
A Light-weight Cache-based Fault Detection
and Checkpointing Scheme for MPSoCs Enabling

Relaxed Execution Synchronization

Chengmo Yang and Alex Orailoglu
Computer Science and Engineering Department

University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093

{c5yang, alex}@cs.ucsd.edu

ABSTRACT
While technology advances have made MPSoCs a standard ar-
chitecture for embedded systems, their applicability is increas-
ingly being challenged by dramatic increases in the amount
of device failures that may occur during execution. Conven-
tional fault tolerance techniques employ a duplication-and-
comparison strategy to detect arbitrary execution faults, as
well as a checkpointing-and-rollback strategy to recover from
the faulty state. Comparison and checkpointing are performed
either at task level, thus imposing a large amount of overhead
in verifying and backing up memory pages, or at instruction
level, thus necessitating a lock-step execution model which sig-
nificantly limits the attainable performance. To overcome the
shortcomings of both strategies, in this paper we propose a
cache-based fault tolerance scheme wherein the comparison
and checkpointing process is performed at the cache-memory
interface. By allowing two processors that execute duplicated
tasks to share a single data cache, the proposed scheme is able
to verify execution results before writing them back into mem-
ory, thus protecting the memory from being polluted by execu-
tion faults. This in turn significantly reduces the checkpoint-
ing overhead. Meanwhile, since only the data written into
memory are compared, the strict instruction-by-instruction
synchronization model used in multithreading processors can
be relaxed. The simulation results confirm that the proposed
scheme only imposes a performance overhead ranging from
1.4% to 10.4%, while both fault detection and execution check-
pointing can be effectively attained.

Categories and Subject Descriptors: C.4 [Performance
of Systems]: –Fault tolerance

General Terms: Reliability, Performance, Design

Keywords: Fault detection, Fault recovery, Checkpointing

1. INTRODUCTION
The Multiprocessor System-on-Chip (MPSoC) [1] is rapidly

becoming a standard organization for embedded systems to
help utilize the ever increasing amount of extant computa-
tional power. As technology scaling advances towards nanoscale,
however, MPSoCs will not only hit the wall of parallelism,
but also suffer from various types of device failures that may

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-469-0/08/10 ...$5.00.

occur during execution [2]. The shrinking feature size, the
higher frequency and the lower threshold voltages have accen-
tuated a number of electronic effects (e.g., electromigration)
that may lead to permanent device failures. Meanwhile, tran-
sient failures, which can be caused by alpha-particle strikes,
cosmic rays, or radiation from radioactive atoms [3], have
also increased by orders of magnitude due to these aggressive
technology trends and tighter noise margins.

The increasingly pessimistic news on the reliability front re-
quires the consideration of fault tolerance as a primary design
constraint for embedded MPSoCs so as to guarantee func-
tional and timing correctness even in the presence of hardware
and software failures. Generally speaking, the achievement
of fault tolerance necessitates redundancy at an amount in-
versely proportional to the regularity of the hardware compo-
nents. Storage structures, such as caches and memory, have
regular patterns, thus enabling the use of protection codes
such as parity bits and Error Correcting Codes (ECC). Faults
in instructions or in control flow can also be effectively de-
tected by signature monitoring techniques [4] through exploit-
ing internal redundancies. As a comparison, combinational
logic structures typically exhibit irregular patterns, thus re-
quiring the entire execution to be replicated in order to detect
arbitrary transient and permanent faults.

One fundamental obstacle to the adoption of fault resilient
systems has been the high cost and inflexibility associated
with standard techniques such as triple modular redundancy
(TMR), wherein each computation needs to be triplicated so
as to correct a single error. A more efficient set of solutions
typically employs a duplication-and-comparison strategy to
detect faults, as well as a checkpointing-and-rollback strategy
to restore the computation to a previously saved clean state
(a checkpoint). This class of techniques can be classified ac-
cording to the granularity of the comparison and checkpoint-
ing scheme. Task-level fault tolerance techniques duplicate
each task on distinct processors and provide distinct memory
regions to each task, necessitating the comparison and check-
pointing of all the modified memory pages of the two tasks.
This comparison and checkpointing process usually requires
the operating system to be involved, thus imposing signifi-
cant overhead. In contrast, instruction-level fault tolerance
techniques duplicate each instruction and compare the results
before writing them into the cache, thus preventing memory
from being polluted by execution faults. The two identical
threads can be executed either on two tightly-coupled cores
within an MPSoC [6], or on a Simultaneous and Redundantly
Threaded (SRT) processor [5]. However, both schemes neces-
sitate a lock-step execution model such that no instruction in
the leading thread can be committed until the trailing thread
verifies its correctness, thus significantly increasing the exe-
cution latency of a single instruction. These techniques also

11

Queue
Load value

Queue
Store

Queue
Branch

leading

SMT core

Cache

(a) SRT processors

Core I Core IICore I

(c) Task−level duplication (d) Proposed scheme

Core I Core II

Cache Cache

(b) Lockstep CMPs

trailing
cycle by cycle
comparison

Core II

trailingleading

Cache

Memory

compare &
checkpoint

compare & checkpoint

space
Memory

Cache

leading

space
Memory

Cache

trailingcompare &
checkpoint

checkpoint
compare &

Figure 1: Differences between SRT, lockstep CMP, task-level duplication and proposed scheme

require the use of dedicated hardware queues [5, 6] to forward
the load values, the branch results and the execution results
of the leading thread to the trailing thread. The significant
hardware overhead and the performance degradation preclude
these techniques from being widely used by embedded MP-
SoCs, which typically exhibit stricter hardware and timing
constraints than general purpose multiprocessors.

To design a light-weight fault detection and checkpointing
scheme for embedded MPSoCs, in this paper we propose a
cache-based fault tolerance framework wherein the compar-
ison and checkpointing process is performed at the cache-
memory interface. Rather than employing a dedicated hard-
ware queue to buffer execution results of the leading thread,
we propose to share a single cache between the two identical
threads, thus allowing the trailing thread to verify the store
values produced by the leading thread directly in the cache.
Meanwhile, as data stored in the cache are compared before
being written into memory, the memory is strictly protected
from being polluted by execution faults. This implies that
a checkpoint only needs to be established whenever a dirty
cache line is written back into memory, and only the proces-
sor state needs to be checkpointed. As a result, the leading
and the trailing threads do not need to compare each pair of
execution results. Instead, they only need to synchronize at
each checkpoint, thus significantly reducing the performance
overhead imposed by the lock-step execution model.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the limitations of current fault tolerance tech-
niques. Section 3 motivates the proposed scheme. Sections
4 and 5 present the detailed design and implementation of
the proposed light-weight fault detection and checkpointing
mechanism. Section 6 experimentally verifies the efficacy of
the technique, while section 7 summarizes the paper.

2. TECHNICAL BACKGROUND
The elevation in fault rates has caused increasing research

attention to be paid to the incorporation of fault tolerance
into computation systems. However, as the occurrence of
faults is still relatively sparse compared to the fault-free cases,
fault tolerant techniques should be evaluated based not only
on their effectiveness in detecting and correcting errors, but
more importantly on their efficiency so that the associated
performance and hardware overhead can be minimized. Given
the severe power constraints of modern SoC devices, the need
for maximally efficient fault tolerance methods becomes even
more critical and urgent.

Essentially, the attainment of fault tolerance necessitates
solutions to two fundamental issues: fault detection and ex-
ecution recovery. Redundant execution has been established

as an effective approach for detecting arbitrary transient and
permanent faults in combinational logic structures. Tradi-
tionally these techniques have been classified into two cate-
gories: time redundancy and space redundancy. Time redun-
dancy is achieved by executing a task on the same hardware
multiple times, such as in the Simultaneously and Redun-
dantly Threaded (SRT) processors [5] shown in Figure 1a.
To detect faults, SRTs require not only an output comparator
to verify execution results, but also an input replicator so as
to enable the two threads to independently read input data.
Typically the input replicator and the output comparator are
implemented through two centralized shared structures [5],
namely, a Load Value Queue and a Store Queue. The leading
thread needs to be stalled if either queue is full, while the trail-
ing thread needs to be stalled if either queue is empty. Ob-
viously, time redundancy techniques, such as SRT, can only
be used to tolerate transient faults. Space redundancy, on
the other hand, is achieved by executing a task on multiple
disjoint processors so as to tolerate both transient and perma-
nent faults. The duplicated tasks may be executed at differ-
ent timing steps (Figure 1c), implying that distinct memory
regions need to be provided for each task, and each modi-
fied memory page needs to be compared for fault detection.
As an alternative, the duplicated tasks can also be executed
on two tightly-coupled cores on a cycle-by-cycle basis, such
as the Compaq NonStop Himalaya system [9] (Figure 1b).
This highly synchronized lock-step execution model enables
the results of each pair of instructions to be easily compared,
yet imposes significant performance overhead. Meanwhile, as
the two copies of the task do not communicate during ex-
ecution, both copies will incur mis-speculated branches and
cache misses independently, leading to less efficient resource
utilization and unnecessary performance degradation.

In addition to fault detection, the achievement of fault re-
silience also necessitates recovery techniques, which should
either preclude faults from modifying computation states, or
roll the execution back to a previously saved clean checkpoint
upon fault detection. The first strategy is usually employed
in SRTs and lock-step multiprocessors [7, 8], wherein an in-
struction in the leading thread cannot write its result to either
a register or the cache until the trailing thread verifies its
correctness. Obviously, this strategy significantly increases
the execution latency of a single instruction, thus not only
requiring extra hardware to save instruction results, but fur-
thermore delaying the release of hardware resources, such as
physical registers and ROB entries. In contrast, the check-
pointing and rollback strategy allows results to be written
into registers and memory without being compared, yet needs
to constantly save the computation state, including both reg-
ister space and memory space. One set of techniques estab-

12

lishes checkpoints at a higher level using the virtual memory
translation hardware [10], wherein a backup copy needs to be
created before modifying any memory page. Another stan-
dard technique is to use a recovery cache to record all the
data written in memory that are part of a checkpoint state
[11]. Every store to a memory location must be preceded by a
load to maintain the data in the recovery cache. These backup
techniques impose significant hardware and performance over-
head constantly on the system, since traditionally checkpoints
are established per a fixed number of instructions or execu-
tion cycles. Some researchers have tried to adaptively adjust
checkpointing frequency according to fault rates [12]. How-
ever, since the checkpointing overhead is not reduced, these
adaptive techniques are only effective when the fault rate is
low. If the fault rate is high, these checkpointing approaches
will be either impractical as an application would spend most
of its time taking checkpoints, or infeasible as there would be
insufficient time for an application to save its execution state
before the next failure occurs.

3. TECHNICAL MOTIVATION
The detailed examination presented in the last section indi-

cates that the fundamental shortcoming of the task-level fault
tolerance techniques (Figure 1c) is that data is allowed to be
written into memory before being verified, thus creating extra
complexity in detecting faults and establishing checkpoints.
On the other hand, the crucial limitation of the cycle-by-
cycle comparison techniques (Figure 1a&b) is the significant
performance overhead imposed by the highly synchronized ex-
ecution model, as well as the hardware overhead in holding
the results of the leading thread. To overcome these limita-
tions, a light-weight fault detection and checkpointing scheme
should allow execution results to be written into registers and
caches before being compared, yet protect memory from be-
ing polluted by execution faults. This has motivated us to
propose a cache-based fault tolerance mechanism wherein the
comparison and checkpointing process is performed at the
cache-memory interface. As shown in Figure 1d, both threads
are allowed to write results into registers and a shared data
cache, yet only the store values in the cache are compared
for fault detection. This fault detection scheme completely
eliminates the necessity of dedicated hardware queues to cap-
ture load and store values. Meanwhile, as the data in cache
are compared before being written into the memory, a check-
point only needs to be established when a dirty cache line
needs to be replaced, necessitating only the processor state,
that is, the program counter (PC) and the register values1, to
be checkpointed. This highly reduced checkpointing overhead
in turn enables checkpoints to be established more frequently
for systems with high fault rates.

Utilizing the cache-memory interface to reduce checkpoint-
ing overhead has been proposed in [13] for single processors,
and in [14] for shared-memory multiprocessors with snooping
protocols. However, previous research has not specifically ad-
dressed the issue of sharing a single data cache among two
duplicated threads so as to enable fault detection to be inte-
grated together with rollback recovery. On the other hand,
the sharing of a single cache does create a critical issue of
cache block dependences, which may force the leading thread
to constantly wait for the trailing thread, thus creating un-
necessary performance degradation. The impact of this issue
can be illustrated more clearly through the loop example pre-
sented in Figure 2.

1Some branch handling and exception taking techniques may
necessitate a few special purpose registers to be additionally
saved.

A[i] = A[i+1] + 1;

A[i−1] = 2*i;

}

for (i=1; i<MAX; i++) {

Figure 2: Loop with cache block dependences

In this loop, each array element A[i] is first read at the

(i − 1)th iteration, and then written at the i
th and (i + 1)th

iterations. As the two threads are not executed in a lock-step
manner, the L (leading) thread may run one iteration ahead
of the T (trailing) thread, leading to two possible types of
cache block dependences. The L thread may try to write A[i]
before the T thread reads the old value (a WAR dependence),
thus causing the T thread to obtain an incorrect value, or
may try to overwrite A[i − 1] before the T thread checks the
old value (a WAW dependence), thus causing the T thread to
incorrectly report the detection of an error.

Although both types of cache block dependences can be
preserved by forcing the L thread to wait for the T thread,
this extra synchronization requirement may reduce the per-
formance benefit that could be obtained by the relaxed non-
lockstep execution model. Another possible yet highly ineffi-
cient solution would be to duplicate each load value and each
store value in dedicated hardware queues for the T thread
to access, as has been performed by the SRT processors. In-
stead of duplicating all the load and store values, we propose
to only duplicate a cache block upon the detection of a WAR
or WAW cache block dependence. The cache design is ex-
tended so as to incorporate a split capability: the L thread is
allowed to write to the block in the regular cache, while the
old value is placed in a victim cache for the T thread to read
or to verify. The cache access controller is furthermore ex-
tended to detect both types of cache block dependences, split
a cache block into two versions, and merge the two versions
together if later the T thread catches up to the L thread in
the execution progress.

4. CACHE-BASED FAULT TOLERANCE

4.1 Architectural overview
Essentially, the proposed fault detection and recovery frame-

work duplicates an application into two threads on an MPSoC
platform to achieve fault resilience. Unlike traditional SRT
processors, these two threads will be simultaneously executed
on different cores to achieve a more balanced workload and
to detect permanent faults in addition to transient faults.
This architecture model is more suitable for embedded sys-
tems since the processing elements (PEs) on the MPSoC plat-
form are not necessarily multithreaded cores. In contrast,
the PEs can either be in-order single-issue cores, or VLIW
cores, or superscalar cores, or even heterogeneous cores with
identical instruction sets. The only architectural constraint
imposed by the proposed fault tolerance scheme is that each
core should perform memory accesses non-speculatively and
in-order, so that the duplicated tasks would generate identical
memory access patterns during execution. For most embed-
ded MPSoCs, this requirement can be naturally fulfilled.

Since the two threads generate identical memory access pat-
terns in the fault free case, a single L1 data cache can be
shared between the two threads to achieve more efficient re-
source utilization. Meanwhile, this sharing enables the de-
sign of an efficient fault detection scheme. By ensuring that
one thread, denoted as the leading (L) thread, always runs
ahead of the other, denoted as the trailing (T) thread, the
L thread can write results into the cache, while the T thread

13

can directly verify the correctness of these values. Only when
the two threads agree can a data be written to the lower level
storage in the memory hierarchy (either the main memory
or the L2 cache if the system has multiple levels of caches).
Obviously, this cache-based fault detection mechanism elim-
inates the use of dedicated hardware queues for holding the
results of the L thread.

While the proposed execution model requires the L thread
to always run ahead of the T thread, this run-ahead require-
ment is not imposed on a cycle-by-cycle basis, but only for
memory access instructions. In other words, the two threads
can execute non-memory access instructions independently ;
yet before executing a load/store, the T thread needs to en-
sure that the L thread has already executed that instruction.
To accomplish this run-ahead property, the proposed scheme
uses an access counter to globally track the difference in the
memory access counts of the two threads: the counter value is
incremented whenever the L thread executes a load/store, and
decremented whenever the T thread executes a load/store.
The execution of the T thread is stalled if the value of the
counter is 0, thus fulfilling the run-ahead requirement.

The run-ahead requirement of the L thread provides an ex-
tra benefit in balancing the workload. On one hand, the L
thread runs ahead in execution, brings data into cache upon
misses, and initiates a checkpointing request if a dirty cache
needs to replaced. On the other hand, the T thread manages
fault detection: each store initiated by the T thread will be
changed into a read of the corresponding cache block and a
comparison of the two values. Once the T thread also reaches
the computation point at which the L thread initiates the
checkpointing request, the two processor states will be com-
pared to verify the correctness of the checkpoint.

In line with other redundant execution-based fault toler-
ance schemes, the proposed technique only targets the faults
occurring in the execution pipeline. Faults in instructions or
in control flow are assumed to be detected using signature
monitoring techniques [4]. Storage structures such as caches,
register files, and the main memory are assumed to be pro-
tected using ECC, while buses are assumed to be protected
using parity. This safe storage is therefore utilized to store
the checkpoints, so that the execution can be recovered to a
clean state upon the detection of any computation fault.

4.2 Fault detection
The design of a light-weight checkpointing scheme necessi-

tates the preclusion of execution faults from polluting mem-
ory states. In general, an execution fault would affect memory
states if it propagates through the dependence chain to a store
instruction, thus causing either the store value or the store ad-
dress to be incorrect. Accordingly, the proposed cache-based
fault detection scheme not only compares each pair of store
values, but also verifies memory access patterns. Meanwhile,
the two threads will also record their register values individ-
ually at each checkpoint, thus enabling a comparison of the
two processor states to detect execution faults. The combi-
nation of the store verification and the register verification
ensures that any execution fault, if it has not been masked
during computation, will be detected eventually.

The proposed fault detection process is managed by the
cache controller. During execution, the L thread is allowed
to directly write its results into cache, while each write ini-
tiated by the T thread will be changed into a read of the
corresponding cache block and a comparison of the two val-
ues. Traditionally a valid cache block can either be ‘clean’
or ‘dirty ’, depending on whether the value of the block has
been updated or not. To support fault detection, however, an
extra ‘verified ’ state needs to be maintained so as to differen-
tiate whether or not the data in cache has been verified by the

T thread. A store initiated by the L thread would therefore
make a cache block dirty, while the same store later initiated
by the T thread would make the cache block verified, if the
two store values match.

Using this extra state, the proposed cache access strategy
can directly detect any mismatch in a pair of store values, as
well as faults in store addresses. In general, if an execution
fault causes a store address to change from Ax to Ay, both
the Ax and the Ay block would exhibit a mismatch in the
number of store instructions. This mismatch typically would
result in the value of the extra store being compared to the
value of the preceding or the subsequent store, thus causing a
value mismatch to be reported. If the extra store fails to be
compared, the cache controller can still detect an inconsistent
access pattern by monitoring the state of the cache block.
In fact, the cache controller will generate a “fault-detected”
signal for any of the following three types of faults:

Disagreeing register values: The T thread reaches the
checkpoint, while the current processor state of the T thread
does not match the processor state recorded by the L thread
at the same checkpoint.
Disagreeing store values: The T thread is about to write
a dirty cache block, while the value to be written does not
match the value in the block produced by the L thread.
Inconsistent store sequences: As the L thread always runs
ahead of the T thread, two cases will indicate the existence of
a mismatch in the store sequences: 1) the T thread is about
to write a cache block, while the data is not in the cache or
the block is not in the ‘dirty ’ or the ‘split ’ state, indicating
that the L thread has not written to that block yet. 2) The T
thread reaches the checkpoint, while at that time there exists
a ‘dirty ’ block in the cache, indicating that the T thread has
not verified the data written by the L thread.

These three cases clearly confirm that the proposed tech-
nique can detect un-masked execution faults that propagate
to either store values, or store addresses, or register values
at a checkpoint. Masked faults, on the other hand, would
not affect the correctness of the computation. Therefore, the
proposed light-weight fault detection technique can effectively
preclude execution faults from polluting either the main mem-
ory or the established checkpoints, which in turn enables the
design of a light-weight checkpointing and rollback scheme.

The design of a semantically correct fault detection scheme
also necessitates the preclusion of a third processor from pol-
luting memory states. More specifically, in a multi-core en-
vironment, a third processor may try to modify a block in
the proposed cache design using the cache snooping proto-
col. However, if the block is pending to be verified by the T
thread, this modification would cause the verification to fail.
Similarly, if the block is pending to be read by the T thread,
this modification would cause the T thread to load a data in-
consistent with the data already loaded by the L thread. To
preclude these potential violations of fault detection seman-
tics, in the proposed fault tolerance scheme, a third processor
is only allowed to modify a block in the shared cache if the
block is not at the dirty stage, and the block exhibits a bal-
anced number of read accesses from the two threads (which
can be detected using the technique presented in Section 4.5).

4.3 Checkpoint establishment
A checkpoint records complete information about the com-

putation state so that it may be utilized later to recover from
an error by restarting the computation from that point. Typi-
cally a checkpoint consists of the processor state as well as the
corresponding memory footprint. To reduce checkpointing
overhead, however, the proposed fault tolerance scheme does
not maintain extra copies for values written into memory. In

14

order to make the processor state and the memory footprint
consistent, whenever a data needs to be written into memory,
the corresponding processor state needs to be checkpointed.
In write-through caches, each store value needs to be written
into memory, thus requiring the register values to be recorded
on every store instruction so as to generate consistent check-
points. This checkpointing frequency can become intolerably
high. In contrast, the proposed fault tolerance scheme em-
ploys a write-back cache, implying that a checkpoint only
needs to be established upon the write-back of a block, that
is, whenever a dirty cache line needs to be replaced. For set
associative caches, the checkpointing frequency can be fur-
thermore reduced by modifying the replacement policy so that
clean lines are selected over dirty cache lines for replacement.
Meanwhile, the size of the shared cache can be enlarged to
be twice the size of the original private caches of each core,
thus reducing the write back frequency and in turn the check-
pointing frequency furthermore.

As the L thread always runs ahead of the T thread and as a
cache block will not be replaced if it is pending to be read by
the T thread, only the L thread will encounter cache misses
during execution. As a result, checkpointing requests will al-
ways be initiated by the L thread, if a cache miss requires a
dirty cache line to be replaced. However, the processor state
to be checkpointed is not the state when the last write to the
dirty cache line took place, since that state has already been
overwritten by subsequent execution. Instead, only the cur-
rent processor state of the L thread, that is, the computation
point at which the checkpointing request is initiated, can be
recorded. Therefore, in order to establish a consistent check-
point, not only the dirty cache line selected for replacement,
but also all the other dirty cache lines that have been updated
since the last checkpoint need to be written into memory.

The proposed checkpointing strategy can be illustrated more
clearly by considering the loop example presented in Figure 2.
To simplify the analysis, we assume that the cache is a direct
mapped cache with 8 lines, while each line is used to hold a
single array element. As all the cache blocks are invalid at
the beginning of the loop execution, the execution of the first
six iterations (i = 1 to 6) causes the 8 cache lines to be filled
with A[0], ..., A[7], respectively. At the 7th iteration, A[8]
needs to be brought into the cache, while the corresponding
cache line is occupied by A[0]. Since the value of A[0] has
been modified, this block needs to be written back into mem-
ory, thus requiring a checkpoint to be established before the
L thread loads A[8] into the cache. The processor state to be
recorded is the computation point when the L thread is about
to replace A[0] with A[8] (at the 7th iteration), rather than
the PC and register values corresponding to the last update
of A[0] (at the 1st iteration). Therefore, in order to maintain
a consistent memory footprint corresponding to the current
processor state, not only A[0], but also the other dirty cache
blocks, A[1], ..., A[6], should be written into memory.

When the L thread reaches a checkpoint, the T thread is
still in the process of verifying store values. The execution
of the T thread needs to be monitored so as to determine
whether the T thread has also reached that checkpoint. Only
monitoring the PC value would not suffice, since the check-
point may happen to be an instruction in a loop. Instead,
the proposed scheme only starts to compare the PC of the T
thread to the PC of that checkpoint if the two threads have
performed the same number of memory accesses, that is, if
the value of the global access counter equals 0. In the fault-
free case, a match of the two PC values, which indicates the
arrival of the T thread at that checkpoint, can always be de-
tected. If, on the other hand, no match between the two PC
values has been reported before the T thread issues a subse-

Invalid Clean Retired
read miss write back

VerifiedDirty
T write

L write

established
checkpointL write

write miss

fault detected fault detected

Replaceable

Unreplaceable

Figure 3: Cache state diagram to implement fault
detection, checkpointing, and rollback

quent load/store, a mismatch in the memory access pattern
has been detected, thus resulting in the reporting of a fault.

Once the T thread also arrives at a checkpoint with no in-
tervening error detection, a new checkpoint is established by
saving the processor state into reliable storage, either a ded-
icated hardware buffer or a fixed location in main memory,
and copying all verified cache lines into memory. However,
copying all verified cache lines into memory would generate
a burst of memory requests that may significantly degrade
system performance. To overcome this issue, we employ the
idea of making these cache lines unchangeable, which is origi-
nally proposed in [13] for single processors. More specifically,
we maintain an extra “retired” state for each cache line, and
all the “verified” cache lines will be marked as “retired” once
the T thread reaches the checkpoint with no error being de-
tected. The use of this extra state enables a distribution of
the write back requests for the retired blocks: during sub-
sequent execution, a retired block can be written back into
memory upon a replacement of that block, or upon the first
subsequent write-hit on that block.

The complete cache state diagram in supporting fault de-
tection, checkpointing and rollback is presented in Figure 3.
As can be seen, each cache block can be in any of five possible
states: the three traditional states of invalid, clean and dirty,
as well as the two extra, verified and retired, states. The tran-
sitions among these five states accomplish four fundamental
functions of the proposed fault tolerance scheme:

Fault detection: A store performed by the L thread will
make the corresponding cache block dirty, while the same
store performed by the T thread will make the cache block
verified if the two store values match. A fault will be reported
if the two store values differ.
Checkpoint initiation: The invalid, the clean, and the
retired states are marked as replaceable, implying that, a
cache block in these states can be replaced with no need of
establishing a new checkpoint. In contrast, if a dirty or a
verified block is selected for replacement upon a cache miss,
a new checkpointing request will be initiated by the L thread.
Checkpoint establishment: Once the T thread reaches a
checkpoint and no fault has been reported, all the verified
cache blocks will be marked as “retired”. During subsequent
execution, a replacement or the first subsequent write-hit of
a retired cache block requires the data to be first written into
memory, which will therefore make that block clean.
Execution rollback: Upon the detection of any fault, the
register values saved at the old checkpoint will be reloaded
to the register file of each thread, and all dirty and verified
cache blocks will be marked as invalid. The PC value saved
at the old checkpoint will then be reloaded to each thread so
as to resume execution from the old checkpoint.

4.4 Thread synchronization at checkpoints
The examination in the last subsection clearly shows that

in the proposed fault tolerance scheme, a checkpointing re-

15

W(A[i]) Write A[i]
R(A[i])
RM(A[i]) Read miss on A[i]

A check point

Read A[i]
register values
Compare

register values
Compare

register values
Compare

Synchronized checkpointing

time

time

R(A[8])

Leading

Trailing

R(A[8])W(A[0]) RM(A[8])

W(A[0])
Compare
store results

time

time

W(A[0])

R(A[8])W(A[0])

RM(A[8])
Leading

Trailing

Compare
store results

Cache footprint at checkpoint

A[0]
A[1]
A[2]
A[3]
A[4]
A[5]
A[6]
A[7]

Data

1
1
1
1
1
1
1

Dirty

0

RM(A[8])
R(A[8])

Asynchronous checkpointing

Figure 4: Synchronized v.s. asynchronous checkpointing for the loop example

quest is initiated by the L thread whenever a dirty or verified
cache line needs to be replaced, while the new checkpoint is
established by the T thread once it also reaches the same
computation point. The two threads can synchronize at each
checkpoint using two distinct approaches. On one hand, each
new checkpoint can be established synchronously : after ini-
tiating a checkpointing request, the L thread needs to await
the completion of the fault detection process of the T thread
and the isochronism of the two threads. Once the new check-
point has been established, both threads will simultaneously
be allowed to proceed, the block to be replaced (which is at
the retired state at that time) will be written into memory,
and the cache miss will be served. This synchronized check-
pointing strategy only needs to maintain a single checkpoint
at any time, yet unnecessarily forces the L thread to await
the T thread to fully catch up. On the other hand, if the T
thread has verified the correctness of the data to be replaced
and no more read accesses to that data are needed by the
T thread2, the cache block selected by the L thread is able
to be replaced. The data to be replaced, however, needs to
be stored in a dedicated register rather than being written
back into memory immediately, since the new checkpoint has
not been established yet. Meanwhile, since the T thread has
not verified the correctness of the processor state of the L
thread, the old checkpoint cannot be overwritten, and this
state needs to be recorded in extra storage. The value of
the global access counter also needs to be duplicated, thus
preventing subsequent memory accesses performed by the L
thread from interfering with the detection of the T thread
reaching the checkpoint.

The differences between synchronized vs asynchronous check-
pointing schemes can be observed more clearly in Figure 4,
which applies both strategies on the loop example shown in
Figure 2. A checkpointing request is initiated when the L
thread encounters the read miss on A[8] at the 7th iteration.
In the synchronized scheme, the L thread waits until the T
thread also reaches this computation point. At that time, if
no fault has been detected, a new checkpoint will be estab-
lished, A[0] will be written into memory, and then A[8] will
be brought into the cache. In contrast, in the asynchronous
checkpointing scheme, the L thread only needs to wait until
the T thread verifies the correctness of A[0], that is, upon the
completion of the store instruction at the 1st iteration. Then,
the value of A[0] and the processor state of the L thread will
be stored in safe storage, and the L thread will proceed to
bring A[8] into the cache.

Compared to the synchronized checkpointing scheme, the
asynchronous scheme necessitates extra storage to record the
data to be replaced, the global access counter, and the proces-
sor state of the L thread, yet reduces the waiting time of the
L thread by allowing it to proceed if the data selected for

2Further information on the detection of pending read ac-
cesses is to be found in the next subsection.

replacement (A[0]) is at the verified state and no more read
accesses to the data are needed by the T thread. However, in
this process the L thread should not write to the cache if the
new checkpoint is still pending to be established. Allowing
the L thread to write to the cache would either overwrite a
dirty cache block, causing the verification of the old value to
fail, or change a clean/verified block to dirty. When the T
thread arrives at the new checkpoint, this extra dirty block
will cause a fault to be reported. These two potential viola-
tions of the fault detection semantics constrain the L thread
to proceed only in a quite restricted manner without perform-
ing any cache write operation, if the new checkpoint is still
pending to be established.

4.5 Splitting and merging a cache block
As has been illustrated using the loop example, the non-

lockstep execution model we employ creates a critical issue
of WAR and WAW cache block dependences: the L thread
initiates a write request to a cache block, while the old value
is still pending to be read or be verified by the T thread.
Rather than forcing the L thread to constantly wait for the T
thread or duplicating each load value, the design goal of the
proposed fault tolerance scheme is to execute the two threads
independently without reliance on unnecessary synchroniza-
tion requirements, yet to selectively duplicate a load value
upon the detection of a cache block dependence. To achieve
this goal, we propose to incorporate a split capability into
the cache design: whenever a cache block dependence is de-
tected, the L thread is allowed to update the regular cache
block, while the old value is placed in a victim cache for the
T thread to read or to verify.

The fundamental issue encountered in supporting the incor-
poration of the split capability is the detection of a pending
read or write of the T thread. The latter case can be eas-
ily detected through checking the cache block state, since a
dirty state indicates the existence of a pending write of the T
thread. The detection of a pending read would also be triv-
ial, had the compiler marked the last load associated with
each store using profiling techniques. Unfortunately, such
compiler techniques would fail if the last read is condition-
ally performed according to branch outcomes. Nonetheless,
as the two threads exhibit an identical memory access pat-
tern, a purely dynamic technique can be developed to detect
a pending read through maintaining a read counter for each
cache block. The counter value, initialized to zero upon a
store by the L thread, is incremented upon a load by the L
thread and decremented upon a load by the T thread. In this
way, a store request initiated by the L thread is only allowed
to proceed directly if the counter of the corresponding cache
block is zero. If the counter is non-zero, however, a pending
read of the T thread is detected.

Upon the detection of a pending read/write by the T thread,
the cache block can be split into two if there exists a free

16

Invalid

L write before T read

Replaceable

Clean Retired
read miss write back

Split
L write before
T read/write VerifiedDirty

T write

L write

Unreplaceable

established
checkpoint

fault detected
L write

write miss

fault detected fault detected

L write before T read

T catchup

Figure 5: Adding a split state into cache design

entry in the victim cache: the old value will be saved in the
victim cache for the T thread to access, while the L thread can
proceed to overwrite the regular cache block. To accomplish
this function, an extra split state is added to the cache state
diagram, as shown in Figure 5. A write initiated by the L
thread would cause a cache block to enter the split state if
1) the block state is dirty, or 2) the block state is clean or
verified and the read count is nonzero. This state diagram
exhibits no transition from the retired state to the split state,
since a write-hit to a retired cache block requires the data to
be first written into memory, thus making the block clean.

Once a cache block has been split into two, the execution
of each thread becomes independent in that each thread has
its own copy of data to write, and each thread would read the
data written by itself. This independence also implies that a
store value cannot be verified if, before the T thread initiates
that store, the corresponding value in the regular cache block
has already been overwritten by the L thread. This overwrite,
however, would not cause any loss in fault coverage, since the
old store value would never be written back into memory.

Figure 5 also shows that a victim cache block can be merged
with a regular cache block if the T thread catches up to the
L thread in execution, that is, if the two copies of data are
produced by the same store of the two threads and the two
values match. This capability can be attained in the proposed
cache design through the addition of a version counter to each
block in the victim cache so as to determine whether the data
in the regular cache and in the victim cache are produced by
the same store. The counter value, initialized to 1 upon the
splitting of a cache block, is incremented upon a store by the
L thread and decremented upon a store by the T thread. If a
store performed by the T thread changes the version counter
value to 0, the T thread will additionally trigger a comparison
of the two split data copies for fault detection. If the two
values match, the entry in the victim cache will be deallocated
so that it can be reused to serve a subsequent split request.
Meanwhile, the corresponding regular cache block will be set
to the “verified” state, as shown in Figure 5.

It needs to be noted that in the aforementioned mechanism
two split blocks are only checked for a merging possibility
upon a store initiated by the T thread, since reading a victim
cache block would not alter the value of the version counter.
More crucially, only performing merge checking upon a store
eliminates the need of any read counter for a victim cache
block. Once two split blocks are merged together, the read
counter value in the regular cache should be set to the dif-
ference between the read counts of the two threads. For a
split cache block, however, the read counter in the regular
cache only records the read count of the L thread. Nonethe-
less, upon the completion of a store of the T thread, the read
count of the corresponding victim cache block is always 0.

Regular cacheVictim cache

Read Count
DataTag

Tag Data
Version CountFree

CPU address

000DSV= Invalid
Clean
Dirty

011 Verified

010
110

001 Retired
Split101

DSV

Figure 6: Hardware extension to traditional cache

Therefore, by performing merge checking only upon a store
of the T thread, the read count of the merged block would re-
main constant, if the checking indicates that two data copies
can be merged.

So far, we have discussed in detail the approach to split
a cache block upon the detection of a WAR or WAW cache
block dependence. Another situation that also necessitates the
split of a cache block is when the L thread wants to replace a
clean or retired block upon a cache miss, yet the old value is
still pending to be read by the T thread. Replacing a clean
or retired block does not create a checkpoint request. How-
ever, if the L thread proceeds to replace the data, a pending
read by the T thread would encounter a cache miss, which
is considered to be a faulty case in the proposed scheme. To
preclude this potential violation of fault detection semantics,
whenever the L thread selects a clean or retired cache block
for replacement, the old value needs to be written into the
victim cache if the read counter of that block is nonzero. The
corresponding read count also needs to be written into the
version counter field of the victim cache so that the T thread
can decrement the read count upon subsequent read accesses,
and the block can be freed once the counter becomes 0.

5. IMPLEMENTATION

5.1 Cache access control
Figure 6 presents the hardware extension to traditional cache

design in supporting the proposed fault detection and check-
pointing scheme. As can be seen, a fully associative small
victim cache is added into the design to achieve the split ca-
pability upon the detection of a cache block dependence. A
small counter is added to each regular cache block to record
the read count, and to each victim cache block to record the
version count. Meanwhile, the valid and the dirty bits used in
a traditional cache are replaced by a Dirty-Shared-Verified
(DSV) vector, which is used to encode the 6 possible states
of each cache block. The encoding presented in Figure 6 is
assigned so that a 1 on the D bit denotes a dirty or split state
for the cache block. As a result, when the T thread reaches a
checkpoint, the cache controller can globally check if any block
is in the dirty or the split state, thus simplifying the fault de-
tection process. This encoding scheme furthermore enables
the use of the following logic expressions to check whether a
block is replaceable and whether a block has been split:

Replaceable = D + SV (1)

Split = D · V (2)

In the proposed framework, the L thread is allowed to per-
form a read/write if the global access counter has not reached
its upper bound, while the T thread is allowed to perform a
read/write if the counter value is nonzero. More crucially,
based on the values of the DSV vector and the counter, all
the unblocked read/write accesses to each cache block can be
controlled as follows:

17

Read hit by the L thread: A regular cache read is per-
formed. The block state remains constant, while the read
counter is incremented by 1 unless the load is speculative.
Write hit by the L thread: If a checkpoint is pending
to be established, this write is blocked; otherwise, a regular
cache write is performed. However, the old value needs to be
first written into the victim cache if the block has not been
split yet the read counter is nonzero, or written into memory
if the block is at the retired state. The execution of this write
will cause the cache block to be at either the dirty state if
the current value of read counter is 0, or the split state if the
value is nonzero. In the latter case, the version counter of
the corresponding victim cache block is also incremented by
1. Once the block state has been updated, the read counter
is reset to 0 regardless of the final block state.
Miss by the L thread: If a non-replaceable block is se-
lected for replacement, a checkpointing request is initiated;
otherwise, a regular cache replacement is performed, while
the old value needs to be first written into the victim cache
if the read counter of that block is nonzero.
Read hit by the T thread: If the block has been split, the
read operation is redirected to the victim cache; otherwise, a
regular cache read is performed, and the read counter of that
block is decremented by 1.
Read miss by the T thread: The victim cache is accessed.
If the access misses, a fault is reported; otherwise, the ver-
sion counter, used to record the read count in this case, is
decremented by 1, and the victim cache entry is subsequently
released if the counter value changes to 0.
Write by the T thread: If the data is not in the cache, a
fault is reported; otherwise, if the block has not been split,
this write is changed to a read of the corresponding cache
block. A fault is reported if the block is at the dirty state,
or if the two values do not match. In the fault-free case, the
block state is changed to verified. On the other hand, if the
block has been split, this write is redirected to the victim
cache, and the corresponding version counter is decremented
by 1. If the counter value changes to 0, the store value is
compared to the regular cache block for fault detection. If no
fault is detected, the victim cache entry is then released, and
the state of the regular cache block is set to verified.

5.2 Impact analysis
The aforementioned access strategy can be implemented as

a small state machine that only checks the DSV vector and
the counter to make decisions. The performance overhead in-
troduced by this state machine is practically nonexistent since
the decoding of the DSV vector can be performed in parallel
with the comparison of tag values for hit/miss checking. In
fact, only the accesses to a split block performed by the T
thread will be delayed by one clock cycle, since these reads
need to be redirected to the victim cache. However, these
extra cycles do not necessarily cause the workload of the two
threads to be globally unbalanced, since only the L thread
but not the T thread would encounter cache misses. There-
fore, the T thread, which spends extra cycles in accessing the
victim cache, would eventually catch up to the L thread in
execution when the latter is blocked on a cache miss.

The cache access control strategy indicates that during ex-
ecution, the T thread is forced to wait for the L thread if and
only if the value of the access counter is 0. The L thread,
on the other hand, is forced to wait for the T thread in five
cases: 1) The L thread tries to execute a load/store, while the
access counter reaches its upper bound. 2) The L thread tries
to read a cache block, while the corresponding read counter
reaches its upper bound. 3) The L thread tries to write a cache
block, while a checkpoint is pending to be established. 4) The

L thread tries to split a cache block, while the victim cache is
full. 5) The L thread tries to write a split cache block, while
the corresponding version counter reaches its upper bound.
These five cases constrain the amount of execution by which
the L thread can run ahead of the T thread. Nonetheless,
the occurrence frequency of these cases, except for the third
one, can be effectively reduced by increasing the size of the
counter and the victim cache.

It can be observed that the five conditions for blocking the
L thread contradict with the condition for blocking the T
thread, implying that no deadlock would occur in the fault-
free case. More specifically, in the proposed scheme a dead-
lock can only be caused by a mismatch in memory access pat-
terns. For instance, execution faults may cause the L thread
to perform a number of extra read accesses, resulting in the
L thread to block if any read counter has reached its upper
bound. This blocking condition cannot be cleared, since the
T thread would not perform these read accesses, thus never
being able to decrement the counter value. Meanwhile, the
T thread would also be blocked once the value of the global
access counter becomes 0, thus creating a cyclic waiting con-
dition. This condition, however, would never occur in the
fault-free case, since the T thread is always able to unblock
the L thread if the latter is blocked on any read counter.
Therefore, the proposed cache controller will report an error
whenever it detects a cyclic waiting condition, in turn causing
the execution to be rolled back to the most recent checkpoint.

The organization presented in Figure 6 indicates that the
proposed cache design can be implemented within a limited
amount of extra hardware. Typically the victim cache only
needs to contain 32 blocks. A 2-bit counter would suffice to
record either the read count or the version number, if the
corresponding cache block is not continuously read/written
within a short period. The 3-bit DSV vector replaces the valid
and the dirty bits in the traditional cache. As a result, for
an 8K byte L1 data cache with 2K blocks, the extra storage
required by the proposed fault tolerance technique equals (3−
2 + 2) ∗ 2K + 32 ∗ 32 = 7K bits. As a comparison, traditional
SRT processors need to not only enlarge the reorder buffer,
but also employ three centralized queues (so as to record load
values, store values, and branch outcomes) with a total size
of (128 + 20 + 96) ∗ 32 = 7.6K bits according to the queue
sizes reported in [8].

The proposed fault tolerance technique is also more power-
and heat- friendly than traditional SRT processors. The three
centralized queues in SRT processors are constantly accessed
by both threads, thus not only consuming a large amount of
energy, but also ending up becoming thermal hotspots which
may degrade the reliability of the entire chip. In contrast,
the proposed fault tolerance technique only employs a single
centralized structure, the victim cache, which is accessed only
when the corresponding cache block has been split. The re-
maining extra storage, the counters and the DSV vectors, is
distributed into every cache block, while the number of cache
accesses remains unchanged. As a result, each cache access
only needs to read 5 extra bits, thus refraining from imposing
significant power or heat overhead on the MPSoC system.

6. SIMULATION RESULTS
To evaluate the proposed cache-based fault detection and

checkpointing technique, we have performed a set of exper-
imental studies on the Mediabench [15] benchmarks. Mean-
while, given the ever increasing complexity of embedded ap-
plications, we have also selected a number of graphics and
compression programs from the SPECint 2000 set for eval-
uation. The SimpleScalar toolset [16] has been modified to
model a dual-core MPSoC and to simulate the behavior of

18

Table 1: Impact of cache configuration and replacement policy on miss rate and checkpointing frequency

Miss rate % Checkpointing frequency (K insns/ckpt)

16K-dm 16K-2w (L/C) 32K-2w (L/C) 32K-4w (L/C) 16K-dm 16K-2w (L/C) 32K-2w (L/C) 32K-4w (L/C)

adpcm 0.203 0.203 / 0.203 0.198 / 0.198 0.198 / 0.198 3345 3345 / 3345 - / - - / -

epic 5.340 4.104 / 4.421 3.898 / 4.049 3.793 / 3.899 1.755 24.05 / 62.75 65.31 / 137.4 89.59 / 186.5

gsm 0.023 0.006 / 0.006 0.003 / 0.003 0.003 / 0.003 121.6 1229 / 1326 117327/117327 234653/234653

mpeg2 4.753 0.621 / 3.644 0.264 / 1.482 0.253 / 0.606 1.769 22.48 / 149.1 99.67 / 506.1 418.5 / 2140

bzip2 1.931 1.371 / 1.389 1.309 / 1.327 1.302 / 1.309 0.687 18.29 / 25.81 32.89 / 46.29 84.90 / 130.2

eon 2.962 1.004 / 1.129 0.334 / 0.405 0.113 / 0.162 0.903 5.393 / 74.51 6.773 / 136.7 246.7 / 1693

gzip 4.782 4.437 / 4.459 3.930 / 3.938 3.936 / 3.897 1.839 9.791 / 13.10 17.49 / 23.72 40.62 / 72.98

Table 2: Overall writeback rate and checkpointing-induced writeback increase

Writeback rate % ((WBex + WBori)/REFtotal) Writeback increase (WBex/WBori)

16K-dm 16K-2w (L/C) 32K-2w (L/C) 32K-4w (L/C) 16K-dm 16K-2w (L/C) 32K-2w (L/C) 32K-4w (L/C)

adpcm 0.023 0.024 / 0.024 - / - - / - 0.017 0.016 / 0.016 - / - - / -

epic 2.149 1.773 / 1.728 1.695 / 1.681 1.679 / 1.664 0.043 0.062 / 0.042 0.075 / 0.071 0.064 / 0.060

gsm 0.280 0.081 / 0.078 0.000 / 0.000 0.000 / 0.000 26.17 30.62 / 30.40 0.514 / 0.514 0.630 / 0.630

mpeg2 0.579 0.295 / 0.160 0.174 / 0.137 0.030 / 0.125 0.678 1.053 / 0.233 0.401 / 0.132 0.858 / 0.047

bzip2 4.139 1.033 / 0.919 0.869 / 0.788 0.724 / 0.665 3.115 0.657 / 0.482 0.460 / 0.328 0.233 / 0.135

eon 8.309 4.857 / 0.553 4.351 / 0.386 0.288 / 0.175 7.400 16.53 / 2.080 38.47 / 7.063 3.944 / 2.144

gzip 4.048 2.996 / 2.872 2.746 / 2.631 2.432 / 2.235 0.837 0.477 / 0.420 0.464 / 0.406 0.309 / 0.212

the proposed cache controller. In line with the fault toler-
ance literature [6, 8], we only measure the performance of the
MPSoC without evaluating fault coverage.

Checkpointing frequency: The checkpointing frequency
of the proposed fault tolerance scheme is determined by the
frequency at which a dirty cache line is replaced, which is
in turn determined by the cache miss rate and replacement
policy. As a result, we retain the remaining architectural
parameters, while simulating 4 distinct configurations for the
L1 data cache: 16K directly mapped, 16K 2-way associative,
32K 2-way associative, and 32K 4-way associative. For each
set-associative cache, we furthermore simulate two distinct
replacement algorithms: the standard LRU, and a Clean-first
policy that selects clean cache lines over dirty lines. The
results on miss rate and checkpointing frequency are listed in
Table 1, with a pair of values listed for each set-associative
cache so as to clearly show the impact of replacement policies.

It can be easily seen from Table 1 that for most cases, the
proposed scheme only requires a checkpoint to be established
every tens of thousands of instructions. Embedded applica-
tions usually exhibit a smaller checkpointing frequency (for
adpcm no checkpoints have even been taken for the latter two
cache configurations) than SPECint 2000 benchmarks, since
the L1-data cache is able to absorb most of the load/store
requests during execution. The checkpointing frequency of
directly-mapped caches is usually high due to the large amount
of conflict misses. Increasing the associativity from direct-
mapped to 2-way associative, even if it cannot significantly
reduce the miss rate for some applications (such as adpcm,
epic and gzip), can always sizably reduce the number of check-
points. More importantly, for set-associative caches, the Clean-
first replacement algorithm can significantly reduce check-
pointing frequency, yet at the cost of an increased miss rate,
especially for 2-way associative caches. This is because the
selection of a clean line over a dirty line for replacement may
overwrite the clean data that has just been brought into the
cache. However, except for mpeg2, this increase in miss rate
of the other benchmarks is negligible.

Writeback frequency: Compared to a traditional write-
back cache, the proposed cache needs to write a modified
block back into memory not only upon a replacement, but
additionally upon a subsequent write-hit if the block is at
the retired state. To show the impact of the latter, Table
2 reports the overall writeback rate as well as the ratio of

the extra writeback requests for each cache configuration. As
can be seen, the overall writeback rate decreases as the cache
size or associativity increases. The average writeback rate of
set-associative caches is 1.3% for the LRU policy, and 0.8%
for the Clean-first policy. In most cases checkpointing only
causes a quite limited amount of extra writeback requests.
Although manyfold increases can be seen in gsm and eon in
the case of direct-mapped and 2-way associative caches with
an LRU policy, the Clean-first replacement policy can effec-
tively reduce these manyfold increases. Meanwhile, since the
overall writeback rate is quite small, these manyfold increases
do not cause sizable degradation in the overall performance,
as will be confirmed subsequently when the results of CPI
increase are examined.

Thread performance: In addition to the extra write
back requests caused by checkpointing, the proposed fault
tolerance scheme also affects the overall performance of the
MPSoC in that the L thread needs to await the T thread
under the five conditions discussed in Section 5.2, while the
T thread requires extra time in accessing the victim cache
and checkpointing the regular cache. The overall performance
overhead is furthermore strongly affected by the initial execu-
tion offset between the two threads. A too small offset would
result in the T thread quickly catching up to the L thread
while the latter is blocked on a cache miss, thus causing the
T thread to also wait for the missing data. In contrast, a
too large offset would result in the L thread to split a large
number of cache blocks, thus causing the T thread to spend
extra cycles constantly accessing the victim cache. Taking
both effects into consideration, during simulation we initiate
the execution of the T thread upon any of the following con-
ditions: 1) The L thread splits a cache block; 2) Either the
read counter of a block or the global access counter is half
full; or 3) the L thread generates a checkpoint request.

According to the results of checkpointing and writeback
frequency, we select two representative cache configurations,
16K-2way and a 32K-4way, for performance simulation. We
furthermore simulate three distinct configurations, a 16-entry
victim cache with 2-bit or 3-bit counters, and a 32-entry vic-
tim cache with 3-bit counters, to evaluate the impact of the
victim cache size and the counter size on the overall per-
formance. In all three configurations, an 8-bit global access
counter and the asynchronous checkpointing model discussed
in section 4.4 are employed so as to attain best performance

19

Table 3: Overall performance degradation in terms of CPI increase

Counter 2 + Victim 16 Counter 3 + Victim 16 Counter 3 + Victim 32

16K-2w (L/C) 32K-4w (L/C) 16K-2w (L/C) 32K-4w (L/C) 16K-2w (L/C) 32K-4w (L/C)

adpcm 0.801 / 0.801 0.800 / 0.800 0.797 / 0.797 0.797 / 0.797 0.797 / 0.797 0.797 / 0.797
epic 0.632 / 1.413 0.589 / 0.605 0.490 / 1.271 0.446 / 0.690 0.423 / 1.204 0.360 / 0.605
gsm 6.328 / 6.327 6.321 / 6.321 6.286 / 6.285 6.279 / 6.279 7.451 / 7.450 6.068 / 6.068

mpeg2 0.819 / 9.467 0.948 / 2.207 0.820 / 9.445 1.223 / 2.238 0.822 / 9.428 1.217 / 2.287

bzip2 12.10 / 11.92 12.18 / 12.15 15.67 / 14.79 15.82 / 15.70 15.70 / 14.79 15.99 / 15.76
eon 5.576 / 2.842 5.258 / 5.227 5.376 / 2.568 5.698 / 5.587 5.401 / 2.674 6.581 / 6.307
gzip 4.274 / 3.918 4.172 / 3.737 4.276 / 2.351 4.177 / 2.015 4.275 / 2.410 4.176 / 2.016

results. The writeback latency is set to 3 cycles, the L1 miss
penalty is set to 20 cycles, while the checkpointing latency
is set to 50 and 100 cycles for the 16K and 32K caches, re-
spectively. The obtained results of CPI increase are listed in
Table 3, with the baseline MPSoC adopting an LRU policy
yet the fault tolerant MPSoC adopting both the LRU and the
Clean-first policies to clearly show the impact of the latter.

The results in Table 1 show that compared to LRU, the
Clean-first replacement policy sizably reduces checkpointing
frequency, yet slightly increases miss rate. As can be seen in
Table 3, the Clean-first policy imposes a negligible impact on
adpcm, gsm and bzip2, sizably reduces the performance degra-
dation of eon and gzip, yet degrades the overall performance
of epic, and especially of mpeg2. These data confirm that the
impact of the Clean-first policy on the overall performance is
determined by both checkpointing frequency and miss rate.
Meanwhile, the results in Table 3 also show that although an
increase in the counter size and/or the victim cache size can
relax the conditions for blocking the L thread, it does not nec-
essarily reduce performance overhead. A larger counter and
victim cache typically causes a larger execution offset between
the two threads, thus in turn causing more cache blocks to be
split. As a result, the T thread needs to spend more cycles
accessing the victim cache, while the L thread needs to await
the T thread for more cycles at each checkpoint.

In sum, the proposed fault detection and checkpointing
scheme causes a 0.4% to 16% increase to the execution time of
non-fault-tolerant single thread architectures. As usual, em-
bedded applications exhibit a smaller performance degrada-
tion than SPECint 2000 benchmarks, while significant degra-
dation (>10%) is only reported for bzip2. These results con-
firm that the proposed scheme outperforms the lock-step based
fault tolerance CMP, which typically exhibits a performance
overhead of 15% to 19% according to the data reported in [8],
and incurs additional hardware costs, furthermore.

7. CONCLUSIONS
We have presented in this paper a light-weight fault tol-

erance framework which attains fault detection and check-
pointing through sharing a single cache between two identical
threads. By allowing both threads to write results into regis-
ters and the cache without comparison, the strict instruction-
by-instruction synchronization model used in multithreading
processors can be relaxed. Meanwhile, the cache design is
modified so that each data block will be compared for fault
detection before being written back, thus protecting the mem-
ory from being polluted by execution faults. Accordingly, in
the proposed framework only the processor state needs to be
checkpointed whenever a dirty cache line needs to be written
to the memory, and the two threads only need to synchronize
when a checkpoint needs to be established. A split capability
is furthermore incorporated into the cache design to selec-
tively duplicate a cache block if the L thread tries to update
a block of which the old value is pending for the T thread to
access, thus effectively relaxing the execution synchronization

imposed by cache block dependences. The simulation results
show that the average checkpointing frequency is as low as 1
per 30K instructions, with only a slight increase in writeback
rate and a 1.4% to 10.4% degradation in performance. This
high efficiency therefore enables the incorporation of the pro-
posed framework into various types of embedded MPSoCs to
attain both fault detection and execution checkpointing.

8. REFERENCES
[1] W. Wolf, “The future of multiprocessor systems-on-chips,” In

Proc. 41st DAC, pp. 681–685, Jule 2004.
[2] International Technology Roadmap for Semiconductors

(ITRS), 2007 Edition. “Process integration, devices, and
structures”.

[3] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L.
Alvisi, “Modeling the effect of technology trends on the soft
error rate of combinational logic,” In Proc. DSN’02, pp.
389–398, 2002.

[4] K. D. Wilken and T. Kong, “Concurrent detection of
software and hardware data-access faults,” IEEE Trans. on
Computers, 46(4):412–424, April 1997.

[5] S. K. Reinhardt and S. S. Mukherjee, “Transient-fault
detection via simultaneous multithreading,” In Proc. 27th
ISCA, pp. 25–36, June 2000.

[6] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detailed
design and evaluation of redundant multithreading
alternatives,” In Proc. 29th ISCA, pp. 99–110, May 2002.

[7] T. N. Vijaykumar, I. Pomeranz, and K. Cheng,
“Transient-fault recovery using simultaneous
multithreading,” In Proc. 29th ISCA, pp. 87–98, May 2002.

[8] M. Gomaa, C. Scarbrough, T. N. Vijaykumar, and
I. Pomeranz, “Transient-fault recovery for chip
multiprocessors,” In Proc. 30th ISCA, pp. 98–109, June 2003.

[9] A. Wood, “Data integrity concepts, features, and
technology,” White paper, Tandem divison, Compaq
Computer Corporation.

[10] N. S. Bowen and D. K. Pradhan, “Virtual checkpoints:
Architecture and performance,” IEEE Trans. on Computers,
41(5):516–525, May 1992.

[11] P. A. Lee, N. Ghani, and K. Heron, “A recovery cache for
the PDP-11,” IEEE Trans. on Computers, C-29(6):546–549,
June 1980.

[12] Y. Zhang and K. Chakrabarty, “Energy-aware adaptive
checkpointing in embedded real-time systems,” In Proc.
DATE’03, pp. 918–923, 2003.

[13] D. B. Hunt and P. N. Marinos, “A general purpose
cache-aided rollback error recovery (CARER) technique,” In
Proc. FTCS-17, pp. 170–175, 1987.

[14] K.-L. Wu, W. K. Fuchs, and J. H. Patel, “Error recovery in
shared memory multiprocessors using private caches,” IEEE
Trans. on Parallel and Distributed Systems, 1(2):231–240,
April 1990.

[15] C. Lee, M. Potkonjak, and W. H. Mangione-Smith,
“Mediabench: A tool for Evaluating and Synthesizing
Multimedia and Communications Systems,” In 30th Micro,
pp. 330–335, Dec. 1997.

[16] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: an
infrastructure for computer system modeling,” Computer,
35(2):59–67, Feb. 2002.

20

