
A Computational Reflection Mechanism to Support
Platform Debugging in SystemC

Bruno Albertini, Sandro Rigo,
Guido Araujo

Institute of Computing, Unicamp
1251 Albert Einstein – Campinas, Brazil

{sandro, bruno.albertini,
guido}@ic.unicamp.br

Cristiano Araujo, Edna Barros,
Williams Azevedo

Informatics Center, UFPE
Av. Professor Luiz Freire s/n – Recife, Brazil

{cca2, wtoa, ensb}@cin.ufpe.br

ABSTRACT
System-level and Platform-based design, along with Trans-
action Level modeling (TLM) techniques and languages like
SystemC, appeared as a response to the ever increasing com-
plexity of electronics systems design, where complex SoCs
composed of several modules integrated on the same chip
have become very common. In this scenario, the exploration
and verification of several architecture models early in the
design flow has played an important role. This paper pro-
poses a mechanism that relies on computational reflection to
enable designers to interact, on the fly, with platform sim-
ulation models written in SystemC TLM. This allows them
to monitor and change signals or even IP internal register
values, thus injecting specific stimuli that guide the simula-
tion flow through corner cases during platform debugging,
which are usually hard to handle by standard techniques,
thus improving functional coverage. The key advantages of
our approach are that we do not require code instrumenta-
tion from the IP designer, do not need a specialized SystemC
library, and not even need the IP source code to be able to
inspect its contents. The reflection mechanism was imple-
mented using a C++ reflection library and integrated into
a platform modeling framework. We evaluate our technique
through some platform case studies.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General;
J.6 [Computer Applications]: Computer-aided Engineer-
ing—Computer-aided Design (CAD)

General Terms
Design, Verification

Keywords
Platform-based Design, Debugging, Computational Reflec-
tion, System Architecture

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-824-4/07/0009 ...$5.00.

1. INTRODUCTION
The ever increasing system complexity has been moti-

vating the creation of new design methodologies for several
years now, culminating with the so called Electronic System
Level (ESL) design and platform-based design. In this sce-
nario, the exploration of several SoC architectural models
is key to achieve application tuning and improved perfor-
mance. This demands a platform simulation infrastructure
capable of doing fast simulation both software and hardware,
at a high level of abstraction. SystemC [3] has emerged as
one of the most adopted system level design languages and
Transaction Level Modeling (TLM) is being widely adopted
as the most suitable technique for ESL design. One of the
most appealing aspects of TLM is the possibility of reusing
the whole platform infrastructure for both hardware and
software development and verification [9].

The integration of verification into the design flow is very
important in a TLM-based design methodology. For exam-
ple, by guiding the simulation flow through certain corner
situations by means of specific stimuli injection. This type
of feature is very useful in order to increase verification cov-
erage. In this paper, we propose a mechanism that relies on
computational reflection to enable designers to, on the fly,
interact with the platform simulation. This allows them to
monitor and change signals or even IP internal register val-
ues, so as to explore, in a high level of details, what is really
happening within each platform module. Our main goal is
to improve the designers’ ability to test corner cases dur-
ing platform debugging, thus improving functional coverage
of their verification techniques, without requiring any mod-
ification on the IPs SystemC code. Actually, the designer
does not even require the source code of an IP to be able
to apply the reflection mechanism to it, as we are going to
explain further in the text. Our reflection mechanism was
implemented using a C++ reflection library and integrated
into a platform modeling framework called PDesigner [12],
which enables the construction of SystemC platform mod-
els graphically, through an Eclipse plugin, thus facilitating
platform simulation and exploration.

The remaining of this paper is organized as follows: Sec-
tion 2 discusses some related work, Section 4 presents our
platform simulation infrastructure, Section 3 introduces the
reflection mechanism, Section 6 illustrates the application
of the reflection technique through platform debugging case
studies, and finally, Section 7 summarizes our conclusions.

81

2. RELATED WORK
The majority of the commercial ESL tools that allow func-

tional description and simulation, enable support to some
kind of debugging. This is usually achieved by library in-
strumentation, which implies a modified version of SystemC
and TLM libraries tied to their development software.

Coware’s Model Designer [5] is an Eclipse plugin that sup-
ports IP modeling using SystemC. By using Coware’s Sys-
temC library, it is possible to monitor process execution,
event generation chain and all communication, including
TLM. Some of the data can be modified on the fly, but the
main purpose seems to be logging and test management.
The Incisive family, from Cadence [4], has many introspec-
tion tools. The SystemC from this vendor supports dynamic
assertions and code instrumentation. Incisive Simulator is
a tool to automatically instrument code, aiming the auto-
matic test generation using Incisive Scenario Builder. Men-
tor Graphics [11] seems to be investing in XML IP descrip-
tions. Every IP has a description of its structure, including
interface. This helps to generate tools for monitoring, since
at least the exposed structure is always known. Neverthe-
less, it cannot be used to inspect internal registers.

Up to now, the work on the SystemC Verification Library
(SCV) has focused on RTL verification features. We are
aware that SCV developers are considering high-level veri-
fication features for future releases. There is no data intro-
spection mechanism on the current version of SCV.

Lapalme et al [10] developed a platform design framework
based on Easy.NET, an extension of .NET for hardware de-
scriptions. They first identified the need of code introspec-
tion for debugging and verification purposes but, for them, it
came at no cost since C# (from which .NET was derived) na-
tively supports reflection. Déharbe and Medeiros [6] showed
another way of doing the same thing using aspect oriented
programming. The focus was instrumenting all the code to
generate code metrics, but the same technique can be easily
used for verification and debugging purposes. The instru-
mentation was made using the AspectC++ library, a known
C++ extension for this programming paradigm. The main
disadvantage is that IP designers must be aware that the IP
will be accessed using this technique and write their code
using the aspect oriented paradigm.

In this paper, we describe an introspection mechanism,
based on computational reflection, for aiding designers dur-
ing platform debugging in SystemC. The main advantages
of our approach, if compared to the alternatives discussed in
this section, are that we do not require code instrumentation
from the IP designer, do not need a specialized SystemC li-
brary, and do not even need the IP source code to be able
to inspect its contents. We clarify these concepts in the
following sections.

3. COMPUTATIONAL REFLECTION
Computational reflection is the ability of representing the

system within the system itself [8]. Some authors classify dif-
ferent reflection techniques considering the mechanism used
to generate the additional data structure needed for achiev-
ing the introspection. Static reflection examines the source
code of the reflected data structure at compile time and solve
all necessary conflicts (i.e. type) before compilation. Dy-
namic reflection generates separated structures that can be
compiled and linked with the code that will use the reflected

data. This approach allows the code that uses the reflected
data to be written in a generic way, without knowing the
reflected data structure at compile time.

Static reflection is widely used by compilers to do mem-
ory optimizations, but it does not fit our needs. We need
a reusable module that can be used to inspect and change
any SystemC module. Dynamic reflection can be used to
our purposes with the small overhead of generating the ex-
ternal data structures for every reflected module. Libraries
that implement this kind of reflection do it by means of a
dictionary. Although many recent languages like C#, .NET,
and Java support some kind of reflection natively, C++ does
not. Modern compilers generate internal reflection for mem-
ory optimization, but there is no way the end user can easily
access those structures. There are many libraries that im-
plement reflection, most of them based on user annotation
or static reflection, but usually they do not provide all the
necessary features to do dynamic reflection.

One of the requirements we wanted to include in our
methodology is that the IP designer should not need to be
aware that the IP will be inspected, meaning that design-
ers will develop their SystemC IPs in exactly the same way
they already do. Moreover, it should also be possible to in-
spect, through the reflection mechanism, IPs whose source
code are not even available. These requisites make static
reflection or user annotated strategies, where the reflection
mechanism or the source code must be rewritten for every
single IP, unsuitable for our purposes.

Aspect oriented programming is an interesting program-
ming paradigm which can well suit data introspection. But
it requires changing the programming paradigm in which de-
signers develop their IPs. Each SystemC module where data
introspection would be applied should be developed follow-
ing the aspect oriented programming paradigm. As we see,
this requisite has two major drawbacks. First, hardware de-
signers may not be willing to learn and to change between
different programming paradigms, seriously restricting the
adoption of this technique. Second, all existent IPs need
rewritten in order to make the data introspection technique
applicable.

4. MODELING AND SIMULATION
INFRASTRUCTURE

Debugging of SystemC models demands an environment
that provides the user with good interactivity with the sys-
tem. In this work, we adopted the PDesigner [12] framework
as our main infrastructure. This is a modeling, simulation,
and analysis framework for SystemC TLM based multipro-
cessor platforms. The framework abstracts the SystemC 2.2
library and simulator from the user that works as a platform
integrator. The SystemC TLM component library available
in PDesigner includes processor models designed with an ar-
chitecture description language (ArchC 2.0), bus functional,
cycle approximate, and cycle accurate models of AMBA and
Avalon buses, and hardware IP cores. A screenshot of PDe-
signer is shown in figure 1, marked with letters A, B and C

in each different view available to the user. The A view is
the project management area with the project directories.
In the B view is the component palette that allows the user
to interact with the component library, the user can drag
and drop components in the platform view (C). There it can
be seen a platform with a MIPS processor, one jpeg decoder

82

IP, one SimpleBus bus, and two memories and their connec-
tions. On the bottom, it can bee seen a console window (D)
that is part of the computational reflection tool to be further
explained in the following sections.

Figure 1: PDesigner Screenshot

An important feature of the framework is that it provides
support for the SPIRIT 1.2 LGI interface [14] to integrate
new tools. The LGI interface makes use of the SPIRIT
schema files to allow the integration between the modeling
and simulation tools with the analysis tool that interacts
with the platform or with a specific component.

The PDesigner [12] architecture is depicted in figure 2. It
can be divided in three distinct parts. The first part is a set
of standard tools, languages, and simulation environment.
The simulation environment is build upon the SystemC 2.2
library. SystemC allows SoC components to be modeled at
different abstraction levels. For now, it supports functional,
timed approximate, and cycle accurate component models.
The connection and communication between the SoC com-
ponents is based on the SystemC TLM 1.0 standard [9],
providing simpler connections, easier protocol modeling and
faster simulation. On top of the simulation and communica-
tion is the ArchC architecture description language [2] and
tools. It is a SystemC like language used for processor ar-
chitecture description and automatic generation of software
tools like simulators, assemblers, and linkers. By using the
ArchC ADL, it is possible to generate SystemC processor
models instrumented with TLM interfaces.

The second part is a set of Eclipse [7] plugins that compose
the core tools for modeling, simulation, and library manage-
ment. The PArchC plugin enables processor architecture
designers to model processors using ArchC and to export
these processors to the component library. The distribution
of SystemC TLM components other than ArchC processors
is done using the IPZip plugin [1]. This plugin provides
support for a component designer to distribute it without
having to deal with the several SPIRIT schema files. This
plugin implements a set of wizards that guides the compo-
nent distribution. The distribution flow is depicted in figure
3. The result of the distribution is a zip file containing the

System C 2.2

ArchC 2.0

TLM 1.0

SPIRIT 1.2Eclipse

PArchC

PDLibrary

PBuilder

PReflexion

Core
plugins

Analysis
plugins

Comp.
Lib.

IPZip

Figure 2: Platform Design Framework Architecture

component source code and the SPIRIT schema files, thus
allowing the component to be imported into the framework
component library. As a complement to the PArchC and
IPZip plugins, PDLibrary is responsible for managing the
component library by enabling users to easily add and re-
move SPIRIT distributed SystemC TLM components from
it.

IPZip
wizard

SPIRIT
distribution Comp.

Lib.

SystemC TLM
source

Figure 3: SystemC TLM Distribution Flow

The last element of the core plugins is PBuilder. It gives
the user an environment for modeling and simulating SoCs.
Its main purpose is to abstract the SoC designer of imple-
mentation details of the platform components. On one hand,
it abstracts SystemC language details as the user drags-and-
drop components in a graphical environment. This environ-
ment also provides a view for parameter tuning of the com-
ponents. On the other hand, PBuilder transparently enables
the connection between components that talk different pro-
tocols. The user connects master and slave protocol ports
and the tool inserts the necessary wrappers, that perform
the protocol conversion, from the library.

The third part is composed of analysis plugins. These
plugins make use of the platform architecture information
provided by PBuilder in order to offer analysis services to
the user. Section 3 describes how we use the computational
reflection concept and Section 5 explains the implementa-
tion of the mechanism developed in this work, which was
integrated to the PDesigner framework.

5. PLATFORM REFLECTION
IMPLEMENTATION

We evaluated several reflection libraries in order to im-
plement our platform debugging mechanism. We ended up
choosing the Reflex-SEAL [13] library, designed by CERN
as a part of the ROOT project. The advantages over other
libraries like CPPReflect, AReflection, or OpenC++ are
mainly: non intrusive, semi automatic information gather-
ing, no external dependencies except for the library itself,
and there is no need to modify or replace the compiler.

The information gathering is done in two phases. First,
GCCXML is used to parse the source code header file and to
generate an object equivalent structure in XML. Second, the

83

XML file is parsed, generating a compilable dictionary that
contains information about the object structure, like offset
and type of the attributes and methods. All information
gathering is done before the compilation and should be done
once for every module to be reflected. Notice that the no
source code file (.cpp) is touched and no annotation on any
source code is required.

Programs that use the reflected data can access the gen-
erated dictionary using the Reflex-SEAL library. Since the
dictionary has all the internal structure representation, just
getting a pointer to the object is sufficient for any reflection
operation. In this paper we are interested in attribute in-
spection for reading and writing, but calling methods and
non virtual functions are also possible. The library has some
aiding functions, like iterators over attribute lists and type
information, very useful when writing generic code.

Figure 4: Reflex-SEAL Reflection Flow.

Figure 4 shows the reflection generation flow. Dictio-
nary generation is performed by a script called gen_reflex,
shipped with the library. This script calls GCCXML and
generates the dictionary. User is the program that will use
the reflected data, and linking it with the library and the
compiled dictionary is sufficient.

The SPIRIT standard has a lot of interesting characteris-
tics ruled by its specification, from IP interface to abstrac-
tion layers, but we are specially interested in one mechanism
introduced by the SPIRIT team: the WhiteBox.

A WhiteBox is a module that can be plugged into any
hardware description to inspect the state of the hardware.
SystemC hardware descriptions are C++ classes. Data in-
spection can be done inspecting all inputs and outputs, rep-
resented by variables, as well as the register information,
represented by object attributes and variables. Reflection
can give us exactly this kind of information. The SPIRIT
consortium does not specify the way that WhiteBox mod-
ules should be implemented, but its functionality. Our im-
plementation consists in a SystemC module that has zero
delay and communicates with the world by means of a socket
and a simple protocol. It acts like any SystemC module, but
it cannot be accessed by another module because it has no
interface. When SystemC’s kernel schedule the process of
this module it uses the dictionary for walking through an
instance of the reflected object (another SystemC module)
and gather information.

The WhiteBox is generic and can be instantiated for any
kind of SystemC module by passing a pointer to the ob-
ject when calling the WhiteBox’s constructor. A WhiteBox
can handle just one IP instance, but the platform can have
as many WhiteBox instances as required. At the first ex-
ecution, it will generate an internal list of the attributes
and allow the user to set conditions, like what are the at-

tributes of interest and what to do with them. Actually,
Whiteboxes support breakpoints, used to stop the simula-
tion when one of the conditions is satisfied or just log any
changes suffered by the attribute of interest. When a break-
point condition is satisfied, the user is capable of observing
the value, of changing the value, or of just continuing the
simulation. Remember that the WhiteBox has zero delay, so
stopping the simulation does not advance SystemC’s simula-
tion time. WhiteBox scheduling must be performed in such
a way that it inspects the reflected module every simulation
cycle where the module could change its state. It is accom-
plished by defining the WhiteBox sensitivity list carefully,
making it sensible to the same events that can trigger the
reflected module.

Using the WhiteBox is a pretty simple task. First, the
user should reflect the desired module. This can be done
automatically with the dictionary generator gen_reflex and
the header file of the reflected IP, as previously mentioned.
If the designer is using PDesigner as his capture tool, a right
mouse button click over the desired IP should open a drop
box containing the reflection option. Everything else is done
internally by PDesigner.

Including the mechanism directly in SystemC descriptions
is straightforward. Listing 1 shows a code snippet containing
an example where a WhiteBox module is used to inspect an
IP that is connected to a bus. Line 5 creates a clock signal,
while lines 6-8 do the module instantiations. The clock is
binded to the bus clock signal port (11). So, this is the same
signal that must be used to trigger the WhiteBox module
(line 10). Notice that the WhiteBox also receives a string
containing the reflected object class name (line 7), used for
dictionary query, and a pointer to the IP instance.

Listing 1: WhiteBox Usage
1 #include ” ‘ ip .H”
2 #include ” ‘ whitebox .H”
3 int sc main (int ac , char ∗av []) {
4 // Common c l o c k
5 s c c l o c k bus c lock ;
6 ip myip (”ip ” ,3 ,0 x300500 , 0x3FFFFF) ;
7 whitebox<ip>
8 wb(”wb” , ” ip ”,&myip , 6 0 0 0) ;
9 // Binding wi th same s e n s i t i v i t y l i s t

10 wb . c lock (bus c lock) ;
11 myip . c lock (bus c lock) ;
12 } ;

The final step is to connect the WhiteBox with a socket
interface compliant with its protocol. It is a simple hand-
shake protocol that we omit here for the sake of saving space.
By default, the WhiteBox will listen for connections at port
6000, but this can be configured at WhiteBox instantiation,
which is useful when reflecting more than one module at
the same time. PDesigner has the ability to connect to the
WhiteBox module and to show reflected information. Fig-
ure 1 shows a WhiteBox output, in the console window (D),
as it is provided to the user in the PDesigner interface.

6. CASE STUDIES

Multi-IP Platform
The platform used for the first case study is composed by
a PowerPC (PPC) functional model, generated by ArchC,

84

a programmable MMU (Memory Management Unit) for ad-
dress translations, an AMBA bus with an arbiter, and a
functional memory. The processor controls an IP chain, us-
ing it to do numeric computation, and two timers that feed
the processor through a programmable interrupt controller.
For this example, the PPC uses the IPs as random num-
ber generators in order to fill up vectors for its application.
Figure 5 shows an overview of the platform.

Figure 5: Diagram of the Case Study Platform.

The main point about this platform is its memory address
space, which totalizes 65535 bytes. The physical memory
has 9MB of real address and IPs (including timers and in-
terrupt controller) are mapped to addresses between 9MB
and 10MB. The MMU is responsible for paging and redi-
recting issues. Offset redirection is done automatically, but
paging should be programmed by the processor. Accesses to
the memory region from 0 to 2MB and from 3 to 10MB are
redirected to real memory through MMU paging. Memory
addresses from 2MB to 3MB are redirected, without paging,
to IP addresses from 9MB to 10MB. One important point
is that designers of this platform did not have access to any
source code except for processor. For the remaining plat-
form modules, all they had were the prototype headers and
object files (.H and .o files).

The first execution revealed that the memory application
vector had been filled up with zeroes. It could appear that
the IPs were not working properly at first look, but when
IPs were tested in isolation from the platform they were
working fine. So the problem only appeared when they were
connected together into the platform. The usual verification
flow for SystemC models takes the designer to a debug tool
like GDB but, since we do not have the source code, there
is no guarantees that the object file will work with GDB.
Moreover, it is known that SystemC debugging can get really
annoying if GDB falls into SystemC’s library code, instead
of just following the application code.

Our approach consists in using reflection to dynamically
inspect the register values of all SystemC modules that take
part of the process. This methodology showed that the IPs
were not receiving any requests at all and so, we reflected
the MMU module.

The inspection of MMU registers at runtime showed that
the MMU was paging the IP mapped addresses (from 2 to
3MB). Since this space is physically tied to the IPs, the
accesses to this area should not be paged, but just added to
an offset to redirect it to a real IP address (from 9 to 10MB).
The problem was reported to the MMU developer, who sent
a patched MMU version that worked in a first run. All the
inspection process took less than one hour.

DJPEG architecture
The second case study was taken from a real world exam-
ple. The platform was a PowerPC running the Mediabench
JPEG decoder. As a first design cut, the designer ran a
full software platform composed by a PowerPC, bus, and
memory, for profiling purposes. He noticed that the integer
discrete cosine transformation was taking almost a half of
the processing time, so it made sense to design an IP to do
that job.

The designer created a functional description of a spe-
cialized IDCT IP and connected it to the platform using a
TLM interface. Inside the IP, a SystemC process receives
the incoming TLM requests and monitors a control register,
awaiting for a non-zero value to trigger the IDCT compu-
tation. In fact, the IP acts like a slave for the processor,
which programs the IP registers and sets the control regis-
ter to signal the IP. Once the IP is triggered, it changes to
master behavior, racing with the processor for accessing the
memory (and consequently for the bus). After all compu-
tation is done, the IP sets its control register back to zero,
signaling to the processor that the job is done, and returns
to slave state. This platform is shown in figure 6.

Figure 6: Diagram of the JPEG Platform.

The reflection mechanism was used in this platform with
two purposes. First, the designer used it to do timing anal-
ysis. As the control register holds true when the IP is work-
ing, and zero when it is in slave state (sleeping or no job
state), the designer sets an “on change” breakpoint on this
register. The WhiteBox outputs all transitions from zero to
one and from one to zero. As all the outputs receive Sys-
temC’s internal simulation time-stamp, the timing between
two consecutive executions can be easily determined. This
information was used to conclude that the IP was too fast
for bus interleaved usage. The processor should stay in a
busy/wait mode or the IP must be duplicated to allow a
parallel execution or double buffering, for example.

Second use on this platform was to debug parameter pass-
ing. The result image was weird when the IP was first used,
so the designer reflected the IDCT IP to inspect its registers.
One of the parameter registers is a vector address in memory.
The memory was originally allocated by the application, but
since we do not have any dynamic allocation on this small
system, a hard coded vector was used. The inspection of this
register and the incoming TLM transaction packet showed
that the address arriving to the IP was not the same as the
one sent by the processor. The PowerPC is a big endian

85

processor, but the ELF files were not converted when load-
ing, so the first position of the vector was right, but after a
few iterations the sum done by processor was somewhat far
away from the vector address space. In this platform, we
do not have any operating system to complain about illegal
memory accesses. It was easy to devise this problem using
a WhiteBox to reflect the data from both the register and
the TLM packet variable, showing timestamp related trans-
actions side by side. After applying a conversion function
and correcting some typecasting, all access were corrected
and the final decoded image was the expected.

The DJPEG platform was also used to a performance eval-
uation. Our goal was to estimate the performance down-
grade imposed to the platform simulation due to the White-
Box insertion. Table 6 shows the performance statistics col-
lect for three different configurations of this platform. The
first configuration includes the IDCT IP sharing the job with
the PPC processor. The same scenario as in Figure 6, ex-
cluding the WhiteBox. The second configuration includes
a stub IP with an empty SystemC process, added with the
sole purpose of including one more SystemC process to be
scheduled during simulation. The third platform is the one
depicted in 6, including the WhiteBox reflecting the IDCT
IP.

Configuration KIPS

IP 774.37
IP + Stub 725.87

IP + WhiteBox 726.42

Table 1: DJPEG Platform Performance.

We can see from the first two configurations that adding
the stub IP caused a simulation speed downgrade due to the
overhead of having one more SystemC process to schedule.
The last two lines of the Table show us that substituting
the stub IP for the WhiteBox module caused a similar per-
formance downgrade. The simulation performance overhead
imposed by the WhiteBox insertion is similar to the over-
head on having one more empty IP or empty SystemC pro-
cess in the platform. Speeding up SystemC’s internal process
context switching and synchronization mechanism would de-
crease the downgrade imposed by the reflection mechanism
significantly.

7. CONCLUSIONS
This paper introduces a new platform debugging mecha-

nism based on computational reflection to achieve data in-
trospection in SystemC hardware modules. Our mechanism
enables designers to guide the platform simulation flow, by
observing and changing signals and IPs internal register val-
ues, allowing the injection of specific stimuli. The result is
an improved ability to cover corner cases in the platform
simulation, ending up increasing the functional coverage of
the whole verification process. The key advantages of our
approach are that it does not demand any special action
or IP code preparation from the designer, nor a specialized
SystemC library, and not even the IP source code files in
order to enable the data introspection debugging technique.
The reflection mechanism requires only the source header
file (.h) and the object file (.o) for each platform module to
be inspected.

The mechanism is built upon the open source Reflex-
SEAL reflection library and was integrated to the PDesigner
platform modeling and simulation framework. However, it
is important to notice that both the introspection technique
and the computational reflection mechanism are indepen-
dent from the framework. It could be integrated to any
SystemC-based platform development environment. More-
over, the impact of using the reflection technique on the sim-
ulation performance is small, equivalent to having an extra
empty SystemC process in the system.

8. ACKNOWLEDGEMENTS
The authors would like to thank CAPES (processes num-

ber 0018058 and 0326054) and CNPq (processes number
55.2117/20021, 132916/20053, and 477457/20061) for fund-
ing this project.

9. REFERENCES
[1] C. Araujo, E. Barros, M. Almeida, and G. Araujo.

IPZip - An IP Distribution Framework. Proceedings of
the IP-SOC 2006, pages 259–264, Dec. 2006.

[2] R. Azevedo, S. Rigo, M. Bartholomeu, G. Araujo,
C. Araujo, and E. Barros. The ArchC Architecture
Description Language. International Journal of
Parallel Programming, 33(5):453–484, Oct. 2005.

[3] D. C. Black, J. Donovan, B. Bunton, and A. Keist.
SystemC: From the Ground Up. Kluwer, 2004.

[4] Cadence. Website, Jan. 2007.
http://www.cadence.com.

[5] Coware. Website, Jan. 2007. http://www.coware.com.

[6] D. Déharbe and S. Medeiros. Aspect-oriented design
in systemC: implementation and applications. In
SBCCI ’06: Proceedings of the 19th annual symposium
on Integrated circuits and systems design, pages
119–124, New York, NY, USA, 2006. ACM Press.

[7] Eclipse - an open development platform.
http://www.eclipse.org, 2007.

[8] J. Ferber. Computational reflection in class based
object-oriented languages. In OOPSLA ’89:
Conference proceedings on Object-oriented
programming systems, languages and applications,
pages 317–326, New York, NY, USA, 1989. ACM
Press.

[9] Frank Ghenassia, editor. Transaction-Level Modeling
with SystemC. Springer, 2005.

[10] J. Lapalme, E. M. Aboulhamid, and G. Nicolescu. A
new efficient EDA tool design methodology. Trans. on
Embedded Computing Sys., 5(2):408–430, 2006.

[11] Mentor graphics. Website, Jan. 2007.
http://www.mentor.com.

[12] PDesigner. http://www.pdesigner.org, 2007.

[13] S. Roiser and P. Mato. The SEAL C++ reflection
system. In CHEP ’04: Presented in the Computing in
High Energy and Nuclear Physics congress
(CHEP’04). CERN, Sept. 2004.

[14] SPIRIT Consortium.
http://www.spiritconsortium.org, 2007.

86

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

