inserted into the register chain. During the
next clock cycle, the column processor is connected to the
top three registers. These three registers contain row trans-
formed data in the middle, and column high pass data in
the top and bottom. The result of this column transform is
a low pass result. Thus, in two clock cycles a 2D high pass
and low pass result is produced; or in other words, one 2D
transformed pixel is produced in each clock cycle. Note that
the even and odd columns share a register and odd and even
columns are wired slightly differently.

The parallel design does not require an external memory
module or SRAM. The only memory used are flip flop based
registers within the parallel units. The control of these reg-
isters are very simple and usually involves shifting a value
from a previous register, and shifting out a value to the next
register. There is no need for address decoding and compli-
cated wiring that SRAM based modules require.

3.2 Working with Large Images (Striping)
We refer to the maximum image width a design can trans-

form without breaking up the image as the width of the de-
sign. For the pipelined design, the width is determined by
the width of the memory banks used to store intermediate
values. For the parallel design, the width is the number of
parallel units. When dealing with an input image that is n
pixels wide, it is possible to transform the image with an im-
plementation that has a width less than n. This can be done
by striping the image. As shown in Figure 7, striping breaks
the image into stripes and processes all of the columns of a
stripe in the image before moving onto the next stripe.

Width of processor (width 
of memory bank for 

pipelined or number of 
parallel units for parallel )

Data Overlap. This data 
needs to be pulled twice.

Width of Image

Figure 7: Striping an input image If a processor does

not have the memory or number of parallel units neces-

sary to handle an image of a certain width, the image can

be broken into thinner stripes. The shaded area needs

to be retrieved twice from memory and is thus overhead.

There is a penalty associated with striping: a row trans-
form operation on the edge of a stripe requires data from
the stripe next to it. If the edge of the stripe is an odd
column, it requires the pixel next to it on the neighboring
stripe. If the edge is an even column, it requires two pixels
from the neighboring stripe. Assuming that the width of the
processor is a power of two, there is always one edge that is
on an even column, and one edge that is on an odd column.
These additional dependencies to the left and right of the
stripe must be loaded from memory to the internal storage
of the design.

The penalty associated with striping is an increase in
bus power consumption. Additional parallel units are not
needed when striping because the extra data is only needed
to satisfy a dependency of the calculations of edge pixels.
For even numbered columns on the edge of a stripe, row
transformed data is required as a dependency, so two pixels
from the neighboring stripe are needed and that data needs
to be row transformed. This requires an additional DWT
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Figure 6: 2D DWT Parallel System If we take a 1D parallel unit from Figure 5, then use a register chain and shift

the 1D transformed data through it, we can then do another (5,3) transform and produce a 2D transform. 0

processor. As mentioned earlier three extra pixels per row
are needed, so three additional registers are needed on the
bus. The bus will also have to run faster so it can keep
up with filling the additional registers. Equation 3 lists the
number of extra pixels per row required to stripe, given a
width of the image and a width of the processor. Equation
4 lists the new clock speed the bus must run at to supply
the additional registers.

ExtraP ixelsPerRow = blog2 (ImageWidth)−
log2 (ProcessorWidth)− 1c (3)

NewBusDataRate =

(ProcessorWidth + ExtraP ixelsPerRow) ∗OldBusDataRate

ProcessorWidth
(4)

The striping penalty would then be the increased power
consumption as a result of running the bus faster, adding
three registers to the bus, and adding an additional DWT
processor.

3.3 Data Distribution to the Parallel Units
The assumption for input data of the parallel design is

the same as the reference pipelined design: image data will
be delivered serially at a given data rate. Some sort of data
delivery system is required that distributes the serial data
to all of the parallel units. The simplest type of data distri-
bution system is the bus shown in Figure 8(a) Each input
register of a parallel unit is connected to the bus and the
serial data is sent over the serial bus at the overall data
rate. A global column counter is also sent to every parallel
unit. When the global column counter equals the column
number of a parallel unit, it latches in the data from the

bus. As mentioned in Section 4.3, the Vdd of the parallel
units is reduced in order to reduce the power consumption.
Moreover, it will be shown in the results section that the
optimum operating voltage of these parallel units are well
into the subthreshold voltage region. However, it is not pos-
sible to slow down the input registers of the parallel units
as much as the DWT processors because the inputs to these
registers change at a fast data clock rate and using slow
registers will result in setup and hold errors. On the other
hand, fast input registers consume a considerable amount of
power, which squanders the gains from power reduction of
DWT processors.

In order to solve this problem, we split the bus into 2 or
more slower buses. This is the reverse of multiplexing and
is done using a demux as shown in Figure 8. If the original
data bus is split to 2 busses, for example, the speed of each
of the new 2 busses is half of the original bus while the two
bus collectively carry the data that is delivered through the
original bus. The benefit of splitting the bus is that the in-
put registers to the parallel units have more time to latch the
data and can be slowed down in order to reduce the power
consumption. It is noteworthy that when the demux selects
one side, the other side goes to an indeterminate state, so
a fast register is used to latch the value onto the sub bus.
The area and power consumption of this data distribution
module is the overhead associated with increasing the par-
allelism in our design. The more the number of units, the
larger this overhead. In the results section, we provide the
result of an analysis on the optimum number of bus splits.
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Figure 8: Bus Splitting A shows a simple bus. B shows a single split bus. Figure C shows a bus split four times. As

the bus gets split more and more, the Vdd of the input registers can be reduced, saving power.

4. METHODOLOGY

4.1 HDL Tool Chain

Table 1: HDL Tool Chain

Design Aspect Tool

HDL Verilog

Simulator Synopsys VCS

Standard Cell Library OSU 0.18µm [1]

Synthesis Synopsys Design Compiler

Power Measurements Synopsys PrimeTime PX

4.2 SRAM simulation
The pipelined design contains three memory banks. Mod-

ern memory banks are usually implemented as SRAM mod-
ules. The OSU standard cell library does not have an SRAM
model and synthesizes memory structures inefficiently with
standard flip-flops and primitive gates. To model these mem-
ory elements more realistically CACTI 4.2 was used to ob-
tain power, area, and speed[23]. CACTI is an SRAM cache
modeling tool that is used extensively in computer architec-
ture research. To model the structure of a memory bank, the
CACTI tool was setup to model a cache that is one-way set
associative and has zero tag bits. These settings eliminate
the tag portion of the cache. The CACTI tool only allows a
minimum entry length of 8 bytes. Word length has a signif-
icant affect on power and area of memory. Therefore, curve
fitting was applied to the CACTI data of memory struc-
tures with varying word lengths and the area and power of
the memory unit was extrapolated.

4.3 Achieving Maximum Energy Efficiency
There are 2n DWT processors or n pairs of row and col-

umn processors (called DWT pairs) in our proposed parallel
design where n is the width of the design (defined in the
previous section). As stated before, after the initial warmup
time, each DWT pair transforms two pixels in each cycle.
Therefore, the throughput of the parallel design can be cal-
culated as shown in Equation :

ParallelThroughput = n ∗ SpeedOfDWTProcessor (5)

Since the throughput depends on both the width of the
design and the speed of DWT processors, it is possible to
change their values and still maintain the same throughput.
The goal of our design is to maximize energy efficiency for
a given throughput. In order to achieve this, we compute
the power consumption of the parallel design while varying
n and maintaining the same throughput3. As we increase n,
the speed of the DWT processors is reduced. We use voltage
scaling techniques in order to achieve this. Figure 9 shows
the algorithm used to find the most energy efficient design.

3 The DWT can be performed on an image of any width,
but one of the driving applications of the wavelet trans-
form is JPEG2000. In the JPEG2000 compression process,
the output of the wavelet transform goes into an encoder
that uses Embedded Block Coding with Optimal Truncation
(EBCOT). The maximum size of a code block in JPEG2000
EBCOT is 256, so the image has to be split into blocks that
are at most 256x256. Because of this requirement, for the
purposes of this paper, the maximum size of an input image
will be 256.
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1. For n = 2, 4, 8, 16, 32, 64, 128, 256 
DWT_speed = Throughput / n

a) Use voltage scaling trends to determine 
the operating voltage, V, of DWT 
processor to make it run at DWT_speed

b) Compute the power consumption of the 
DWT processor at V as DWT_power

c) Record the power consumption of the 
system from DWT_power x n

2. Identify n that, after including overhead, 
results in minimum power consumption of 
the system.

Figure 9: Finding the most energy efficient parallel

design The above algorithm shows how to find the num-

ber of parallel units that results in the most energy effi-

cient design. The throughput is constant, so the power

consumption corresponds to energy consumption.

4.4 Supply Voltage scaling and splitting the
bus

For this experiment, the power consumption of the bus af-

ter splitting will be determined for a number of bus widths.

The width of the bus is defined as the number of input reg-

isters attached to it. First, the power consumption of the

simple bus at nominal voltage running at its maximum speed

will be determined. The supply voltage(Vdd) of the bus will

then be scaled down until the bus’s maximum frequency is

the target throughput. This Vdd will be referred to as the

Throughput Vdd. The bus will be split according to the pro-

cedure shown in Figure 8. The section labeled overhead in

Figure 8 cannot be Vdd scaled any further so the supply volt-

age to it must remain at the throughput Vdd. The Vdd of the

input registers can be scaled down further because the effec-

tive data rate on the sub bus they are attached to is one half

of the original data rate. The input registers are Vdd scaled

until their maximum frequency is equal to the effective data

rate on the sub bus. The bus is then split again and the

experiment is repeated. The bus is split until the number

of splits equals the width of the bus. This experiment is

performed for bus widths of 8,16,32,64,128, and 256.

5. RESULTS

5.1 Synthesis Results
Table 2 presents the basic synthesis results for the refer-

ence pipelined implementation excluding the SRAM module

as well as a pair of parallel units excluding the data distri-

bution module. The delay and power consumption reported

are from operation at nominal voltage.

5.2 Analysis of voltage scaling the parallel units
Figure 10 shows the power consumption of the parallel

DWT units, for a given number of parallel units. The through-

put is constant at 200MHz, and the graph does not include

the data distribution module. Figure 11 shows the Vdd that

each parallel unit is running at for a given number of parallel

units. The power consumption shows diminishing returns as

more parallel units are added. However, for these graphs,

Pipelined Design Parallel Design

Notes Not Incl. SRAM 2 parallel units

Critical Delay 1.67ns 2.97ns

Power 39.3mW @ 200 MHz 71.8mW @ 336MHz

Area 0.00426mm2 0.00716mm2

Table 2: Pipelined and Parallel Results at Nominal
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Figure 10: Power consumption of the parallel units

for a given number of parallel units. No data

distribution overhead and throughput is constant

at 200MHz, which matches the throughput of the

pipelined design.

increasing the number of parallel units is always beneficial

as we are not yet including the overhead associated with the

data distribution module.

5.3 Analysis of voltage scaling the data
distribution module

Figure 12 shows the number of splits on the bus vs. the

power consumption, for a variety of bus widths. It shows

that there is an optimal power consumption for a given num-

ber of splits on the bus. Each time a bus is split, a lower

Vdd can be used to power the registers. Figure 13 shows the

Vdd of the different buses, for a given number of bus splits.

Running a number of different Vdds across a design would

end up being prohibitive because of routing issues and the

need for level converters. For this design, we will find a bus

that can run at the same Vdd as the parallel units. This will

be referred to as the Vdd Matched Split Bus. Because of

this Vdd restriction, there are only two options: the simple

bus, which runs at nominal voltage, and the Vdd Matched

Split bus. Figure 14 shows the power consumption of both a

simple bus and the Vdd matched bus for parallel unit counts

from 1 to 256. This graph shows that the Vdd Matched Split

Bus is always more optimal no matter the number of parallel
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Figure 12: Number of bus splits vs. power consump-

tion, for a variety of bus widths.

units. Because of this, the Vdd Matched Split Bus will used

for all total power consumption calculations.

5.4 Striping Penalty
Figure 15 shows the result of the striping penalty in terms

of power consumption. It can be seen that as the number of

parallel units or width of the design increases, less striping is

needed and therefore, less power is wasted for this purpose.

5.5 Total Power
Two different total power consumption numbers are cal-

culated. The first power consumption includes the striping

penalty, and the second one does not. Equation 6 shows how

the total power is calculated when striping is included.
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Figure 13: Optimal Vdd of the registers attached to

the buses in Figure 12. The Vdd is dependant on the

number of bus splits, not the width of the bus.
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Figure 14: Simple Bus vs. Split Bus The green line

shows the power consumption of a simple bus with no

splits for a given number of parallel units. The orange

line shows the power consumption of a split bus that is

matched to the Vdd of the parallel units.

TotalPower = ProcessorPower +

V ddMatchedSplitBusPower + StripingPenalty (6)

5.6 Comparisons
Table 3 shows the results of the optimal parallel design,

with the striping penalty included, compared to a pipelined

design that stripes and one that does not. The Vdd scaled

parallel design gives a 26.3x reduction in power compared to
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Figure 16: Total power consumption of the proposed

parallel architecture. The throughput of the parallel

system is matched to the pipelined system that is

not striping (and uses a large RAM bank), so the

bus of the parallel system runs faster to match it.

the reference pipelined implementation. If the pipelined de-

sign is not striping and uses a 256 word memory bank, then

the optimal parallel design takes up roughly half the area of

the pipelined design. If the pipelined design is striping with

32 pixel wide stripes, then the area of the optimal parallel

design is roughly 4 times that of the pipelined design.

6. RELATED WORK
[22] presented a 180mv FFT architecture that runs in the

subthreshold region. The entire architecture runs at sub-

threshold voltage and the resulting throughput is very low

# of Parallel Units

Po
w

er
C

on
su

m
pt

io
n

(W
)

0 50 100 150 200 250 300
1.5

2

2.5

3

3.5

4 x 10
-3

1.560mW @ 32 
units

Figure 17: Total power consumption of the proposed

parallel architecture. The throughput of the parallel

system is matched to the pipelined system that is

striping (uses a small RAM bank). Since they are

both striping, they both run at the same clock speed.

Table 3: Optimal Parallel Design and the Pipelined

Design, Throughput = 200MHz

Parallel Pipelined Pipelined

Design No Striping Striping

# of Units 32 1 1

Processor Power 1.59mW 39.3mW 39.3mW

SRAM Power n/a 9.80mW 1.72mW

Total Power 1.59mW 49.1mW 41.0mW

Processor Area 0.121mm2 0.0426mm2 0.0426mm2

Bus Area 0.0630mm2 n/a n/a

SRAM Area n/a 2.129mm2 0.258mm2

Total Area 1.208mm2 2.172mm2 0.300mm2

due to a 164 Hz clock cycle at 180mV and 10kHz at 350mV.

Our design, on the other hand, parallelizes the processing to

achieve a throughput typical of nominal voltage signal pro-

cessing ASICs. [4] presents a parallel DWT architecture, but

they do not consider power consumption as a design factor.

7. CONCLUSION
In this paper, we presented a new parallel architecture of

a 2D lifting-based discrete wavelet transform processor. By

increasing the number of parallel units and implementing

voltage scaling, this design consumed 1.59mW compared to

the 39.3mW of a single state of the art pipelined DWT pro-

cessor, with both running at the same throughput. This is

a 26x reduction in power and the operating voltage of our

design was in the subthreshold region of 386mV. The data

delivery to the parallel system was also explored. It was

found that by adding registers and a demultiplexer to the

data delivery system, the supply voltage to certain portions
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of the bus could be run at the Vdd of the parallel units,

and the overall power consumption could be reduced fur-

ther. Future work would include doing a complete ASIC

design and taping out a chip. This would provide a more

accurate real world model of how a scaled down supply volt-

age affects the power consumption. Moreover, we intend to

explore the same approach of allowing subthreshold voltage

usage in other parallel applications.
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