
Design Space Exploration
for Field Programmable Compressor Trees

Seyed Hosein Attarzadeh Niaki1 Alessandro Cevrero2 Philip Brisk3 Chrysostomos Nicopoulos3
Frank K. Gurkaynak4 Yusuf Leblebici2 Paolo Ienne3

1 Royal Institute of Technology

School of Information and
Communication Technology

Stockholm, Sweden
shan2@kth.se

 Ecole Polytechnique Federale de
Lausanne

2School of Engineering
3School of Computer and

Communication Sciences
Lausanne, Switzerland, CH-1015
{first_name.last_name}@epfl.ch

4 Swiss Federal Institute of
Technology, Zurich

Microelectronics Design Center
Zurich, Switzerland, CH-8092

kgf@ee.ethz.ch

ABSTRACT
The Field Programmable Compressor Tree (FPCT) is a
programmable compressor tree (e.g., a Wallace or Dadda Tree)
intended for integration in an FPGA or other reconfigurable
device. This paper presents a design space exploration (DSE)
method that can be used to identify the best FPCT architecture for
a given set of arithmetic benchmark circuits; in practice, an FPGA
vendor can use the design space exploration to tailor the FPCT to
meet the needs of the most important benchmark circuits of the
vendor’s largest-volume clients. One novel feature of the DSE is
the introduction of a metric called I/O utilization; we found that
I/O utilization has a strong correlation with both the critical path
delay and area of the benchmark circuits under study. Pruning the
search space using I/O utilization allowed us to reduce
significantly the number of FPCTs that must be synthesized and
evaluated during the DSE, while giving high confidence that the
best architectures are still explored. The DSE was applied to
seven small-to-medium range benchmark circuits; one FPCT
architecture was found that was 30% faster than the second best in
terms of critical path delay, and only 3.34% larger than the
smallest.

Categories and Subject Descriptors
B.7.1 [Hardware]: Integrated Circuits – gate arrays.

General Terms
Performance.

Keywords
Field Programmable Compressor Tree (FPCT), Design Space
Exploration (DSE).

1. INTRODUCTION
FPGA performance is currently lacking for arithmetic circuits. In
particular, FPGAs cannot exploit one of the fundamental results
of computer arithmetic: the use of carry-save (based) addition to
efficiently add k > 2 integers. This representation was introduced
by Wallace [21] and Dadda [9] in the context of parallel
multiplier design in the 1960s. The addition of two integers
requires the use of a carry propagate adder (CPA), e.g., a ripple-
carry or parallel-prefix adder, whose critical path delay is from
the carry-in to the carry-out bit. The naïve method to add k > 2
integers is to use an adder tree, i.e., a binary tree of CPAs; a
compressor tree (e.g., a Wallace or Dadda Tree) is a circuit that
uses carry-save addition to add k > 2 integers: the output is two
integers, S (sum) and C (carry) such that S+C is the sum of the k
integers. Thus, a CPA is only required to add S and C, rather than
at every level of the tree.
Multi-operand integer addition occurs in a wide variety of
applications including, but not limited to, FIR filters [14], video
coding [8], and 3G wireless base station channel cards [17].
Verma and Ienne [20] have introduced a set of data flow
transformations that can expose opportunities to exploit the carry-
save representation. First, each multiplication operation is
decomposed into a partial product generator, compressor tree, and
CPA. A sequence of sorting rules is applied to the flowgraph to
reorder the operations such that disparate CPAs are merged with
one another and with other compressor trees. Each subsumption
of a CPA into a larger compressor tree replaces the carry-in to
carry-out delay with a smaller delay due to a slightly enlarged
compressor tree.
These transformations automate optimization steps that expert
designers have been applying manually for years. The judicious
exposition and exploitation of compressor trees is one area where
ASIC designs have a significant advantage over processors and
FPGAs. Multi-input addition is performed serially in a single-
issue processor or use a partially serialized adder tree in a multi-
issue VLIW or superscalar (partial serialization occurs if the
number of integers to add exceeds the register file bandwidth). A
secondary drawback is that the bitwidth of all of the adders is
fixed, based on the instruction set of the processor.
Now, let us turn our attention to FPGAs which contain embedded
hard multipliers and DSP blocks. The bitwidths of both hard

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CASES’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-469-0/08/10…$5.00.

207

multipliers and DSP blocks are fixed, creating a potential
mismatch between the needs of the application and the solution
provided by the target architecture. Additionally, neither the
multipliers nor the DSP blocks expose their compressor trees
directly to the user. The user cannot bypass the partial product
generator in the multiplier to directly access the compressor tree;
likewise, the DSP blocks offer efficient multiply-accumulate
(MAC) functionality, but only in a highly pipelined and
sequentialized mode. Thus, despite the fact that multi-input
addition and multiplication are based on the same circuitry, the
embedded cores inside an FPGA cannot be used for both.
Therefore, the user must realize multi-input addition using the
general logic of the FPGA. Modern high-performance FPGAs
contain logic blocks that can be configured as ternary (3-input)
carry-propagate adders; fast carry chains connect adjacent logic
blocks (to one another), bypassing the costly programmable
routing network. Support for ternary addition was first integrated
into the Adaptive Logic Module (ALM) of Altera’s Stratix-series
FPGAs, starting with the Stratix II [13]; Xilinx integrated similar
functionality into the Configurable Logic Block (CLB) of their
Virtex-series devices, starting with the Virtex 5 [22]. One of the
key selling points of this logic block architecture was that the
number of logic levels in a ternary adder tree is less than the
number of logic levels in a binary adder tree [2].
For a long time, it was thought that adder trees were faster than
compressor trees on FPGAs due to the presence of dedicated
adders and carry chains within the logic blocks. Parandeh-Afshar
et al. [15, 16] have since shown that this is not true for modern
high-performance FPGAs whose logic blocks contain 6 (rather
than 4, previously) inputs. Parandeh-Afshar et al. developed
methods to synthesized compressor trees whose critical path
delays were less than the delays of the adder trees; however, the
programmable routing network still contributed significantly to
the overall delay and the ternary adder trees required fewer LUTs.
In a previous paper [7], we introduced the Field Programmable
Compressor Tree (FPCT)1, a programmable compressor tree
intended for integration in an FPGA or other reconfigurable
device. The FPCT is distinguished from the DSP blocks and hard
multipliers that are embedded in modern high-performance
FPGAs in two respects: (1) The FPCT can be programmed to
match precisely the bitwidth of the input operands, and (2) the
FPCT exposes its compressor tree directly to the user, allowing
faster multi-operand addition than the compressor trees
synthesized by Parandeh-Afshar et al. [15, 16].
A vendor who sells FPGAs or other reconfigurable devices will
want to tailor the design of their FPCTs to the most important
benchmark circuits of their largest clients—especially if the
company has a small client base. To meet this need, this paper
introduces a design space exploration (DSE) method that
determines the best FPCT architecture for a set of benchmarks
deemed by the vendor to be of sufficient importance. An FPCT
can be described in terms of three parameters, which are
described in Section 3. T|he DSE enumerates the different legal
combinations of these three parameters, each of which
corresponds to a different FPCT; each FPCT is synthesized, and

1 In our prior work [6, 7], the name of the FPCT was “Field

Programmable Counter Array” (FPCA); ref. [6] describes a
preliminary version that was revised significantly in ref. [7].

each application is then mapped onto it. From the mapping, we
can determine the area and delay for each benchmark. The areas
and delays are averaged, yielding a Pareto curve in terms of area
and delay. The Pareto optimal solutions are then presented to the
vendor, who can then select the architecture with the guarantee of
Pareto optimality.
To speed up the DSE, we introduce a metric called I/O utilization,
which can be computed for each FPCT prior to synthesis. We
have observed a strong correlation between I/O utilization and the
delay and area observed for each benchmark following synthesis.
To prune the design space, the I/O utilization is computed for
each benchmark on each FPCT that has been enumerated; only
those architectures for which at least one benchmark has a high
I/O utilization are synthesized and evaluated directly. Due to this
correlation, the user can prune the search space while retaining
high confidence that the DSE will still explore the best FPCTs.

2. FPCT ARCHITECTURE
This section summarizes the key design points of the FPCT
architecture and explains which parameters are varied by the DSE
in the following section.
The basic unit of computation in an FPCT is called a Compressor
Slice (CSlice); an FPCT is a 1-dimensional array of CSlices. A
CSlice takes as its input a set of bits to be summed; it sums these
bits, and produces one (or more) output bits representing the sum.
Additionally, each CSlice propagates carry-out bits to subsequent
CSlices, and receives carry-in bits from it preceding CSlices. The
mapping process, which synthesizes an instance of multi-input
addition or partial product reduction on an FPCT maps all of the
input bits onto a contiguously set of CSlices. Details on the
architecture and mapping process can be found in a prior paper by
Cevrero et al. [7].
Fig. 1 illustrates the basic CSlice architecture. Three parameters
of the CSlice are varied by the DSE, and are highlighted in gray:
the First Counter Size (FCS), the Generalized Parallel Counter
(GPC) Configuration Circuit (GPCCC), which subsumes the
Input Configuration Circuit (ICC), and the Maximum Output
Rank Configuration (MORC). Two other modules shown in Fig.
1—the Chain Interrupt Configuration Circuit (CICC) and Output
Multiplexing Circuit (OMC) are necessary for correct operation,
but can be derived deterministically from the FCS, GPCCC/ICC,
and MORC. The remainder of this section describes these three
parameters and modules in detail.

2.1 First Counter Size (FCS)
An m:n (parallel) counter is a circuit that takes in m input bits,
counts the number of inputs that are set to ‘1’, and outputs the
result as an unsigned n-bit binary integer in the range [0, m]; it
follows that ()⎡ ⎤1mlogn 2 += .

Parallel counters are a fundamental building block for compressor
trees [19]. In the FPCT, each CSlice contains a vertical chain of
counters in descending order of size; the pattern is as follows: the
number of output bits of the following counter is equal to the
number of input bits of the preceding counter, followed by a CPA.
In Fig. 1, the chain is: {31:5, 5:3, 3:2}; in general, the size of each
counter in the chain is deterministic once the FCS is given.

208

Increasing the FCS increases the input bandwidth of the CSlice (as
well as the FPCT, as all CSlices are identical). The FCS, however,
is the largest component in the CSlice, so increasing its size may
significantly impact the area of the FPCT.

The Compression Ratio of an m:n counter is the ratio m/n of the
number of input to output bits; for a fixed number of output bits n,
m/n is maximal when m = 2n – 1. For example, the compression
ratio of a 7:3 counter is 2.33, while that of a 6:3 counter is 2. As
the goal of the FPCT is to compress a large number of input bits
down to two per column (which are then added by the CPA),
counters with higher compression ratios are the most effective. Our
DSE considered 15:4 and 31:5 counters for our FCS; for the
benchmarks considered in this study, 63:6 counters were simply
too large, and lead to excessive delay and area.

2.2 Generalized Parallel Counter (GPC)
Configuration Circuit (GPCCC)
Let B = bs-1bs-2…b0 be an s-bit unsigned binary integer, where b0
is the least significant bit (LSB) and bs-1 is the most significant bit
(MSB). The subscript r of bit br is called the rank of br. Each bit
of rank r contributes a total value of br2r to the value of B.
Given a set of input bits to sum, a column is the set of bits of the
same rank from each integer. An m:n counter takes in m input bits
from the same column, each having rank r, and produces n output
bits of rank r, r+1, …, r+(n-1) respectively. A Generalized
Parallel Counter (GPC) [18] is an extension of a parallel counter
that can compress input bits from multiple columns. Formally, a
GPC is defined as a tuple (kt-2, kt-3, …, k0; n), where kr is the
number of input bits of rank r summed by the counter, and n is the
number of output bits.

For example, a (5, 5; 4) GPC sums five bits of rank 1 and four
bits of rank 0; the maximum output value is 15, so n=4 output bits
are required. Leading zeros are generally omitted from a GPC
definition, e.g., one would write (5, 5; 4) in lieu of (0, 5, 5; 4).

One implementation of a GPC is to use an m:n counter, where
each input bit of rank r is connected to 2r GPC inputs. This
architecture requires that m > 2t-1 + 2t-2 + … + 1; any unused
inputs can be driven to ‘0’.

The GPC Configuration Circuit (GPCCC) shown in Fig. 1
extends the largest m:n counter in the chain so that it can
implement a variety of GPCs. Fig. 2 shows an example in which a
GPCCC placed in front of a 15:4 counter allows it to implement a
(5, 5; 4) GPC. The GPCCC has ten inputs and fifteen outputs. The
five inputs on the right-hand-side of Fig. 2 have rank 0; the five
inputs on the left-hand side can be configured as rank 0 or 1 by
setting the appropriate configuration bits. Thus, this specific
GPCCC architecture allows the 15:4 counter to be configured as
an m:n counter with up to 10 inputs, or a variety of different
GPCs: (5, 5; 4), (4, 6; 4), (3, 7; 4), (2, 8; 4), and (1, 9; 4).

For each FCS the DSE enumerates all GPCCCs that can extend it
without exceeding the input or output requirements. We found the
number of GPCCCs to be tractable for the 15:4 and 31:5 counters
explored here, but prohibitively large for 63:6 counters.

2.3 Input Configuration Circuit (ICC)
The Input Configuration Circuit (ICC) in Fig. 1 allows the 31:5
counter to implement smaller counters, e.g., by setting two input
bits to ‘0’, it can implement a 29:5 counter. Given a GPCCC, the
ICC is derived deterministically: if the GPCCC has m input bits,
then an m-input, m-output ICC is required. A configuration bit is
required for each wire, along with an AND gate; setting each
configuration bit to ‘0’ independently drives each ICC output to
‘0’.

2.4 Maximum Output Rank Configuration
(MORC)
Each CSlice can be configured to produce more than one output
bit by replicating portions of the counter chain after the largest
counter. If the chain is replicated k times, then the Cslice can be
configured to produce 1 to k output bits of ranks 0 to k – 1; k – 1
in this case is called the Maximum Output Rank Configuration
(MORC). The Output Rank Configuration (ORC) is the number of
output bits that the CSlice is currently configured to produce.

15:4 Counter

Configuration Bit

Figure 2.
Illustration of a GPCCC.

G
P

C
C

C

C
ha

in
 In

te
rr

up
t C

on
fig

ur
at

io
n

O
ut

pu
t M

ul
tip

le
xi

ng

C
ha

in
 In

te
rr

up
t C

on
fig

ur
at

io
n

O
ut

pu
t M

ul
tip

le
xi

ng

Input
Configuration

GPC
Configuration

31:5

 5:3

 3:2

CPA

 5:3

 3:2

CPA

GPC Config. Circuit
(GPCCC) and Input
Config. Circuit (ICC)

{15:4, 31:5} in
our experiments

First Counter Size (FCS)

Figure 1.
The CSlice architecture template [7, Fig. 4(e)], which is

characterized by 3 parameters.

Maximum Output Rank Configuration (MORC)
{0, 1, 2} in our experiments

209

2.5 Output Multiplexing Circuit (OMC)
The carry bits propagated from one CSlice to the next differ,
depending on the ORC. If the MORC is k – 1, then a k:1
multiplexer is required to select among k different possibilities for
each carry-out bit. The Output Multiplexing Circuit (OMC)
contains a multiplexer on each carry bit that is propagated from
one CSlice to the next: the OMC is not needed if the MORC is 1.
The OMC can be derived deterministically from the FCS and
MORC; although it influences both the delay and area of the
circuit, it is not an independent parameter that is varied by the
DSE.
Increasing the MORC increases the area of a CSlice by
replicating the chains of counters and bitwidth of the CPA,
allowing each CSlice to produce multiple output bits. Although
this yields a larger CSlice, it can reduce the number of CSlices
required to map each benchmark. The CSlice area is dominated
by the area of the largest counter; thus, increasing the MORC
allows the mapper to use fewer CSlices overall, which yields
better area utilization. The drawback is that the extra multiplexers
in the OMC increase the critical path delay through each CSlice.

2.6 Carry Propagate Adder (CPA) Chain
Interrupt Configuration Circuit (CICC)
A carry-propagate adder (CPA) [7, Fig. 8] performs the final
addition of the sum and carry outputs of the compressor tree. To
support an ORC of rank j, a j-bit CPA is required; the carry-out
bit is propagated to the next CSlice. To support a MORC of rank
k, any k-bit CPA can produce the sum bits; however, all of the
carry-out bits for rank j, 1 < j < k are required, since any of these
bits could be propagated to the next CSlice via the OMC.

The Chain Interrupt Configuration Circuit (CICC), shown on the
right-hand side of Fig. 1, allows the user to program the carry-in
bit of each CSlice to 0. A single multi-input addition or
multiplication operation may not use the complete FPCT;
interrupting the carry-chain permits a second independent
operation to use the remainder of the FPCT. This functionality
was not considered during our DSE; nonetheless, the CICC was
generated and synthesized for each CSlice for completeness.

3. Design Space Exploration
The following subsections describe the DSE platform that was
used in our experiments. The platform, which is shown in Fig. 3,
consists of several elements:

• Generic HDL models that hierarchically describe the FPCT.

• Perl scripts that perform the DSE operations: configuring the
HDL models, mapping input compressor trees onto the
FPCT, invoking the synthesis tool, and extracting timing and
area results from reports generated by the synthesis tool.

• TCL scripts that synthesize the FPCT, remove false paths,
and generate the required timing and area reports.

• Other tools and scripts used to format the DSE results, etc.

3.1 FPCT HDL Model
The FPCT/CSlice architectures are modeled completely in
VHDL. Generic module design capabilities are used to
parameterize the FPCT/CSlice architectures. A few parameters,
such as the FCS, are calculated offline by the generator script and

the corresponding architectural components are written to a
VHDL package which is used by the appropriate design modules.

Fig. 3 shows the structure of the model. Solid lines represent
hierarchical dependencies and dependencies between modules,
while dashed lines represent parameterized dependencies based
on the high-level package, fpct_pkg. fpct_top is the top-level
module, cslice is the CSlice model, cntr models a generic m:n
counter, and ICC, GPCCC, CICC, and CPA respectively model
the components of the same name; sreg models a shift register
(used by the CICC, ICC, OMC, and GPCCC); and, the package
GPCCC_block contains sub-blocks used to construct the GPCCC.

The model used is generic in terms of the three parameters that
characterize the FPCT (the FCS, GPCCC/ICC, and MORC), and
was developed using a synthesizable subset of VHDL. Each
FPCT sub-block was modeled in a generic fashion. Sub-blocks
were connected together to form higher-level blocks, which were
also generic. Most of the generic blocks were modeled using
generic statements in VHDL; others were calculated using a Perl
script and written to a VHDL package included by other modules;
the remainder of the model was developed in pure VHDL.

The parallel counters were modeled using a generic compressor
tree built from full- and half-adders, which was then optimized
using Synopsys Design Compiler v2006.06 using the
compile_ultra option. The implementation used a TSMC 90nm
process with an Artisan standard cell library.

The correct propagation of carry-out bits produced by the parallel
counters from the current and previous CSlices results in an
intricate interconnection scheme of counters, OMCs, CICCs, and
CPAs. The interconnection in a top-level CSlice was modeled
using a combination of process statements and VHDL functions.
This approach yielded correct and fully verifiable VHDL code.

The DSE considers two FCSs, 15:4 and 31:5 and three MORCs,
1, 2, and 3. This results in CSlice architecture descriptions for
which only the GPCCC/ICCC is varied. Performing complete
synthesis of the architecture for each case significantly increases
the exploration time and introduces non-determinism due to the
specific algorithms used for optimization by Synopsys Design
Compiler. Therefore, the non-GPCCC/ICC portions of the six
baseline CSlice architectures were synthesized and optimized
separately and saved in a library. During the DSE, only the
GPCCC/ICC’s are generated anew and synthesized; the rest of the
CSlice is invoked from the library.

3.2 Exploration Module
The exploration scripts (one for each FCS) are the top-level
modules called by the user during DSE. The input includes the
input bit pattern (benchmark) and the MORC. The exploration
script, illustrated in Fig. 4, systematically enumerates each
GPCCC/ICCC that can fit the FCS; for each GPCCC/ICC it then
performs the following steps:

• The fpct_gen script is invoked to generate the FPCT. This
script, in turn, invokes the fpct_pkg module, which holds some
constants that were calculated offline, a testbench based on
System Verilog (see Subsection 3.3), and a TCL script for
proper synthesis of the FPCT.

• The mapping script (see Subsection 3.4) is invoked to
synthesize the input bit pattern onto the FPCT.

210

• Synopsys Design Compiler is invoked to synthesize the design
and generate delay and area reports.

The exploration script is invoked once per benchmark, as the
number of CSlices required varies.

3.3 Model Verification
The model was verified using a generic testbench developed in
SystemVerilog. A white box-based approach was taken to ensure
coverage of every corner of the verification space. Let FCSout be
the number of output bits of the largest counter in a CSlice. An
FPCT comprised of 2FCSout – 1 CSlices is generated; the middle
CSlice is the design under test. This value was chosen so that all
possible bit propagations from (to) preceding (subsequent)
CSlices will occur in the middle CSlice.

In all preceding CSlices, the ORC is configured to the minimum
required for full bit propagation; the ORC is configured as the
MORC for all subsequent CSlices. The ICC for the CSlice under
test and all preceding CSlices is set to accept all input bits, but is
disabled for subsequent CSlices which are used to propagate the
carry-out bits of the CSlice under test. The CICC is enabled in all
CSlices, except for the first.
The simulation proceeded as follows. In an outer loop, a random
ORC for the CSlice under test is chosen. The FPCT is configured
using these values together with the appropriate configurations of
the OMC, CICC, and ICC, which are derived deterministically.
Within an inner loop several input bit patterns are generated and
fed into the FPCT. A summation of the input bit patterns is
calculated by the testbench and compared against the output of
the FPCT. An error is generated if a mismatch occurs; all errors
were debugged prior to running the experiments.

3.4 Mapping Heuristic
The mapping heuristic was written in Perl and embedded in the
mapping module. Its output is a TCL script used by the synthesis
tool. The script is a sequence of set_case_analysis commands that
replace each configuration flip-flop in the FPCT with a constant.
Replacing flip-flops with constant values effectively configures
the FPCT, closing many false paths that would otherwise occur;
however, it is important that these flip-flops are not treated as
constant values that could be optimized via propagation. This
ensures that the critical path reported by the timing analyzer
corresponds precisely to the critical path of the input bit pattern
synthesized on the FPCT.
The mapping heuristic determines the number of CSlices required
for each benchmark. Unlike our previous work [7], which used
multiplce FPCTs to realize large compressor trees, our script
generates a complete FPCT that precisely matches the needs of
each benchmark. This eliminates the non-determinism that arises
from inter-FPCT routing delays; furthermore, this is highly
dependent on the placement of FPCTs within a larger FPGA—
which is beyond the scope of this work. Another drawback is the
high runtime of FPGA placement and routing, which would
significantly impede the DSE. Therefore, if a benchmark cannot
be mapped onto the FPCT because the FCS is small or the
GPCCC too restrictive, then the design is not evaluated.
The mapping heuristic solves a problem outlined in our previous
work, but has been simplified in order to reduce its runtime. It
employs a greedy right-to-left pass over the input columns,
starting with the least significant column in terms of rank. At each

Enumerate next GPCCC/ICC

fpct_gen

mapping

synthesis

All GPCCCs enumerated?

FCS, MORC, Input Bit Pattern

Delay/Area

Done

Figure 4.
Exploration module

fpct_top

fpct (CSlice)

CPA GPCCC SCC ICC CIC OMC

fpct_pkg

Figure 3.
FPCT HDL Model Structure

 GPCCC_block SREG

211

step, the heuristic generates a new CSlice and attempts to map
bits from the current column onto it. The heuristic grabs as many
bits as possible from the current and subsequent columns, but is
limited by the GPCCC and MORC; it then maps each of these bits
onto the current CSlice. If any bits in the current column remain,
then the mapping fails—a “vertical configuration” [7, Fig. 9(b)]
would be required for this benchmark, indicating that a larger FCS
or less restrictive GPCCC would be ideal for this benchmark.
If no bits remain from the current column, then the heuristic sets the
ORC of the current CSlice appropriately (e.g., [7, Fig. 6]), and
moves on to the next column. After processing all columns,
additional CSlices are generated to propagate all of the carry-out
bits until the complete sum is produced. This eliminates the need for
“horizontal” configurations [7, Fig. 9(a)], where one FPCTs carry-
outputs are propagates to the carry-inputs of the next.

4. I/O UTILIZATION: PRUNING THE DSE
Let a family be a set of FPCTs with a given FCS and MORC.
Within a family, we observed that the delay and area among the
FPCTs within each family strongly correlated to the number of
CSlices required, which we denote by N. Intuitively, reducing the
number of CSlices reduces area; however, it also reduces the critical
path delay through the CPA. Thus, one goal of the exploration
module is to find the GPCCC that simultaneously maximizes (1) the
number of input bits mapped to each CSlice and (2) the number of
output bits produced by each CSlice. This information can be
determined from the mapping phase of the exploration module
shown in Fig. 4; synthesis via Synopsys Design Compiler—the most
runtime-intensive portion of the DSE—can therefore be eliminated.
The input utilization of a CSlice measures its ability to consume
input bits. The most obvious measurement of input utilization is the
number of input bits mapped to each CSlice; however, this is
skewed by the GPCCC. For example, let FCS = 15:4; a GPCCC of
(0, 15; 4) allows up to fifteen inputs; on the other hand, a GPCC of
(5, 5; 4) has up to ten inputs, but has greater flexibility in terms of
mapping. Comparing the input utilization of the two is difficult,
since in the end, up to fifteen input bits of the FCS will be used in
both cases (see Fig. 2). Suppose that N CSlices are used and the
FCS is an m:n counter; now, let X be the total number of input bits
that are not driven to ‘0’ by the ICC after mapping; X ignores bits
mapped to the final CSlice, since it may be under-utilized due to a
lack of available bits rather than poor utilization; X also ignores the
additional CSlices that are appended to the FPCT to propagate the
carry bits.
The input utilization is defined as the quantity Uin = X/Nm. For
example, if our CSlice is configured as a (5, 5; 4) GPC and two bits
of rank 1 and four bits of rank 0 are mapped onto the CSlice, then
Uin = (2×21 + 4×20)/15 = 8/15 = 0.53.
The output utilization, Uout, is defined for CSlices whose MORC
exceeds 1. Recall for a given MORC of k, the ORC can be
configured to any value j, 0 < j < k-1, i.e., the CSlice can produce 1
to k output bits. Let Oi be 1 plus the ORC of the ith CSlice in the
FPCT. Then,

()1Nk

O
U

N

1i
i

out −
=
∑
= . (1)

By construction, Uout is constant if the MORC is 0, as each CSlice
that is used produces exactly one output bit.
We observed a strong correlation between the input and output
utilization of the different FPCTs that were enumerated during the
DSE for MORCs of 1 and 2. Due to this strong correlation, we
introduce a unified I/O utilization metric, U = UinUout which can be
computed for each FPCT that is generated for each benchmark.
Only the FPCTs with the highest I/O utilization values are then
synthesized during the DSE. Although there is no formal guarantee
of optimality in terms of either delay or area, I/O utilization found,
a-priori, most of the best FPCT architectures that were enumerated
for each benchmark in our experiments.

5. EXPERIMENTAL RESULTS
5.1 Benchmarks
We selected a set of seven arithmetic benchmarks to use in the DSE;
our goal was to find a mix of benchmarks that had a wide variety of
bit patterns (e.g., rectangular for multi-input addition, trapezoidal for
multiplication, irregular for filters, etc.). In principle, these
experiments could easily be repeated with a larger set of
benchmarks and fewer restrictions on the FPCT configuration (e.g.,
consider a wider variety of FCSs).
Table 1 lists the benchmarks, which include compressor trees for
three different multipliers, two multiinput addition operations, a FIR
filter [7, Fig. 5], and the Sum-of-Absolute Difference (SAD)
computation, which is used for motion estimation in video coding
algorithms such as H.264/AVC [8]. mul5x5 was selected based on an
anecdote in a paper by Kuon and Rose [12]: mul5x5 performs better
on the general logic of an FPGA than on the dedicated 9x9
multiplier in the embedded DSP blocks. mul36x18 represents either
36x18-bit multiplication or 18x18-bit multiplication with Booth
encoding. mul18x18, mul36x18, add16+16, and FIR were too large
to fit on an FPCT whose CSlices have an FCS of 15:4; the
remaining benchmarks fit on FPCTs whose CSlices have an FCS of
either 15:4 or 31:5.

5.2 DSE Results
This section summarizes the results of the complete DSE. For each
FCS size (15:4, 31:5), the DSE enumerated every legal
GPCCC/ICC and MORC combination, generated and synthesized
each FPCT, and then mapped each benchmark as described in
Section 3, yielding delay and area measurements. For each FPCT
architecture enumerated during the exploration, the delay and area
are averaged across the set of benchmarks.
Fig. 5 shows the area/delay results for the 3 benchmarks that could
be mapped onto FPCTs whose CSlices have FCS = 15:4; due to the
small number of GPCCC/ICCC and MORC configurations, Fig. 5
reports results for every FPCT.

Table 1.
Benchmark circuits used for the FPCT DSE.

Benchmark Description FCSs Mapped
mul5x5
mul18x18
mul36x18
add8x32
add16x16
FIR
SAD

5x5 Multiplication
18x18 Multiplication
36x18 Multiplication
Add 8 32-bit Integers
Add 16 16-bit Integers
FIR Filter
Sum-of-Absolute-Differences

15:4, 31:5
31:5
31:5
15:4, 31:5
31:5
31:5
15:4, 31:5

212

It is important to note that Fig. 5 only contains data points for three
benchmarks, as the others were too large to fit onto a single FPCT
whose CSlices have FCS = 15:4. Therefore, we conclude that a
larger FCS will be preferable. Nonetheless, Fig. 5 does illustrate
several interesting trends.
The average delay reported in Fig. 5(a) correlates strongly with the
MORC. The delays are clustered around 3 data points: all FPCTs
with a MORC of 0 had delays of approximately 1.4ns; all FPCTs
with a MORC of 1 had delays ranging from approximately 2.1 to
2.3ns; and all FPCTs with MORC of 2 had delays ranging from
approximately 3.2 to 3.4ns. It appears that for this portion of the
design space, the delays through the multiplexers of the OMC
distinguish the 3 data points.
The average areas reported in Fig. 5(b) range from approximately
17,500 to 25,000μm2. The worst data points in terms of area were
those with a MORC of 2. Among the FPCTs with a MORC of 0, the
smallest tended to be those with few rank-1 and rank-2 input bits.
Among the FPCTs with a MORC of 1, the best tended to be those
with a larger number of rank-1 inputs; the design points having
both rank-1 and rank-2 inputs in addition to rank-0 inputs tended
to be among the larger design points.
Fig. 6 shows similar results for the FPCTs with FCS = 31:5; here,
the total number of FPCT architectures in the design space is too
large to enumerate. Therefore, Fig. 6(a) shows the ten best and ten
worst architectures in terms of area; Fig. 6(b) shows the nine best
and ten worst architectures in terms of area along with the area of
the architecture from Fig. 6(a) that has the best delay. Dashed
arrows link the seven best architectures in Fig. 6(a) in terms of
their delay with their areas.

In Fig. 6(a), the best FPCT architecture in terms of delay has a
GPCCC/ICC of (12, 7; 5) and a MORC of 0; the next nine best
architectures all have MORCs of 1; the ten worst architectures all
have MORCs of 2. The delay of the best FPCT architecture is
approximately 1.8ns, while the delay of the second through ninth
best range from 2.6 to 2.8ns. The worst architectures have delays
that are between three and four times larger than the best; this
illustrates that there is a significant difference in quality between
different FPCT architectures, justifying the DSE: an arbitrarily-
selected FPCT is not likely to perform particularly well.

Fig. 6(b) shows that the nine smallest FPCT architectures have
approximately the same area, ranging from around 41,000 to
43,000μm2; the worst FPCT, in contrast, has an area of
approximately 60,000μm2. Once again, this justifies the DSE on the
grounds that an arbitrarily selected FPCT architecture may be
among the largest.

Dashed arrows from Fig. 6(a) to (b) associate the best seven best
performing FPCT architectures in terms of delay with their
respective areas. The fastest FPCT has an area of around
50,000μm2, which is somewhere in the middle, in terms of area. The
next second through seventh fastest FPCTs are the first through
sixth smallest. In terms of Pareto optimality, this yields two points:
one point that is optimal in terms of delay (with a significant area
overhead) and six approximately equivalent points that are optimal
in terms of area and close-to optimal in terms of delay. Depending
on the relative importance of delay and area, the designer is free to
choose either point.

X

0

10000

20000

30000

40000

50000

60000

70000

(1
3,

5;
5)

(1
1,

9;
5)

(1
0,

11
;5

)

(1
2,

7;
5)

(1
,9

,9
;5

)

(1
,1

0,
7;

5)

(1
2,

7;
5)

(1
1,

9;
5)

(1
3,

5;
5)

(1
2,

7;
5)

(1
,2

9;
5)

(3
,0

,1
9;

5)

(2
,2

7;
5)

(1
,0

,0
,2

3;
5)

(1
,0

,2
7;

5)

(1
,1

,2
5;

5)

(2
,0

,2
3;

5)

(1
,2

9;
5)

(1
,0

,2
7;

5)

(3
1;

5)

1 1 1 1 1 1 2 2 2 0 1 2 2 2 1 2 2 2 2 2

MORC and GPCCC/ICCC

um
2

Average Delay (FCS = 31:5)

0

1

2

3

4

5

6

7

(1
2,

7;
5)

(1
1,

9;
5)

(1
0,

11
;5

)

(1
3,

5;
5)

(1
,9

,9
;5

)

(1
2,

7;
5)

(1
,1

0,
7;

5)

(2
,7

,9
;5

)

(1
,8

,1
1;

5)

(2
,6

,1
1;

5)

(1
,1

,1
,1

7;
5)

(2
,2

7;
5)

(1
,1

,2
5;

5)

(2
,0

,2
3;

5)

(1
,1

,0
,1

9;
5)

(1
,0

,1
,2

1;
5)

(1
,0

,2
7;

5)

(1
,0

,0
,2

3;
5)

(1
,2

9;
5)

(3
1;

5)

0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

MORC and GPCCC/ICC

ns

(a)

(b)

ns

μm
2

Best Worst

Figure 6.
Average delay (a) and area (b) of the ten best and worst

FPCT architectures with FCS = 31:5; all benchmarks were
used. The dashed lines link the seven best architectures in

terms of delay with their respective areas.

Best Worst

Average Delay (FCS = 31:5)

Average Area (FCS = 31:5)

Average Delay (FCS = 15:4)

0

0.5

1

1.5

2

2.5

3

3.5

4

(1
5;

4)

(1
,1

3;
4)

(2
,1

1;
4)

(1
,0

,1
1;

4)

(3
,9

;4
)

(1
,1

,9
;4

)

(4
,7

;4
)

(4
,7

;4
)

(1
,1

,9
;4

)

(2
,1

1;
4)

(3
,9

;4
)

(1
5;

4)

(1
,1

3;
4)

(1
,0

,1
1;

4)

(4
,7

;4
)

(3
,9

;4
)

(2
,1

1;
4)

(1
,1

,9
;4

)

(1
,1

3;
4)

(1
,0

,1
1;

4)

(1
5;

4)

0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2

MORC and GPCCC/ICC

De
la

y
(n

s

Average Area (FCS = 15:4)

0

5000

10000

15000

20000

25000

30000

(4
,7

;4
)

(1
5;

4)

(2
,1

1;
4)

(3
,9

;4
)

(1
,1

3;
4)

(2
,1

1;
4)

(4
,7

;4
)

(3
,9

;4
)

(1
,1

,9
;4

)

(1
,0

,1
1;

4)

(1
,1

,9
;4

)

(1
5;

4)

(1
,1

3;
4)

(1
,0

,1
1;

4)

(4
,7

;4
)

(3
,9

;4
)

(2
,1

1;
4)

(1
,1

,9
;4

)

(1
,1

3;
4)

(1
,0

,1
1;

4)

(1
5;

4)

1 0 1 1 0 0 0 0 1 0 0 1 1 1 2 2 2 2 2 2 2

MORC and GPCCC/ICC

um
2

(a)

(b)

ns

μm
2

Figure 5.
Average delay (a) and area (b) of each FPCT architecture
with FCS = 15:4; three of seven benchmarks were used.

Average Delay (FCS = 15:4)

Average Area (FCS = 15:4)

Best Worst

Best Worst

213

The fastest FPCT architecture in Fig. 6(a) has a MORC of 0, and
therefore, no OMC; thus, it achieves its speed by eliminating
multiplexers in the critical path of the CPA and carry propagation
chains from the first CSlice. Since the second fastest FPCT has a
MORC of 1, it contains an OMC, and thus a multiplexer’s worth of
delay is accumulated through each CSlice; this explains the gap of
almost 8ns between the best and worst.
Because the fastest FPCT architecture has a MORC of 0, the CPA in
each CSlice produces exactly one output bit; consequently, it will
require more CSlices than architectures with larger MORCs. The
area of the larger counter replicated across more CSlices outweighs
the cost of replicating the chain of smaller counters across every
CSlice when the MORC exceeds 1.

5.3 I/O Utilization
As mentioned in Section 4, we observed a strong correlation
between the Uin and Uout values of the different FPCTs that were
enumerated during the DSE for MORCs of 1 and 2; the utilization is
constant if the MORC is 0.
As a representative example, Fig. 7(a) shows Uin and Uout for the
mul36x18 benchmark for every GPCCC/ICC configuration
enumerated for FCS = 31:5. Due to the size of the figure, the exact
GPCCC/ICCs could not be labeled; it suffices to note that 52
different GPCCC/ICCs were enumerated.
Six curves are shown: Uin and Uout for MORCs of 0, 1, and 2. The
correlation is clear from the figure: the design points with high/low
Uin values tend to have high/low Uout values, across all MORCs; this
justifies the use of the unified I/O utilization metric U = UinUout. In
general, the most profitable GPCCC/ICCs to explore tend to be
those with the highest I/O utilization.
mul5x5, whose Uin and Uout values for different GPCCC/ICCs are
shown in Fig. 7(b), is an outlier: due to its small size, many
GPCCC/ICC configurations achieved similar Uin and Uout values
(for their respective MORCs). Our goal is to use I/O utilization to
prune the search space by considering only the FPCT designs for
each benchmark whose utilization is maximal. Due to the large
number of points with maximal I/O utilization, the search space for
mul5x5 cannot be pruned efficiently with this method.
The number of design points in Fig. 7(a) and (b) differ; mul5x5 is
sufficiently small that it can fit onto any FPCT having FCS = 31:5,
regardless of GPCCC/ICC; mul36x18, in contrast, could not fit onto
every design that was enumerated; these designs were discarded and
their I/O utilization was not reported.

5.4 Pruning the Design Space
Here, we evaluate the effectiveness of pruning the design space with
I/O utilization for MORCs of 1 and 2. Fig. 8 shows all of the points
in the design space enumerated for each benchmark for FPCTs with
FCS = 31:5. For MORCs of 1 and 2, the four points having
maximum I/O utilization are circled and labeled (A-D for MORC =
1; E-G for MORC = 2). In all cases except for add8x32, the Pareto-
optimal points for each MORC are contained within the four points;
for add8x32, the points that are found are near-Pareto-optimal. For
the other benchmarks, the four points per MORC were typically the
best; however, there are some exceptions: for example, there are
several design points in Fig. 8(d) (SAD) that have a lower area and
approximately the same delay as points C and D.

Fig. 8 demonstrates that I/O utilization can find near-Pareto optimal
points in the design space without a full-blown DSE; however, it
may miss some points that are still good solutions. In Fig. 8, the
choice of four maximum I/O utilization points per MORC was
arbitrary; increasing the number of maximum I/O utilization points
per MORC would increase the likelihood of finding Pareto-optimal
solutions, but increases the runtime.
It is important to note that I/O utilization requires exhaustive
enumeration of the different points in the design space; the pruning
criterion reduces the number of designs to synthesize. It is also
worth noting that this only works for MORCs greater than zero;
when the MORC is 0, I/O utilization is constant, so all points are
equivalent. Other methods may need to be developed for pruning
when the MORC is 0. The effectiveness of pruning, however,
suggests that there may exist analytical methods to evaluate
different FPCTs without resorting to a pruned DSE; developing
such methods is one potential avenue for future research on this
topic.

6. RELATED WORK
DSE has been used for many academic and industrial studies for
FPGA architecture evaluation. A typical approach, similar to what
is done here, is to enumerate a set of different FPGA
architectures, place-and-route a set of benchmark circuits, and
extract appropriate metrics (e.g., delay, throughput, wirelength,
LUT usage, etc.) to evaluate the quality of the architectures under
consideration, using tools such as VPR [4, 5].

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

GPCCC/ICC

U
til

iz
at

io

Uin; MORC = 0 Uin; MORC = 1 Uin; MORC = 2 Uout; MORC = 0
Uout; MORC = 1 Uout; MORC = 2 (a)

U
til

iz
at

io
n

0

0.2

0.4

0.6

0.8

1

1.2

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161

GPCCC/ICC

U
til

iz
at

io
Uin; MORC = 0 Uin; MORC = 1 Uin; MORC = 2 Uout; MORC = 0
Uout; MORC = 1 Uout; MORC = 2

(b)
U

til
iz

at
io

n

mul36x18

Input and Output Utilization (FCS = 31:5)

mul5x5

Figure 7.
A strong correlation between input and output utilization

was observed; (a) mul36x18 is a representative example; (b)
one anomaly is mul5x5, where maximal utilization was

observed for many GPCCC/ICC combinations.

214

For example, many parameters of Altera’s Stratix II logic and
routing architecture were determined via DSE [13]; other DSE-
based studies include: Ahmed and Rose’s experiments on LUT
and cluster size [1]; Kuon and Rose’s more recent experiments on
the effects of varying architectureal parameters (e.g., LUT size)
and transistor-sizing vis-à-vis delay and area [11]; and Ye and
Rose’s evaluation of the use of bus-based interconnections in an
FPGA routing network [23].

Reconfigurable arithmetic accelerators are also related to this
work; typically, they have been proposed as customizable
accelerators for application-specific processors. Chimaera [10],
for example, is a LUT-based accelerator with fast carry chains;
many of these ideas have since been incorporated into the logic
blocks of high-performance FPGAs [13]. Yehia et al. [24]
performed a DSE for an accelerator for superscalar processors
that can collapse sequential logic chains into a single cycle; the
design space included parallel-prefix addition, LUTs to perform

Figure 8.
For each benchmark with FCS = 31:5, the points in the design space found by pruning. The four points whose utilization is

maximal when the MORC is 1 and 2, respectively, are shown; utilization is flat if the MORC is 0, so pruning is impossible. In
all cases except add8x32 (e), pruning found the Pareto-optimal points when the MORC is 1 or 2.

mul36x18 (FCS = 31:5)

0

2

4

6

8

10

12

14

85000 90000 95000 100000 105000 110000 115000 120000 125000

Area

De
la

y

D
el

ay
 (n

s)

Area (μm2)

mul5x5 (FCS = 31:5)

0

0.5

1

1.5

2

2.5

3

8000 10000 12000 14000 16000 18000 20000 22000

Area

De
la

y

D
el

ay
 (n

s)

Area (μm2)

E, F

G, H
A, B

C, D

mul18x18 (FCS = 31:5)

0

1

2

3

4

5

6

7

8

9

50000 55000 60000 65000 70000 75000 80000 85000

Area

De
la

y

D
el

ay
 (n

s)

Area (μm2)

E, F, G, H

B, C

A, D

E, F, G H

C A, B, D

SAD (FCS = 31:5)

0

0.5

1

1.5

2

2.5

3

3.5

13000 15000 17000 19000 21000 23000 25000 27000

Area

De
la

y

D

el
ay

 (n
s)

Area (μm2)

E
F, G, H

A, B C, D

add8x32 (FCS = 31:5)

0

1

2

3

4

5

6

7

8

9

35000 40000 45000 50000 55000 60000 65000 70000 75000 80000 85000

Area

De
la

y

D
el

ay
 (n

s)

Area (μm2)

E, F, G, H

A, B, C, D

Pareto-optimal points missed by pruning.
A complete exploration would find them.

add16x16 (FCS = 31:5)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

34000 35000 36000 37000 38000 39000 40000 41000

Area

De
la

y

D
el

ay
 (n

s)

Area (μm2)

E, F, G, H

A, B, C, D

FIR (FCS = 31:5)

0

1

2

3

4

5

6

7

8

44000 49000 54000 59000 64000

Area

De
la

y

D
el

ay
 (n

s)

Area (μm2)

E
F, G, H

A, B, C, D
A, B, C, D

E, F, G, H

Points examined when pruning is used.

Four points having maximum I/O utilization when MORC = 1

Four points having maximum I/O utilization when MORC = 2

Legend

FPCTs with MORC = 0 (Triangle), 1 (Square), and
2 (Diamond) respectively.

FIR

add8x32 add16x16

mul36x18 SAD

mul18x18 mul5x5

215

arbitrary logic functions at the bit-level, and optional shifters
placed at the inputs and output of the device. Ansaloni et al. [3]
recently introduced the Expression-Grained Reconfigurable Array
(EGRA), which contains several levels of arithmetic and logic
operations connected by programmable switches; the operations
supported include logical operations (e.g., AND, XOR), arithmetic
and logical shifts, and addition/subtraction and comparison
operations.
The FPCT differs from the preceding arithmetic accelerators in
two respects: (1) it is intended for integration into an FPGA,
rather than a processor, and (2) it accelerates multi-input addition
and multiplication operations, rather than chaining a CPA with
other logical operations.

7. CONCLUSION
This paper has presented a DSE methodology that can optimize
an FPCT for a given set of benchmarks; the I/O utilization metric
was introduced to reduce the number of FPCT architectures that
are synthesized during the DSE, while providing high confidence
to the user that the remaining design points are among the best.
We used a MORC of 2 for our previous FPCT evaluation; as a
result of this study, we have observed that a MORC of 1 tends to
be preferable in terms of delay and area—at least for the
benchmarks examined here. An FPGA vendor who wishes to
integrate an FPCT into a large reconfigurable device—such as an
FPGA—could use our approach to determine the best FPCT
architecture for their most important customer’s benchmark
circuits.

REFERENCES
[1] Ahmed, E., and Rose, J. The effect of LUT and cluster size

on deep-submicron FPGA performance and density. IEEE
Trans. VLSI, vol. 12, no. 3, March, 2004, 288-298.

[2] Altera Corporation. Stratix II vs. Virtex-4 Performance
Comparison. Available online: http://www.altera.com/

[3] Ansaloni, G., Bonzini, P., and Pozzi, L. Design and
architectural exploration of expression-grained
reconfigurable arrays, IEEE Symposium on Application-
Specific Processors, Anaheim, CA, USA, June 8-9, 2008.

[4] Betz, V., and Rose, J. VPR: a new packing, placement and
routing tool for FPGA research, 7th Int. Workshop on Field-
Prog. Logic and Applications, London, UK, September 1-3,
1997, 213-222.

[5] Betz, V., Rose, J., and Marquardt, A. Architecture and CAD
for Deep-Submicron FPGAs, Springer, 1999.

[6] Brisk, P., Verma, A. K., Ienne, P., and Parandeh-Afshar, H.
Enhancing FPGA performance for arithmetic circuits.
Design Automation Conf., San Diego, CA, USA, June 4-8,
2007, 334-337.

[7] Cevrero, A., et al.. Architectural improvements for field
programmable counter arrays: enabling efficient synthesis of
fast compressor trees on FPGAs. Int. Symp. FPGAs,
Monterey, CA, USA, February 24-26, 2008, 181-190.

[8] Chen, C-Y., et al.. Analysis and architecture design of variable
block-size motion estimation for H.264/AVC, IEEE Trans.
Circuits and Systems-I, vol. 53, no. 2, February, 2006, 578-
593.

[9] Dadda, L., Some schemes for parallel multipliers, Alta
Frequenza, vol. 34, May, 1965, 349-356.

[10] Hauck, S., Fry, T. W., Hosler, M. M., and Kao, J. P. The
Chimaera reconfigurable functional unit. IEEE Trans. VLSI,
vol. 12, no. 2, February, 2005, 206-217.

[11] Kuon, I., and Rose, J. Area and delay tradeoffs in the circuit
design of FPGAs. Int. Symp. FPGAs, Monterey, CA, USA,
February 24-26, 2008, 149-158.

[12] Kuon, I., and Rose, J. Measuring the gap between FPGAs
and ASICs. IEEE Trans. Computer-Aided Design, vol. 26,
no. 2, February, 2007, 203-215.

[13] Lewis, D. M., et al. The Stratix II logic and routing
architecture. Int. Symp. FPGAs, Monterey, CA, USA,
February 20-22, 2005, 14-20.

[14] Mirzaei, S., Hosangadi, A., and Kastner, R. High speed FIR
filter implementation using add and shift method, Int. Conf.
Computer Design, San Jose, CA, USA, October 1-4, 2006.

[15] Parandeh-Afshar, H., Brisk, P., and Ienne, P. Efficient
synthesis of compressor trees on FPGAs. Asia-Pacific
Design Automation Conf., Seoul, Korea, January 21-24,
2008, 138-143.

[16] Parandeh-Afshar, H., Brisk, P., and Ienne, P. Improving
synthesis of compressor trees on FPGAs via integer linear
programming. Design Automation and Test in Europe,
Munich, Germany, March 10-14, 2008, 1256-1261.

[17] Sriram, S., Brown, K., Defosseux, R., Moerman, F., Paviot, O.,
Sundararajan, V., and Gatherer, A. A 64 channel
programmable receiver chip for 3G wireless infrastructure,
IEEE Custom Integrated Circuits Conf., San Jose, CA, USA,
September 18-21, 2005, 59-62.

[18] Stenzel, W. J., Kubitz, W. J., and Garcia, G. H. A compact
high-speed parallel multiplication scheme, IEEE Trans.
Computers, vol. C-26, no. 10, October, 1977 948-957.

[19] Verma, A. K., and Ienne, P. Automatic synthesis of
compressor trees: reevaluating large counters, Design
Automation and Test in Europe (DATE ’07) (Nice, France,
April 16-20, 2007) 443-448.

[20] Verma, A. K., and Ienne, P. Improved use of the carry-save
representation for the synthesis of complex arithmetic
circuits, Int. Conf. Computer-Aided Design, San Jose, CA,
USA, November 7-11, 2004, 791-798.

[21] Wallace, C. S. A suggestion for a fast multiplier, IEEE
Trans. Elec. Computers, vol. 13, February, 1964, 14-17.

[22] Xilinx Corporation. Virtex-5 user guide. Available online:
http://www.xilinx.com/

[23] Ye, A. G., and Rose, J. Using bus-based connections to
improve field-programmable gate array density for
implementing datapath circuits. IEEE Trans. VLSI, vol. 14,
no. 5, May, 2006, 462-473.

[24] Yehia, S., Clark, N., Mahlke, S. A., and Flautner, K.
Exploring the design space of LUT-based transparent
accelerators. Int. Conf. Compilers, Architecture and
Synthesis for Embedded Systems, San Francisco, CA, USA,
September 24-27, 2005, 11-21.

216

