
E-FRP With Priorities∗

Roumen Kaiabachev
Rice University

roumen@rice.edu

Walid Taha
Rice University

taha@rice.edu

Angela Yun Zhu
Rice University

angela.zhu@rice.edu

ABSTRACT
E-FRP is declarative language for programming resource-
bounded, event-driven systems. The original high-level se-
mantics of E-FRP requires that each event handler execute
atomically. This requirement facilitates reasoning about E-
FRP programs, and therefore it is a desirable feature of the
language. But the original compilation strategy requires
that each handler complete execution before another event
can occur. This implementation choice treats all events
equally, in that it forces the upper bound on the time needed
to respond to any event to be the same. While this is ac-
ceptable for many applications, it is often the case that some
events are more urgent than others.

In this paper, we show that we can improve the com-
pilation strategy without altering the high-level semantics.
With this new compilation strategy, we give the program-
mer more control over responsiveness without taking away
the ability to reason about programs at a high level. The
programmer controls responsiveness by declaring priorities
for events, and the compilation strategy produces code that
uses preemption to enforce these priorities. We show that
the compilation strategy enjoys the same properties as the
original strategy, with the only change being that the pro-
grammer reasons modulo permutations on the order of event
arrivals.

Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Functional Program-
ming

General Terms
Design, Languages, Reliability

Keywords
Resource-Aware Programming, Event-Driven Programming

∗This work was supported by NSF SoD award 0439017“Syn-
thesizing Device Drivers”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-825-1/07/0009 ...$5.00.

1. INTRODUCTION
Reactive systems are ones that continually respond to

an environment. Functional Reactive Programming (FRP)
[14, 29] is a declarative programming paradigm based on
time-varying reactive values (behaviors) and timed discrete
events. An FRP program is a set of mutually recursive be-
haviors and event definitions. FRP has been used success-
fully for programming a variety of reactive systems in the
domain of interactive computer animation [6], computer vi-
sion [22], robotics [20], and control systems.

Real-time systems are reactive software systems that are
required to respond to an environment in a bounded amount
of time [28]. In addition, essentially all real-time systems
need to execute using a fixed amount of memory because
physical resources on their host platforms are constrained.
FRP is implemented as an embedded language in Haskell
[21]. A language embedded in a general-purpose language
such as Haskell cannot provide real-time guarantees, and
to address this problem, focus turned to a real-time sub-
set in which one global clock is used to synchronously up-
date the whole program state [30]. The global clock was
then generalized to arbitrary events in a stand-alone lan-
guage called E-FRP [31]. Any E-FRP program guarantees
(1) response to every event by the execution of its handler,
(2) complete execution of each handler, and (3) execution in
bounded space and time. E-FRP has been used for program-
ming event-driven reactive systems such as interrupt-driven
micro-controllers, which are otherwise typically programmed
in C or assembly language. The E-FRP compiler generates
resource-bounded C code that is a group of event handlers
in which each handler is responsible for one event source.

1.1 Problem
The original high-level semantics of E-FRP requires that

each event handler execute atomically. This requirement fa-
cilitates reasoning about E-FRP programs, and therefore it
is a desirable feature of the language. But the original com-
pilation strategy requires that each handler complete execu-
tion before another event can occur. This implementation
choice treats all events equally in that it forces the upper
bound on the time needed to respond to any event to be the
same. While this is acceptable for many applications, it is
often the case that some events are more urgent than others.

1.2 Contributions
In this paper, we show that we can improve the compila-

tion strategy for E-FRP while preserving the original high-
level semantics. This new compilation strategy, which we

221

call P-FRP, gives the programmer more control over respon-
siveness without compromising any of the high-level reason-
ing principles. The programmer controls responsiveness by
declaring priorities for events (Section 2). To model priori-
tized interrupts in the target platform, we refine the original
big-step semantics used for the target language (called Sim-
pleC) into a small-step semantics, and then we augment it
with explicit notions of interrupt and context switch (Section
3). We develop a compilation strategy that produces code
that uses preemption to enforce these priorities (Section 4).
Preemption is implemented using a roll-back strategy that
is comparable to a simple form of software transaction [26,
11, 23]. We show that the compilation strategy enjoys the
same properties as the original strategy modulo permuta-
tions on the order of event arrivals (Section 5). Finally, we
formalize the sense in which the programmer has more con-
trol over responsiveness by giving analytic expressions for
upper bounds under reasonable conditions for handlers with
and without priorities, and we validate these bounds exper-
imentally (Section 6).

Due to space limitations, the paper only shows the P-FRP
compilation strategy and technical results. The original E-
FRP semantics and compilation function, and formal proofs
of our technical results, can be found in an extended version
of the paper available online [15].

2. P-FRP SYNTAX AND SEMANTICS
We use the following notational conventions in the rest of

the paper:

Notation

- 〈fj〉j∈{1...n} denotes the sequence 〈f1, f2, . . . , fn〉. We
will occasionally omit the superscript j ∈ {1 . . . n} and
write 〈fj〉 when the range of j is clear from context.

- {fj}j∈{1...n} or {fj} denotes the set {f1, f2, . . . , fn}.
- x1 :: 〈x2, . . . , xn〉 denotes the sequence 〈x1, x2, . . . , xn〉.
- A#A′ denotes the concatenation of the sequences A

and A′. We write A] B for A ∪ B when we require
that A∩B = ∅. We also write A−B for set difference.

- prim(f, 〈ci〉) ≡ c denotes the application of a primitive
function f on arguments 〈ci〉 resulting in c.

- With the exception of prim(f, 〈ci〉) ≡ c, ≡ denotes
that two sets of syntax elements are the same (such
as in H ≡ {I ⇒ d ϕ}). This is different from =
used in syntax, which is assignment in the language
represented by the grammar.

The syntax of P-FRP is the same as E-FRP, although we
add an environment L to allow the programmer to declare
a priority for each event:

Variable x ∈ X
Constant c ∈ N
Event name I ∈ I
Function f ::= || | && | ! | + | - | * | / |

> | >= | > | <= | == | != | if
Passive behaviors d ::= x | c | f 〈di〉
Active behaviors r ::= init c in H
Behaviors b ::= d | r
Phases ϕ ∈ Φ ::= ε | later
Event handlers H ::= {Ii ⇒ di ϕi}
Programs P ::= {xi = bi}
Priority level l ::= n ∈ {lmin, . . . , lmax} ∈ Nat
Environment E ::= {Ii 7→ li}

In E-FRP, passive behavior expressions can be variables,
constants, or function applications to other passive behav-
iors. The terminals x and c are the syntactic categories of
variables and constants, respectively, and f is the syntactic
category for function application. The only active behavior
r has the form init c in {Ii ⇒ di ϕi} where c is the initial
value, and the part in parentheses is a set of event handlers.
When an event Ii occurs, the behavior value c changes to
the value of di computed at the time of the event.

E-FRP programs are evaluated in two phases w.r.t. to
the occurrence of the event, and the computation of di is
associated with either phase. Depending upon whether ϕi is
ε or later, the value of r is changed either immediately (in the
first phase) or after all other immediate updates triggered
by the event (in the second phase). An E-FRP program P
is a set of mutually recursive behavior definitions: the value
of a behavior might depend upon values computed for other
behaviors.

In P-FRP, the programmer explicitly declares event pri-
orities by mapping each event to its constant priority, and
priorities are selected from a fixed range of integer values.
As we will see, the priorities (continue to) play no role in
the high-level, big-step semantics of P-FRP.

As a simple example to illustrate the syntax and the in-
formal semantics, consider the following program:

I1 → 1, I2 → 2
x = init 1 in {I1 ⇒ x + y},
y = init 1 in {I1 ⇒ x− y later, I2 ⇒ 1}

This program defines two behaviors x and y triggered by
an event I1 of priority 1 and an event I2 of priority 2. When
I1 occurs, the value of x is computed immediately in the first
phase. The later annotation indicates that the value of y is
not computed until after all other behaviors triggered by I1

are. The values of the behaviors after several occurrences of
I1 are shown below. The numbers in bold are final (second-
phase) values for each behavior on I1. The fourth occurrence
of I1 is followed by I2, which resets y.

(init) I1 I1 I1 I1 I2 I1
x 1 2 2 3 3 5 5 8 8 8 8 9 9
y 1 1 1 1 2 2 3 3 5 1 1 1 8

The big-step semantics of P-FRP is the same as that of
E-FRP. Event priorities are not part of the semantics be-
cause all events are executed atomically. Figure 1 defines
four judgments that formalize the notions of updating and
computing program behaviors:

- P ` b
I
⇀ c: “on event I, behavior b yields c.”

- P ` b
I
⇁ b′: “on event I, behavior b is updated to b′”

- P ` b
I→ c; b′: “on event I, behavior b yields c, and is

updated to b′”.

- P
I→ S; P ′: “on event I, program P yields store S and

is updated to P ′.”

When an event I occurs, a program in P-FRP is exe-
cuted by updating program behaviors. Updating a pro-
gram behavior requires, first, an evaluation of the behav-
iors it depends upon. On an event, an P-FRP program

222

P ` b
I
⇀ c

P ` b
I
⇀ c

P] {x = b} ` x
I
⇀ c P ` c

I
⇀ c{

P ` di
I
⇀ ci

}
prim(f, 〈ci〉) ≡ c

P ` f〈di〉
I
⇀ c

b ≡ init c in {I ⇒ d ε}]H

P] {x = b} ` d[x := c]
I
⇀ c′

P] {x = b} ` b
I
⇀ c′

∀H ′.∀d.H 6≡ {I ⇒ d ε}]H ′

P ` init c in H
I
⇀ c

P ` b
I
⇁ b′

P ` d
I
⇁ d

b ≡ init c in H b′ ≡ init c′ in H
H ≡ {I ⇒ d ϕ}]H ′

P] {x = b} ` d[x := c]
I
⇀ c′

P] {x = b} ` b
I
⇁ b′

∀H ′.∀d.H 6≡ {I ⇒ d ϕ}]H ′

P ` init c in H
I
⇁ init c in H

P ` b
I→ c; b′

P ` b
I
⇀ c P ` b

I
⇁ b′

P ` b
I→ c; b′

P
I→ S; P ′

{
{xi = bi}i∈K ` bj

I→ cj ; b
′
j

}j∈K

{xi = bi}i∈K I→ {xi 7→ ci}i∈K ; {xi = b′i}i∈K

Figure 1: Big-step Operational Semantics of P-FRP

yields a store S, which is the state after the first phase, and
an updated program. The store maps variables to values:
S ::= {xi 7→ ci}. The updated program contains the final
state in the init statements of its reactive behaviors.

The first rule in the judgment P ` b
I
⇀ c states that a

behavior x yields a ground value after evaluation. The next
two rules state how to evaluate a passive behavior that is a
constant or a function. The fourth rule states how to evalu-
ate an active behavior: its current value is substituted in the
handler body for I which is evaluated to yield a constant.
Finally, a behavior not triggered by I or whose response is
computed in the second phase yields its current value.

The first rule in the judgment P ` b
I
⇁ b′ states that

a passive behavior updates to itself. The next rule states
that a behavior updates to a new behavior whose value is
produced by evaluating its handler for I after the pre-update
value of the behavior is substituted in the handler body.
Finally, a behavior not triggered by I evaluates to itself.

The rule in the judgment P ` b
I→ c; b′ is a shorthand

for P ` b
I
⇀ c and P ` b

I
⇁ b′. The rule in the judgment

P
I→ S; P ′ states that a program P is updated on I by

updating each behavior in the program on I.
The trace of the simple example introduced above illus-

trates a key point about the P-FRP semantics: when an
event I1 occurs, behavior x is evaluated in the first phase.

Evaluating x requires evaluating y before it changes on I1.
Since y evaluates to its current value, 1, x evaluates to 1+1 =
2. Now behavior x is updated to x = init 2 in { I ⇒ x+y }.
Next, behavior y is evaluated in the second phase to 2−1 = 1
using the new value of x, 2, which was computed in the first
phase. Then behavior y is updated to what it was before:
y = init 1 in { I1 ⇒ x − y later}. The big-step semantics
of P-FRP treats I2 as an event of priority equal to I1. I2

resets y to 1, and the next execution of I1 uses this value.

3. PREEMPTABLE SIMPLEC
As a model of the hardware of the target embedded plat-

form, we use a calculus called SimpleC. Terms in this calcu-
lus have a direct mapping to C code. The syntax of SimpleC
is as follows:

Computations d ::= x | c | f 〈di〉
Statements A ::= 〈xi := di〉 | off | on
Programs Q ::= {(Ii, Ai)}

A SimpleC program Q is a collection of event handler def-
initions of the form (I, A), where I is an event and also the
handler name. The body of the handler is divided into two
consecutive parts, which are the first phase and the second
phase statements (in the original E-FRP [31], Q is gener-
ated by the compilation function from the two phases in
the source program as Q ::= {(Ii, Ai, A

′
i} to explicitly sepa-

rate the phases). The statements include primitives (off and
on) that enable or disable all interrupts (which are the only
change from the original SimpleC), and also assignments.

Before presenting the formal semantics for this language,
we consider a simple example to illustrate both the syntax
and the essence of the compilation strategy. The SimpleC
code corresponding to the simple example is as follows:

int x, x, y, y = 1; int xt, xt, yt, yt;
I1, {off; xt = x; xt = x; yt = y; yt = y; on;
\ ∗ 1 ∗ \ xt = (xt + yt); yt = (xt− yt);
\ ∗ 2 ∗ \ xt = xt; yt = yt;
off; x = xt; x = xt; y = yt; y = yt; on; }

I2, { off; yt = y; yt = y; on;
\ ∗ 1 ∗ \ yt = 1; \ ∗ 2 ∗ \ yt = yt;

off; y = yt; y = yt; on; }

The code is a group of event handlers. Each handler is a
C function that is executed when an event occurs and con-
sists of two sequences of assignments, one for each of the two
phases. In addition, there is a preamble for copying values
to temporaries and a postamble to commit the temporary
values. In particular, for each behavior we have commit-
ted values (x, y), first-phase values (x, y), and temporary
values for each of these (xt, yt, xt, yt).

SimpleC was originally defined using a big-step seman-
tics [31], but an equivalent small-step semantics [15] can be
defined , which makes it easier to model preemption. The
semantics presented here uses the following elements:

Master Bit m ::= on | off
Interrupt Context 4 ::= > | ⊥
Stack σ ::= nil | (I, A,4) :: σ
Queue q ::= nil | I :: q
Step W ::= I | �

We will model how lower-priority events that occur while a
higher-priority event is handled are stored in a queue, sorted

223

by priorities. Higher-priority events interrupt lower-priority
ones when the CPU’s master bit m is enabled (m ≡ en).
Otherwise, when the master bit is disabled (m ≡ dis) inter-
rupts are globally turned off and higher-priority events are
queued.

A program stack σ contains event-handler statements
with the active handler on top of the stack. The stack
also contains an interrupt context flag (> or ⊥) that indi-
cates whether the active event handler has been interrupted.
When an event occurs that is of higher priority than the
currently handled one, its handler is placed on top of the
stack, and the flag for the interrupted event is toggled. The
value of the flag determines whether the interrupted handler
is later re-executed from its beginning just like a software
transaction.

A step denotes whether the program has received an in-
terrupt or has made progress on a computation. Progress
is looking up a variable in the environment, evaluating a
function argument, applying a function, or updating the
store with the results of an assignment. A priority envi-
ronment maps interrupts to their priorities. The notation
x1 :: 〈x2, . . . , xn〉 denotes the sequence 〈x1, x2, . . . , xn〉, and
we use ≡ to denote syntactic equivalence.

To model pending interrupts, in the judgment on program
states we use the function insert, which inserts events into
the queue and keeps the queue sorted by priority. If two
events have the same priority, it sorts them by time of oc-
currence, with the older event at the front of the queue.

insert(I, nil) ≡ I :: nil
insert(I, U :: q) ≡ I :: U :: q if E(I) > E(U)
insert(I, U :: q) ≡ U :: insert(I, q) if E(I) ≤ E(U)
insert(I, I :: q) ≡ I :: q

The function top is also used in the judgment on program
states to peek at the queue’s top and return the priority
of the first element. If the queue is empty, top returns the
lowest possible priority lmin.

top(q) ≡ lmin if q ≡ nil top(q) ≡ E(I) if q ≡ I :: q′

The original E-FRP compilation strategy assumes that
no other interrupts will occur while statements are pro-
cessed. Under this assumption, the execution of the handler
is atomic, and E-FRP ignores other events at any step of
processing a handler. In reality, if code runs in an environ-
ment where events are prioritized, it will be preempted.

We present an extended semantics that models preemp-
tion. In particular, our design models handling of interrupts
with priorities in the Windows and Linux kernels ([15, 27,
25, 3, 24]) and borrows ideas for atomic handler execution
from software transactions [10, 23, 5], a concurrency prim-
itive for atomicity that disallows interleaved computation
while ensuring fairness (we return to software transactions
in the related works in Section 7).

The trace below for the SimpleC code for our simple exam-
ple shows a preemption that executes like a software trans-
action:

(init) I1 I1 I1 I1 I2 I1
R

x 1 2 2 3 3 5 5 8 / 5 5 6 6
y 1 1 1 1 2 2 3 3 / 1 1 1 5

The fourth occurrence of I1 is interrupted by I2 at the
end of the first phase. The computed values in this phase
are discarded, I2 executes, and I1’s handler is restarted. In
particular, when the fourth occurrence of I1 is interrupted
by I2, y is reset to 1, while any computations on x during
the interrupted handler are discarded. When I1’s handler
is restarted, x is 5, as before the fourth occurrence of I1,
and the new value for x computed is 6. The new value for
x is used in the second phase to compute the value of y,
5 = 6− 1.

In the SimpleC small-step semantics with priorities and
restarting, we have the judgments below:

- S ` d 7−→ d′: “under store S, d evaluates to d′ in one
step.”

- (A, S, m) 7−→ (A′, S′, m′): “executing one step of as-
signment sequence A produces assignment sequence
A′, updates store S to S′, and leaves all interrupts
in state m′.”

- (S, Q, m, σ, q)
W7−→ (S′, m′, σ′, q′): “ one step of the

execution of program Q updates store S to S′, changes
the master bit from m to m′, updates the pending
event queue from q to q′, and updates the program
stack σ to σ′.”

We first define the most basic step of our execution model.
The judgment S ` d 7−→ d′ states that a variable is eval-
uated by looking up its value in the environment, and a
function is then applied after evaluation of its arguments.

S] {x 7→ c} ` x 7−→ c

prim(f, 〈c0, . . . , cn〉) ≡ c

S ` f〈c0, . . . , cn〉 7−→ c

S ` di 7−→ d′i
S ` f〈c0, . . . , ci−1, di, . . . , dn〉 7−→ f〈c0, . . . , ci−1, d′i, . . . , dn〉

The first rule of (A, S, m) 7−→ (A′, S′, m′) states that an
assignment is evaluated in one step by evaluating its com-
putation part one step and updating the assignment. The
second rule states that an assignment whose computation
part is a ground value is evaluated by updating the store
with the ground value and removing the assignment from
sequence A. The last two rules toggle the interrupt state.

{x 7→ c}] S ` d 7−→ d′

(x :=d ::A, {x 7→ c}] S, m) 7−→(x :=d′ ::A, {x 7→ c}] S, m)

(x := c′ :: A, {x 7→ c}] S, m) 7−→ (A, {x 7→ c′}] S, m)

(off ::A, S, m) 7−→ (A, S, dis) (on ::A, S, m) 7−→ (A, S, en)

Next we present the judgment on program states

(S, Q, m, σ, q)
W7−→ (S′, m′, σ′, q′). Rules (Unh), (Start)

and (Pop) are essentially the same as the original SimpleC
([31], [15]) with the difference that (Start) only executes
when interrupts are enabled.

224

S ` c 7−→0 c

S ` d 7−→ d′ S ` d′ 7−→n d′′

S ` d 7−→n+1 d′′

(〈〉, S, m) 7−→0 (〈〉, S, m)

(A, S, m) 7−→ (A′, S′, m′)
(A′, S′, m′) 7−→n (A′′, S′′, m′′)

(A, S, m) 7−→n+1 (A′′, S′′, m′′)

(S, Q, m, nil, nil)
�07−→(S, m, nil, nil)

(S, Q, m, σ, q)
�7−→ (S′, m′, σ′, q′)

(S′, Q, m′, σ′, q′)
�n7−→ (S′′, m′′, σ′′, q′′)

(S, Q, m, σ, q)
�n+17−→ (S′′, m′′, σ′′, q′′)

(S, Q, m, σ, q)
I7−→ (S′, m′, σ′, q′)

(S′, Q, m′, σ′, q′)
�n7−→ (S′′, m′′, σ′′, q′′)

(S, Q, m, σ, q)
I,�n7−→ (S′′, m′′, σ′′, q′′)

(S, Q, m, σ, q)
I1,�k17−→ (S′, m′, σ′, q′)

(S′, Q, m′, σ′, q′)
Z′
7−→ (S′′, m′′, σ′′, q′′)

Z′ ≡ I2, �k2 , . . . , In, �kn

(S, Q, m, σ, q)
Z7−→ (S′′, m′′, σ′′, q′′)

Z ≡ I1, �k1 , I2, �k2 , . . . , In, �kn

Figure 2: Multiple Steps in the Small-step Opera-
tional Semantics of SimpleC With Priorities

I 6∈ {Ii}

(S, {(Ii, Ai)}, m, σ, q)
I7−→ (S, m, σ, q)

(Unh)

m ≡ en

(S, {(I, A)}]Q, m, nil, nil)
I7−→ (S, m, (I, A,⊥), nil)

(Start)

(S, Q, m, (I, 〈〉,4) :: σ, nil)
�7−→ (S, m, σ, nil)

(Pop)

Rule (Step) performs computation on a non-empty han-
dler and checks to see if either the interrupts are disabled or
the currently handled event is of the highest priority com-
pared with events in the queue.

Condition for progress on I’s handler:
p ≡ (m ≡ dis or (m ≡ en and E(I) ≥ top(q)))

p (A, S, m) 7−→ (A1, S1, m1)

(S, Q, m, (I, A,⊥) :: σ, q)
�7−→

(S1, m1, (I, A1,⊥) :: σ, q)

(Step)

The next rule (Restart) is new and is the most interest-
ing one. This rule re-executes interrupted handlers when a
handler has been interrupted. The interrupted handler is
popped off the stack, and the original handler for the same
event is placed back on the stack.

p Q ≡ {(I, AI)}]Q′ A 6≡ 〈〉
(S, Q, m, (I, A,>) :: σ, q)

�7−→
(S, m, (I, AI ,⊥) :: σ, q)

(Restart)

Rules (Deq1) and (Deq2) model dequeuing for empty han-
dlers:

σ ≡ (U, A,4) :: σ′

(S, Q, m, (I, 〈〉,4) :: σ, U :: q)
�7−→ (S, m, σ, q)

(Deq1)

m ≡ en σ ≡ {nil | (P, AP ,4) :: σ′}
Q ≡ {(U, A)}]Q′

(S, Q, m, (I, 〈〉,4) :: σ, U :: q)
�7−→

(S, m, (U, A,⊥) :: σ, q)

(Deq2)

There are two types of events in the queue. The first
type are those whose handlers are on the stack and that oc-
curred while a higher-priority event handler was executing or
while interrupts were disabled. The second type are events
that have been interrupted but their handlers are still on
the stack. In (Deq1), a handler is removed from the stack
when the stack has a next handler and the handler is for
the event at the front of the queue. In (Deq2), there is a
pending event in the queue with a priority between that of
the finished handler and the next handler on the stack. The
pending event’s handler is placed on the stack, and the event
is removed from the front of the queue. Alternatively, if the
stack is empty, the handler for the event at the front of the
queue is placed on the stack.

Rule (Deq3) allows handlers to start for higher-priority
events that occur while interrupts are disabled. As soon as
interrupts are enabled, the current handler is preempted and
a higher-priority handler is pushed onto the stack.

m ≡ en E(U) > E(I) A′ 6≡ 〈〉
(S, {(U, A)}]Q, m, (I, A′,4) :: σ, U :: q)

�7−→
(S, m, (U, A,⊥) :: (I, A′,>) :: σ, q)

(Deq3)

The last two rules specify how an interrupt is handled
based on its priority and current interrupt priority. It is
queued (Enq) when it is of the same or lower priority or
when interrupts are disabled. Otherwise, its handler is
placed on top of the stack (Int). In the latter case, we in-
dicate that the previous handler was interrupted and place
this handler’s corresponding event in the queue.

(E(I) ≤ E(U) or (m ≡ dis and E(I) > E(U)))
σ ≡ (U, A,⊥) :: σ′

(S, Q, m, σ, q)
I7−→ (S, m, σ, insert(I, q))

(Enq)

m ≡ en E(I) > E(U)

(S, {(I, AI)}]Q, m, (U, A,⊥) :: σ, q)
I7−→

(S, m, (I, AI ,⊥) :: (U, A,>) :: σ, insert(U, q))

(Int)

Taking multiple steps in the semantics consists of ex-
ecuting a sequence of interrupts with none or several
computation steps in between, such as the sequence
I1, �k1 , I2, �k2 , . . . , In, �kn . We define the judgment for mod-
eling taking multiple steps at one time in the semantics of
P-FRP in Figure 2.

4. COMPILATION
A P-FRP program is compiled to a set of pairs, which are

the same as the input to the SimpleC semantics, in which

225

FV (d) ∩ ({x}] {xi}) ≡ ∅
(x := d) < 〈xi := di〉

〈|{}|〉nI = 〈〉
〈|P |〉nI = A (xt := d) < A

〈|{x = d}] P |〉nI = xt := d :: A

〈|P |〉1I = A (xt := d[x := xt]) < A

〈|{x = init c in {I → d}]H}] P |〉1I =
xt := d[x := xt] :: A

〈|P |〉1I = A (xt := d[x := xt]) < A

〈|{x = init c in {I → d later}]H}] P |〉1I
= xt := d[x := xt] :: A

〈|{}|〉nI = 〈〉
〈|P |〉nI = A (xt := d) < A

〈|{x = d}] P |〉nI = xt := d :: A

〈|P |〉2I = A

〈|{x = init c in {I → d}]H}] P |〉2I =
xt := xt :: A

〈|P |〉2I = A

〈|{x = init c in {I → d later}]H}] P |〉2I =
xt := xt :: A

P ≡ {xi = bi} {〈|P |〉1I = AI 〈|P |〉2I = A′
I}

I∈I⋃
i

FVi(bi) ⊆ {xi} xj ∈ Updated by I(P)

JP K = {(I, off :: 〈xtj = xj :: xtj = xj〉 :: on :: AI

:: A′
I :: off :: 〈xj = xtj :: xj = xtj〉 :: on}I∈I

Figure 3: Compilation of P-FRP

each pair consists of an event and a sequence of statements
for that event. The compilation function extracts the state-
ments for each phase by searching for behaviors triggered by
the event in the P-FRP program. It also checks for circular
references of variables during a phase and returns an error
if there are some.

To allow for correct restarting of handlers, compilation is
extended to generate statements that store variables mod-
ified in an event handler into fresh temporary (or scratch)
variables in the beginning of the handler while interrupts are
turned off, and to restore variables from the temporary vari-
ables at the end of the handler while interrupts are turned
off. We call these the backup, computation and restoration
parts. Most importantly, the temporary variables are used
throughout the computation part. If the computation part
of a handler is interrupted, values in the temporary variables
are discarded. A handler does not affect program state until
the restoring part.

The compilation rules define how active and passive be-
haviors in P-FRP compile to SimpleC. For each event, com-
pilation builds an event handler in SimpleC, which scans all
P-FRP behaviors for handlers for that event and for each
handler found and emits statements to the SimpleC han-
dler.

The rules are the same as the original compilation with
two exceptions. First, event handlers update scratch vari-
ables corresponding to the original variables, and scratch

variables are not used for values that are only read in a
handler. In this way, restarting guarantees that a consis-
tent value will always be read. Second, the top-level rule is
extended with backup and restore parts.

Figure 3 defines the following:

- (x := d) < A: “d does not depend on x or any variable
updated in A.”

- 〈|P |〉1I = A: “A is the first phase of P ’s event handler
for I”

- 〈|P |〉2I = A: “A is the second phase of P ’s event handler
for I”

- JP K = Q: “P compiles to Q”

The set of all variables declaring behaviors dependent on I
is defined as the set Updated by I(P).

Passive(P) ≡ {x | {x = d}] P}
Updated by I(P) ≡ {x | {x = init c in ({I → d ϕ}]H)}

]P ∪ Passive(P)}

A function FV that computes a set of free variables in a
behavior b is defined as follows:

FV (x) ≡ {x}, FV (c) ≡ ∅, FV (f〈di〉) ≡
⋃
i

FV (di)

FV (init c in {Ii ⇒ di ϕi}) ≡
⋃
i

FV (di)

The function collects all references to variables in the be-
havior’s handler and excludes the ones referring to the be-
havior.

The first rule in figure 3 for the judgment 〈|P |〉1I = A states
that an empty P-FRP program produces an empty handler
for I. The second rule with n = 1 states that a passive be-
havior compiles to equivalent SimpleC. The third rule states
that an active behavior executed in the first phase com-
piles to SimpleC code, in which the value of the behavior is
changed in the first phase. The next rule states that an ac-
tive behavior executed in the second phase compiles to Sim-
pleC, where only a temporary copy of the behavior value is
changed in the first phase. The fifth rule, with n = 1, states
no handler is produced for an unhandled event.

The second rule with n = 2, and the sixth rule for the
judgment 〈|P |〉2I = A, are the same as in the previous judg-
ment. The seventh rule compiles an active behavior exe-
cuted in the first phase to SimpleC that copies the computed
value in the first phase. The fifth rule with n = 2 generates
SimpleC that updates a behavior value in the second phase.
The last rule is the same as in the previous judgment.

In the top-level rule, there is a check that there are no
references to undeclared behaviors.

Compilation produces the example SimpleC programs we
presented in Section 3.

5. TECHNICAL RESULTS
This section presents the technical results establishing the

correctness of the P-FRP compilation strategy.

5.1 Correctness of Compiling
Our proof follows that of Wan et al.’s proof [31]. In

particular, after handling any event I, the updated E-FRP
program should compile to the same SimpleC as the origi-
nal E-FRP program. This property holds because E-FRP
programs carry all of the relevant state, while the SimpleC

226

only contains the executable instructions. At the same time,
the state embodied in the new E-FRP program must match
those produced by executing the resulting SimpleC program.
Diagrammatically,

P-FRP program P
I→ S × P ′

SimpleC program Q

J K

?
I,�n7−→ S × Q

〈≡, J K〉

?

One auxiliary notion is needed to state the result. The
state of a P-FRP program P , written as state(P), is a store
defined by:

Definition state(P) ≡ {xi 7→ stateP (di)}] {xj 7→
statep(rj), xj 7→ stateP (rj)} where P ≡ {xi = di}]{xj =
rj}

A state function collects the value of each behavior in
a P-FRP program. After collection, the state contains the
values of all behaviors in a P-FRP program.

Definition

stateP]{x=b}(x) ≡ stateP (b)
stateP (c) ≡ c
stateP (f〈di〉) ≡ prim(f, 〈stateP (di)〉)
stateP (init c in H) ≡ c

Let JP K be the unique Q such that JP K = Q (We have this
Q by compilation determinism [15]). Then,

Theorem 5.1 (Correctness of Compilation).

1. P
I→ S; P ′ =⇒ JP ′K ≡ JP K.

2. P
I→ S; P ′ =⇒ ∃n ≥ 0.(state(P)]

T, JP K, en, nil, nil)
I,�n7−→ (state(P ′)] T ′, en, nil, nil).

5.2 Resource Boundedness
Now, we turn to resource boundedness. Because physical

resources are constrained to a fixed limit, it is important
that stack growth is bounded. We prove that our stack size
is bounded and provide a way to calculate it given some
initial stack configuration.

Definition We define the size of a stack σ, written as
size(σ), as:

size(nil) ≡ 0 size((I, A,4) :: σ) ≡ size(σ) + 1

Theorem 5.2 (Stack boundedness). If

(S, Q, en, (I0, A,⊥) :: σ, q)
Z7−→ (S′, m′, σ′ :: (I0, A,⊥) ::

σ, q′), then the maximum value of size(σ′) is lmax − E(I0)
where Z ≡ I1, �k1 , I2, �k2 , . . . , In, �kn and lmax is the
greatest interrupt priority at the system.

5.3 Atomicity
Finally, we justify the claims about the preservation of

the atomicity property for handling events. We begin with
a simple example that illustrates the problem addressed by
atomicity. Consider the following code:

L → 1,H → 2 x = init 0 in{H1 ⇒ x + z},
y = init 0 in{H1 ⇒ y − z}, z = init 1 in{H2 ⇒ z + 1}

E-FRP semantics tells us that the value of x + y should
always be zero. Naively allowing preemption would violate
this property. The higher priority event H2 can interrupt
the execution of the handler for the lower event H1 and
update z before the statement y − z in H1’s handler for y
has executed. We will show that this cannot happen in our
model.

If an event J of lower priority occurs while a higher prior-
ity event is running, J is always queued, and its handler is
executed after I’s handler completes. If an event I of higher
priority occurs while a lower priority event J is running,
then there are three possibilities: (1) If I was copying, then
J is queued and its handler runs as soon as copying is over.
When J is done, I is restarted. (2) If I was computing,
then J ’s handler runs immediately and after it is done, I is
restarted. (3) If I was restoring, then J is queued and its
handler runs after I is done. The following result addresses
each of these three cases.

Theorem 5.3 (Reordering). Assuming E(J) >

E(I) > E(Lt) for all Lt ∈ q, if (S, Q, en, σ, q)
Z7−→

(S′, en, (I, A,⊥) :: σ, q) and (S′, Q, en, (I, A,⊥) :: σ, q)
J,�m7−→

(S′′, en, σ, q) for some n and m, then either of 1-3 holds:

1. A 6≡ 〈〉, Z ≡ I, �n, J, �n1 and (S, Q, en, σ, q)
J,�j7−→

(Ŝ, en, σ, q) and (Ŝ, Q, en, σ, q)
I,�i7−→ (S′′, en, σ, q) for

some j and i

2. A 6≡ 〈〉, Z ≡ I, �n and (S, Q, en, σ, q)
J,�j7−→ (Ŝ, en, σ, q)

and (Ŝ, Q, en, σ, q)
I,�i7−→ (S′′, en, σ, q) for some j and i

3. A ≡ 〈〉, Z ≡ I, �n, J, �n1 , and (S, Q, en, σ, q)
I,�i7−→

(Ŝ, en, σ, q) and (Ŝ, Q, en, σ, q)
J,�j7−→ (S′′, en, σ, q) for

some j and i.

This result states that if two events occur, one after the
other, with the second interrupting the handler for the first,
then the resulting C state is equivalent to the C state re-
sulting from some reordering where each handler is executed
sequentially, without being interrupted.

To generalize atomicity to multiple events occurring while
an event I is executing, we apply Theorem 5.3 multiple
times for each occurring event to produce a state where
each event is permuted as if it occurred either before or
after I. Given a starting point with a state Ss, queue qs,
master bit on, if I, �n, {Ji, �i}i∈1...z are steps of execution
that produce a final state S, then there are some steps
{Jk, �kk}k3E(Jk)>E(I), I, �j , {Jl, �ll}l3E(Jl)≤E(I) where

{k} ∪ {l} = {1 . . . z} whose execution produces a final state
S′ from the same starting point.

6. RESPONSIVENESS
We next formalize the notion of time to respond to events

and illustrate the change in the guaranteed upper bounds
for the small example presented earlier.

Suppose we have events Ii, with arrival rates ri (occur-
rence per second), and the uninterrupted times to process
each of them are ti. The priority of Ii is i. The following
table presents both the assumptions needed for the queue

227

Assumption Maximum Wait Processing

E-FRP rk ·
n∑

i=1

ti ≤ 1 (
n∑

i=1

ti)− tk tk

P-FRP
tk � tk+1

Gk ≥ tk
(n− k) ·Gk tk

to have length at most one for each priority level and the
maximum waiting and processing times for an event Ik in
each of E-FRP and P-FRP:

For E-FRP, the longest possible length of the queue is
n∑

i=1

ti. To ensure that no event is missed because the queue

is full, we assume that the same event will not occur before
the prior occurrence has been handled.

The maximum gap guaranteed to exist is defined by

Gk = 1/max(rk+1, · · · , rn, (n− k) ·min(rk+1, · · · , rn))

The maximum wait is the maximum time to find such a gap.
Event Ik will be handled given that this gap is larger than tk.
Assuming that tk+1 � tk, we can omit the processing time
when finding the gap. While Gk may seem like a complex
term, it is easy to see that In with highest priority requires
no wait before being processed. Generally, we can guarantee
that events with higher priority can be handled much faster
in P-FRP than in E-FRP.

To validate our compilation strategy and the expected ef-
fect on responsiveness, we implemented interrupt restart in
kernel mode under Windows XP. We added several soft-
ware interrupts directly to the Interrupt Descriptor Table
(IDT), which collects pointers to the event handlers that
the x86 refers to upon an interrupt. Software interrupts al-
low us to test interrupts of our event handlers at specific
points without facing the delay of hardware interrupts. We
use the x86 INT nn instruction to jump immediately to
injected interrupts and bypass Windows interrupt process-
ing. Because Windows no longer handles priorities for us,
we implemented the priority handling scheme given by the
P-FRP semantics. The scheme is implemented as preamble
and postamble sections to each handler, which consist of a
set of rules corresponding to the semantics.

We use the KeQueryPerformanceCounter Windows func-
tion to measure the time to execute each handler. The
function is a wrapper around the processor read-time stamp
counter (RDTSC) instruction. The instruction returns a 64-
bit value that represents the count of ticks from processor
reset. We use randomly generated events so that the i + 1-
th occurrence of each event arrives at a time given by the
formula

T (i + 1) = 130 + Random(0, 1) ∗ 20 + T (i)

The table below shows the maximum number of ticks of
wait time before an event handler is completed in P-FRP
and E-FRP.1 Each type of event occurs between 300 and
400 times.

Event Priority P-FRP E-FRP Speedup
Reset 31 38 56 1.47
H 1 59 64 1.08
L 0 448 250 0.56

1We use an Intel Pentium III processor machine, 930 MHz,
512 MB of RAM running Windows XP, Service Pack 2

As expected, the timings show that the priority mecha-
nism allows us to reorganize the upper bounds on maximum
process time so that higher-priority events run faster.

7. RELATED WORK
Broadly speaking, there are three kinds of related work,

which consist of essential constructs for programming and
analyzing interrupt-driven systems, software transactions,
and other synchronous languages.

Palsberg and Ma, who present a calculus for program-
ming interrupt-driven systems [19], introduce a type system
that (like P-FRP) guarantees boundedness for a stack of
incomplete interrupt handlers. To get this guarantee, the
programmer “guides” the type system by explicitly declar-
ing the maximum stack size in each handler and globally on
the system. Palsberg and Ma’s calculus allows for interrupts
to be of a different priority: the programmer hardcodes their
priority by manipulating a bit mask that determines which
interrupts are allowed to occur at any point in a program.
The programmer is thus responsible for ensuring that inter-
rupts are correctly prioritized. Furthermore, Palsberg and
Ma’s work allows the programmer to have atomic sections in
handlers: the programmer needs to disable/enable the cor-
rect set of (higher-priority) interrupts around such sections.

P-FRP statically guarantees stack boundedness without
help from the programmer. In P-FRP, the programmer is
also statically guaranteed correct prioritization of events and
atomic execution of handlers at the expense of a fine control
over atomicity.

Vitek et al. [16] present a concurrency-control abstrac-
tion for real-time Java called PAR (preemptible atomic re-
gion). PAR facilitates atomic transaction management at
the thread level in the Java real-time environment. The au-
thors restrict their analysis of execution guarantees to hard
real-time threads, which are not allowed to read references
to heap objects and thus must wait for the garbage collector.
Even with this restriction, the environment complicates esti-
mating worst-case execution time for threads. Our preemp-
tion is interrupt driven rather than context switch driven.
Both works use transactions similarly, with the difference
being that in Vitek’s work an aborting thread blocks until
the aborted thread’s undo buffer is written back. Our work
delays undos until an aborting event completes. While our
work evaluates maximum waiting time and processing time
for an event, Vitek’s work answers a related responsiveness
question in the context of threads: can a set of periodically
executing threads run and complete within their periods if
we know, for each thread, its maximum time in critical sec-
tion, maximum time to perform an undo, and worst-case
response time. Such an analysis could be an extension to
our work in which we evaluate whether sequences of peri-
odically occurring events can be handled in fixed blocks of
time.

Nordlander et al. [18] discuss why a reactive programming
style is useful for embedded and reactive systems. Currently,
methods in thread packages and various middleware could
block, which makes the enforcement of responsiveness diffi-
cult. Instead of allowing blocking, the authors propose set-
ting up actions that react to future events. To enforce time
guarantees, Jones at al. [17] focus on reactive programming
that models real-timed deadlines. Just as with our respon-
siveness result, a deadline considers all reactions upon event

228

occurrence, i.e., every component involved in the handling
of a particular event should be able to complete before a
given deadline.

Ringenburg and Grossman [23] present a design for soft-
ware transactions-based atomicity via rollback in the context
of threads on a single processor. Software transactions are a
known concurrency primitive that prohibits interleaved com-
putation in atomic blocks while ensuring fairness (as defined
in [10]). An atomic block must execute as though no other
thread runs in parallel and must eventually commit its com-
putation results. Ringenburg and Grossman use logging and
rollback as a standard approach to undoing uncompleted
atomic blocks upon thread preemption, and they retry them
when the thread is scheduled to run again. Logging consists
of keeping a stack of modified addresses and their previous
values, and rollback means reverting every location in the
log to its original value and restarting a preempted thread
from the beginning.

In an extension to Objective Caml called AtomCaml, Rin-
genburg and Grossman connect the latter two processes by
a special function that lets the programmer pass code to
be evaluated atomically. This function catches a rollback
exception, which a modified thread scheduler throws when
it interrupts an atomic block, and then performs necessary
rollback. Thread preemption is determined by a scheduler
based on time quotas for each thread.

Like AtomCaml, P-FRP implements a transaction mech-
anism that allows handlers to execute atomically, even when
they are preempted. These approaches are similar and are
alternative methods of checking or inferring that lock-based
code is actually atomic ([8, 7]). On the other hand, Atom-
Caml and P-FRP are two design choices for atomicity via
rollback in two different environments’ threads and event
handlers. Threads are not prioritized as event handlers and
run only during their time quotas. Ringenburg and Gross-
man [23] focuses on implementation and evaluation of soft-
ware transactions and only informally discusses guarantees
for time and stack boundedness and for reordering of pre-
empted threads. In contrast, in this paper we define a se-
mantics that allows us to formally establish such properties
for our transactional compiler.

Harris et al. [12] integrate software transactions with Con-
current Haskell. Previous work on software transactions did
not prevent threads from bypassing transactional interfaces,
but Harris et al. use Haskell’s type system to provide several
guarantees:

• An atomic block can only perform memory operations,
rather than performing irrevocable input/output.

• The programmer cannot read or write mutable mem-
ory without wrapping these actions in a transaction.
This eases reasoning about interaction of concurrent
threads.

We would like to ease the restrictions of the first point
and allow revocable input/output from/to specified device
memory-mapped registers. Just as other threads can modify
transaction-managed variables, C global variables generated
by P-FRP can be modified by an external event handler.
We do not yet have a solution for read or write protecting
these global variables in the operating system kernel mode.
Harris et al. also provide support for operations that may
block. A blocking function aborts a transaction with no ef-
fect, and restarts it from the beginning when at least one of

the variables read during the attempted transaction is up-
dated. P-FRP can be extended to support blocking trans-
actions by polling device registers. Furthermore, Harris et
al. allow the programmer to build transactional abstractions
that compose well sequentially or as alternatives so that only
one transaction is executed. It would be a useful, addition
to P-FRP, to allow smaller transaction granularity, so that
the programmer can specify which parts of an event handler
need to execute as a transaction. Harris et al. [13] ob-
serve that implementations of software transactions [12] use
thread-local transaction logs to record the reads and tenta-
tive writes a transaction has performed. These logs must be
searched on reads in the atomic block. Harris et al. suggest
some improvements over the implementation, as follows:

• Compiler optimizations to reduce logging

• Runtime filtering to detect duplicate log entries that
are missed statically

• GC time techniques to compact logs during long run-
ning computations .

In P-FRP, it would be useful to analyze variable use and
to determine whether a given handler needs to execute as a
transaction. Second, it would be useful to reduce the number
of shadow variables by guaranteeing their safe reuse.

Other languages support the synchronous approach to
computation where a program is instantaneously reacting
to external events. In the imperative language Esterel [2, 1],
signals are used as inputs or outputs, with signals having op-
tional values and being broadcast to all processes. They can
be emitted simultaneously by several processes, and sensors
are used as inputs and always carry values. An event is a
set of simultaneous occurrences of signals. Esterel, like the
original E-FRP, assumes that control takes no time. The Es-
terel code below is an if-like statement that detects whether
a signal X is present. Based on the test, a branch of the
if-like statement is executed immediately.

present S(X) then <statement1>

else <statement2> end

The assumption of atomic execution might not be reason-
able if a branch is being executed when X occurs. There are
compilers that translate Esterel into finite state machines,
and in such a compiler’s target, X would occur during mul-
tiple transitions in a finite state machine, which might be is
undesirable. The same is true for languages Signal [9] and
Lustre [4], in which a synchronous stream function corre-
sponds to a finite state machine with multiple transitions.
The original E-FRP also has this problem, which P-FRP
solves by stating explicitly which actions are taken at any
point that an event occurs.

8. CONCLUSION AND FUTURE WORK
In this paper, we have presented a compilation strat-

egy that provides programmers with more control over the
responsiveness of an E-FRP program. We have formally
demonstrated that properties of E-FRP are preserved and
that prioritization does not alter the semantics except for
altering the order in which events appear to arrive.

There are several important directions for future work.
In the immediate future, we are interested in simplifying
the underlying calculus of the language, as well as studying

229

valid optimizations of the generated code. We are also in-
terested in determining quantitative upper bounds for the
response time, as well as the space needed to handle each
event. Finally, we expect to continue to build increasingly
larger applications in E-FRP, which should allow us to val-
idate our analytical results using the real-time performance
of programs written in the language.

9. ACKNOWLEDGMENTS
We thank Emir Pasalic and Jeremy Siek for many valu-

able suggestions and discussions related to this work. David
Johnson, and Robert (Corky) Cartwright served on the Mas-
ters thesis committee for the first author, and Ray Hardesty
helped us improve our writing greatly.

10. REFERENCES
[1] G. Berry. The Constructive Semantics of Pure Esterel.

Draft 3. ftp://ftp-
sop.inria.fr/esterel/pub/papers/constructiveness3.ps,
July 1999.

[2] G. Berry and L. Cosserat. The Esterel synchronous
programming language and its mathematical
semantics. In Seminar on Concurrency,
Carnegie-Mellon University, pages 389–448, London,
UK, 1985. Springer-Verlag.

[3] D. D. Bovet and M. Cesati. Understanding the Linux
kernel. O’Reilly & Associates, Inc., Sebastopol, CA,
2000.

[4] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice.
Lustre: a declarative language for real-time
programming. In POPL’87, pages 178–188, New York,
NY, USA, 1987. ACM Press.

[5] K. Donnelly and M. Fluet. Transactional events. In
ICFP’06, pages 124–135. ACM Press, September 2006.

[6] C. Elliott and P. Hudak. Functional reactive
animation. In ICFP’97, volume 32(8), pages 263–273,
1997.

[7] C. Flanagan and S. Qadeer. A type and effect system
for atomicity. In PLDI’03, pages 338–349, New York,
NY, USA, 2003. ACM Press.

[8] C. Flanagan and S. Qadeer. Types for atomicity. In
TLDI’03, pages 1–12, New York, NY, USA, 2003.
ACM Press.

[9] T. Gautier, P. L. Guernic, and L. Besnard. Signal: A
declarative language for synchronous programming of
real-time systems. In FPCA’87, pages 257–277,
London, UK, 1987. Springer-Verlag.

[10] D. Grossman. Software transactions are to
concurrency as garbage collection is to memory
management. Technical report, UW-CSE, Apr. 2006.

[11] T. Harris and K. Fraser. Language support for
lightweight transactions. In OOPSLA’03, pages
388–402, New York, NY, USA, 2003. ACM Press.

[12] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy.
Composable memory transactions. In PPoPP’05,
pages 48–60, New York, NY, USA, 2005. ACM Press.

[13] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi.
Optimizing memory transactions. SIGPLAN, vol.
41(num. 6):p14–25, 2006.

[14] P. Hudak. The Haskell School of Expression -
Learning Functional Programming Through
Multimedia. Cambridge University Press, 2000.

[15] R. Kaiabachev, W. Taha, and A. Zhu. E-FRP with
Priorities (extended version).
http://www.cs.rice.edu/taha/publications/preprints,
2007-08-15-TR.pdf.

[16] J. Manson, J. Baker, A. Cunei, S. Jagannathan,
M. Prochazka, B. Xin, and J. Vitek. Preemptible
atomic regions for real-time java. In RTSS’05, pages
62–71, Washington, DC, USA, 2005. IEEE Computer
Society.

[17] J. Nordlander, M. Carlsson, M. P. Jones, and
J. Jonsson. Programming with time-constrained
reactions. In Submitted for publication, 2004.

[18] J. Nordlander, M. P. Jones, M. Carlsson, R. B.
Kieburtz, and A. Black. Reactive objects. In
ISORC’02, page 155, Washington, DC, USA, 2002.
IEEE Computer Society.

[19] J. Palsberg and D. Ma. A typed interrupt calculus. In
FTRTFT’02, LNCS 2469, pages 291–310.
Springer-Verlag, 2002.

[20] J. Peterson, G. Hager, and P. Hudak. A language for
declarative robotic programming. In ICRA’99. IEEE,
May 1999.

[21] J. Peterson and K. Hammond. Haskell 1.4, a
non-strict, purely functional language. Technical
report, Haskell comittee, Apr. 1997.

[22] A. Reid, J. Peterson, G. Hager, and P. Hudak.
Prototyping real-time vision systems: An experiment
in DSL design. In ICSE’99, pages 484–493, 1999.

[23] M. F. Ringenburg and D. Grossman. AtomCaml:
First-class atomicity via rollback. In ICFP’05. ACM,
September 2005.

[24] A. Rubini and J. Corbet. Linux Device Drivers.
O’Reilly & Associates, Inc., Sebastopol, CA, second
edition, 2001.

[25] T. Shanley. Protected Mode Software Architecture.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1996.

[26] N. Shavit and D. Touitou. Software transactional
memory. In PODC’95, pages 204–213, August 20–23
1995. Ottawa, Ont. Canada.

[27] D. Solomon and M. Russinovich. Inside Microsoft
Windows 2000. Microsoft Press, 3rd edition, 2000.

[28] J. A. Stankovic. Misconceptions about real-time
computing: A serious problem for next-generation
systems. Computer, Vol. 21(Num. 10):p10–19, 1988.

[29] Z. Wan and P. Hudak. Functional reactive
programming from first principles. In PLDI’00. ACM,
2000.

[30] Z. Wan, W. Taha, and P. Hudak. Real-time FRP. In
ICFP’01, pages 146–156, New York, NY, USA, 2001.
ACM Press.

[31] Z. Wan, W. Taha, and P. Hudak. Event-driven FRP.
In PADL’02, Lecture Notes in Computer Science.
Springer, January 19-20 2002.

230

