
Embedded Software Development on Top of
Transaction-Level Models

Wolfgang Klingauf, Robert Günzel, Christian Schröder
Technical University of Braunschweig, Dept. E.I.S.

Mühlenpfordtstr. 23, 38106 Braunschweig, Germany
{ klingauf, guenzel, schroeder } @ eis.cs.tu-bs.de

ABSTRACT
Early embedded SW development with transaction-level
models has been broadly promoted to improve SoC design
productivity. But the proposed APIs only provide low-level
read/write operations via a TLM interconnect. SW develop-
ers have to implement platform-specific communication pro-
cedures and handshake protocols to access HW functions,
which requires a deep understanding of both the HW inter-
faces and the TLM fabric used. In this paper, we propose
our concept of hardware procedure calls (HPC) with which
HW services are provided to SW processes as remote meth-
ods on top of transaction-level communication. To this end,
a lightweight HPC protocol is presented, and we propose a
method to generate the infrastructure for HPC communica-
tion from a straightforward input description. Our experi-
ments show that with HPC, embedded SW development is
considerably made easier, and that also the effort to create
the transaction-level model itself is reduced.

Categories and Subject Descriptors: D.2.2 [Software
Engineering]: Design Tools and Techniques – Modules and
interfaces; Object-oriented design methods

General Terms: Design, Languages

Keywords: Hardware-Software Communication, SystemC,
TLM, Embedded Software, Middleware, SoC, HPC

1. INTRODUCTION
Transaction-level modeling (TLM) has widely been

adopted for system level design. One ultimate goal is to al-
low for early embedded SW development based on a virtual
prototype of the HW platform. Much work has been done in
embedded SW generation from a transaction-level descrip-
tion [1, 2, 5, 9, 12, 15]. Typical to these approaches is that
the SW developers are obliged to use a dedicated TLM API
in order to access the functionality of HW IP. Predominantly,
a blocking message-passing API based on FIFO channels is
proposed. During the software generation process, the com-
munication channels are replaced by behaviorally equivalent
channel implementations and device drivers from a target
RTOS library.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-824-4/07/0009 ...$5.00.

Figure 1: TLM HW-SW model

Figure 2: HPC HW-SW model

While from the HW developer’s point of view TLM chan-
nels describe communication at a high level of abstraction,
for SW developers the proposed TLM fabrics are rather in-
convenient. Fig. 1 shows a typical transaction-level model of
a simple system-on-chip (SoC) with a HW core and a SW
subsystem. In such models, communication between concur-
rent SW processes is modeled by using an RTOS API [2, 5,
10, 15]. This is indicated by the dotted arrows between the
SW processes P1 and P2.

In contrast, SW-to-HW communication takes place
through the TLM interconnect. As a result, the code in
the SW model written for SW-HW communication highly
depends on the TLM API used and the HW handshake pro-
tocol. If during subsequent model refinement a HW core is
replaced by another version, or a HW service is moved into
the SW part of the system, tedious and error-prone code
refactoring will be required. Switching to another TLM fab-
ric (e.g., to explore different communication architectures)
also might result in a lot of effort.

1.1 Hardware Procedure Calls
In this paper we propose our concept of hardware proce-

dure calls (HPC). The goal is to abstract away the platform-
dependent details of TLM communication by providing a
flexible middleware solution for embedded SW modeling on
top of transaction-level models. With HPC, HW services are

27

made available to SW processes by high-level service access
methods. These access methods are independent of both
the HW handshake protocol and the underlying TLM fab-
ric. HPCs transport an arbitrary number of arguments in
the form of complex datatypes and are invoked by a simple
method call. Communication between service providers (HW
IP cores) and service accessors (SW processes) is established
by a lightweight HPC protocol which is performed over the
TLM interconnect.

The main contribution of this work is a concept for HW-
SW communication in transaction-level modeling, that

• provides high-level access to HW functions in a service
oriented manner,

• is independent of the used TLM fabric,
• conceals HW interfaces and handshake protocols from

the SW implementation.

In particular, HPC enables the use of a single SW model
throughout the whole design process. Based on our exper-
iments with SystemC we show that the infrastructure that
needs to be in place to enable HPCs in a transaction-level
model can be generated automatically from a straightforward
input description. Thus, our methodology also eases the in-
tegration of heterogeneous IP into a transaction-level model,
since less lines of code are required to create IP-specific TLM
transactors.

2. RELATED WORK
TLM-based HW-SW co-design with a general-purpose sys-

tem level design language (SLDL) such as SystemC or SpecC
is generally seen as the state-of-the-art in embedded system
design. By raising the level of abstraction, design productiv-
ity can be considerably increased [4].

Several approaches to synthesize embedded SW from
transaction-level models have been proposed. [1, 5, 9, 12]
consider C++ code generation for a target RTOS from the
SystemC language. In [15], ANSI C code generation from
SpecC models is discussed. TLM channel synthesis is fo-
cused in [1, 5, 15]. In [5] and [15], the authors propose to
map the TLM API onto an RTOS API. In [1], the use of
configurable communication coprocessors and a hardware ab-
straction layer (HAL) is proposed. The flurry of publications
on this topic shows that SW generation from transaction-
level models is a promising solution to system level HW-SW
codesign. But all these proposals have in common that the
SW developer must adhere to a specific shared-memory or
message-passing TLM API to establish SW-HW communi-
cation, with the above mentioned disadvantages.

To overcome this issue, in [3], a service-oriented architec-
ture based on hybrid elements is proposed. These elements
provide a high level SW interface on the one side and a low
level HW port on the other side. Thus, they act as a transac-
tor between different levels of TLM abstraction. This concept
is close to our HPC approach, but the examples in [3] are lim-
ited to low-level FIFO communication and the authors do not
present a solution to automated transactor generation. An
approach for the automatic generation of transactors from an
abstract input description is presented in [14]. In contrast to
our approach, here communication must be modeled using a
predefined semantic based on message passing, shared mem-
ory accesses and events.

We propose to raise the level of abstraction for SW-HW
communication modeling even further. Our objective is to

provide the same ease of use for HW services in a MPSoC
model as Sun-RPC and Java-RMI do for remote services in
distributed systems. To this end, we developed a high level
HW service access protocol to be used on top of virtually any
TLM fabric and also in the final SoC. For the experiments
we considered the open-source TLM framework GreenBus
[8] for SystemC, which supports different TLM APIs in one
TLM fabric, including OCP [11], OSCI-TLM [13], and ST’s
TAC package [4]. Also, different levels of TLM abstraction
are supported. Thus, our results can be applied to a broad
range of TLM components.

3. GENERAL CONCEPT OF HARDWARE
PROCEDURE CALLS

In TLM, a SoC is composed of various HW and SW sys-
tem components which are connected via a communication
fabric. Each component implements a part of the SoC’s
functionality. Looking at the functionality provided by HW
components, we here adopt the concept of services [3]. A
service describes a procedure with input and/or output val-
ues which is executed by a component on request of another
component. For example, a JPEG HW core could provide
an encodeJPEG service. It describes a complete JPEG image
compression procedure. Input values could be a compression
rate and a block of raw image data, the output would be
JPEG-compressed image data. Different granularity classes
for HW services can be considered. Taking up the JPEG ex-
ample, another IP core may give more control over the image
compression procedure by providing the services quant, dct,
and huffman. Ideally, for each HW service in a SoC model
there would be one SW method which can be called with a
set of parameters.

Hardware procedure calls provide such high level access
methods to HW services in a transaction-level model. The
implementation of an HPC splits up into two parts: a HPC
proxy and a HPC transactor. Both modules are connected
to the TLM fabric over which they implement an HPC pro-
tocol. This is outlined in fig. 2. Each HPC proxy in a SoC
model provides one ore more service access methods. When
a service access method is invoked, e.g.:

jpegimg = jpegProxy.encodeJpeg(rawimg, 8);

the proxy forwards the service request to the target transac-
tor over the TLM interconnect. Upon reception, the transac-
tor reassambles the service access method and calls it into the
connected IP. If the IP does not natively provide the service
access method, an IP translator has to be used to translate
the service access method into the API/interface of the con-
nected IP. After completion, the return values are signaled
back over the TLM interconnect, so that the proxy’s service
access method can return.

3.1 HPC protocol
Proxies and transactors use a high-level HPC protocol to

perform HW service requests over a TLM fabric. The design
of this protocol plays a key role in the HPC concept. On the
one hand, it must be simple enough to ensure that HPCs can
be implemented on top of virtually any TLM fabric, indepen-
dent of their APIs, the transaction semantics, and the design
languages used. On the other hand, the protocol should be
flexible enough to support all kinds of HW services typically
used in SoC models. Finally, it must be reliable and should
produce as less communication overhead as possible, since it

28

will be used in both the transaction-level model and the final
chip.

To meet these requirements, two major aspects need to be
addressed: First, how handshake between proxies and trans-
actors is performed. Second, transport of the input and out-
put values. In this section, an HPC protocol is specified
based on these considerations.

3.1.1 Service classes
Reviews of IP cores showed that four general classes of

HW services can be considered (table 1). Typically, services
of class 1 are provided by functional IP cores that perform a
transformation of input values into output values. Predom-
inantly, such cores can be found in the multimedia domain,
e.g. audio/video compression and digital signal processing.
Class 2 and 3 services often are provided by peripheral cores.
A typical example is an Ethernet MAC with a send and a
receive queue. Finally, services without input and output
values are specified by class 4. For example, imagine a panel
with LEDs and a beeper which the SW programmer would
like to control by HPCs blinkLed and beep.

Table 1: HPC service classes
Class Service specification

1 Input and output values (e.g., encodeJpeg)
2 Input values only (e.g., playAudio)
3 Output values only (e.g., getEthernetFrame)
4 Neither input nor output values (e.g., blinkLed)

By setting either input or output value length (or both)
to zero, classes 2, 3, and 4 can be treated as special cases of
class 1. However, the advantage of distinguishing four differ-
ent HW service classes is performance optimization, because
the number of transactions per service invocation can be min-
imized. This becomes clear when we map each of the four
service classes to a sequence of transactions.

3.1.2 Mapping service classes to transactions
Before we specify the HPC protocol, we first take a brief

look on the notion of transaction to justify our decisions.
Transaction is a term of wide comprehension. Basically, the
only common ground that can be found when comparing
TLM fabrics is that there is cohesion, with transactions being
write or read transfers from an initiator (master) to a target
(slave) [6, 4, 11, 13]. However, as a consequence of differ-
ent objectives, the details differ significantly. For example,
ST’s TAC TLM fabric only supports fixed length transac-
tions. I.e., the number of data bytes transferred in a trans-
action (read or write) is set up by the initiator and cannot be
modified by the target. In contrast, the IBM CoreConnect
SystemC TLMs offer the possibility to make the slave decide
on its own initiative after how many bytes the transaction
shall be terminated.

For the HPC protocol we considered a minimal subset of
transaction features which we think is supported by (or can
be mapped to) any TLM fabric. This set of features adheres
to the following attributes:

• Transactions are always initiated by HPC proxies: this
presumes that SW processes are connected to the in-
terconnect by an initiator interface, which for processor
cores usually is the case (typically they act as a bus
master).

• Transactions are either read or write transfers.

Figure 3: HPC handshake procedures

• HPC proxies and transactors can be configured to use
either fixed-length or arbitrary-length bursts.

• No further special TLM fabric features or transfer qual-
ifiers shall be used.

Based on these considerations we specified two handshake
protocols. They are shown in fig. 3. Each pair of arrows in
the sequence charts represents one transaction. The protocol
variant in fig. 3a is used to implement class 1 and 3 HPCs.
For class 2 and 4 HPCs, the protocol variant in fig. 3b is
sufficient.

3.1.3 Service invocation
For all four service classes, the first transaction T1 trans-

ports two pieces of information: (1) the HW service that is
to be invoked, (2) the input values.

For the first argument, we utilize the fact that in all TLM
fabrics known to the authors (both bus and NoC simulation
frameworks) the target of a transaction is specified by an ad-
dress parameter. Thus, for each transactor in an HPC model
we specify a range of addresses under which it is reachable.
HPC addresses are assigned by the following scheme:

hpc addr = transactor.base addr + service id

Each transactor can provide an arbitrary number of HW
services. The service IDs are assigned ascending, so that
the transactor for a HW core that provides n services will
allocate the address range:

[transactor.base addr, transactor.base addr + n).

The input values for a HW service invocation are trans-
ferred (if there are any) as data payload of T1. When the
transaction arrives at the target HPC transactor, it acknowl-
edges its reception and reads the target address and data
payload to extract the service ID and input values. Then
it communicates with the HW core over its proprietary in-
terface to activate the HW procedures whose execution is
necessary to render the requested service.

After the HW procedures have been finalized an interrupt
signal is generated to inform the HPC proxy that it can re-
turn control to the SW process. The class 2 or 4 HPC is
finished.

3.1.4 Return value transmission
There are two reasons why we chose to transmit the return

value of a service invocation in a separate transaction. First,
it is not known how long the execution of a HW service will
take. Thus, if T1 would back transfer the return value, it
could block the SoC’s communication architecture for a long

29

time, suspending other data transfers. Second, for class 1
services a combined write/read transaction would be neces-
sary which is not supported by any TLM fabric. Hence, for
services of class 1 and 3, a read transaction T2 is necessary
after the interrupt to retrieve the return value.

Transaction T2a in fig. 3 is not always required. It is nec-
essary if (1) the TLM fabric only supports fixed-length trans-
actions, and (2) the return value length of the invoked HW
service is unknown. The latter often is the case for signal
processing cores, e.g. a JPEG encoder.

When T2 has been finalized, the class 1 or 3 HPC is fin-
ished.

3.1.5 Data representation
In the transaction-level model, the input and output values

of HPCs may be arbitrary complex datatypes such as classes
and structs. Before they are transported via the TLM inter-
connect, they need to be serialized into a stream of bytes.
This is necessary for a number of reasons: (1) to achieve ac-
curate simulation results regarding the communication time
consumed by HPCs, (2) because some TLM fabrics may re-
quire data fragmentation (e.g. a packet-based NoC), (3) to
enable HW-SW interface synthesis from an HPC model, be-
cause in the final chip, byte-wise SW-HW communication is
inevitable.

Figure 4: HPC invocation object

Serialization is part of the data representation used in the
HPC protocol. Fig. 4 shows the basic structure of an HPC
invocation object. It is assembled by the HPC proxy and put
into the data payload field of the transaction data structure
provided by the TLM fabric. For the data representation, the
platform-independent ‘network byteorder’ is used which in C
can be generated by the ntoh and hton macros. The return
value of an HPC is transported in a similar object. Since the
receiving HPC transactor knows which HPC is getting cur-
rently invoked due to the provided service ID encoded in the
address, it knows (1) the number of expected parameters and
(2) the size of the parameters if they are fixed in size. Only
if a parameter’s size is not fixed (e.g., std::vector) a length
identifier is included in the serial stream in front of the se-
rialized parameter. Consequently the overhead of the HPC
data representation compared to the data that gets trans-
mitted without using HPC is zero when using fixed length
paramters and it’s only 4 bytes per non fixed size parameter,
since we believe parameters do not usually extend sizes of
4 GB.

3.1.6 Concurrent HPCs
In general, one HPC cannot be executed twice at the same

time. Thus, if two SW processes try to invoke the same HPC
concurrently, the SW process whose transaction T1 arrives
first will win the race. The HPC requested by the second SW
process will be aborted by the transactor. How this is im-
plemented depends on the underlying TLM fabric. Usually,
a NACK (non-acknowledge) will be replied.

However, HPC transactors that provide more than one ser-
vices should be able to handle different HPCs in parallel.
For example, a SW process could send data to a network
controller, while another SW process receives data from the

same controller. To enable this kind of ‘allowed’ concurrency
but to also rule out unsupported constellations of parallel
HPCs (most IP cores do not support parallel operations, or
concurrency is limited), HPC transactors must implement a
concurrency management. It should support the following
features:

• Accept any HPC if state is idle.

• Reject HPC for service A if A is currently executed.

• Accept/reject HPC for service A if another service B is
currently executed and there is no/a mutual exclusion
rule for A and B.

3.1.7 Error handling
Several kinds of errors can occur during an HPC. We can

classify them into two categories. First, the TLM fabric can
produce transfer errors such as bus timeout or denial of ser-
vice due to high load. Second, the HPC transactor can reject
a service request due to its concurrency rules. In both cases
the transaction will abort. Depending on the capabilities of
the used TLM API it may not be possible to get a clear re-
port on the error reason. Thus, HPC proxies should retry an
HPC several times before they give up. If nevertheless the
HPC fails, this indicates a severe deadlock problem in the
SoC model (e.g. due to permanent bus overload or inappro-
priate arbitration schemes). This should be reported in the
system level simulation.

3.1.8 DMA
The above considerations imply that all IP cores providing

HW services in an HPC model boast a target (slave) inter-
face. Using memory mapped registers in the IP core, SW
processes send the input values of an HPC actively to the
HW. For many tasks, this kind of ‘push’ communication is
sufficient.

However, cores built for high data throughput normally
use DMA transfers to reduce CPU load. In this case, HPCs
cannot (and should not) be used to transfer user data directly
from the SW to the IP core. Instead, HPCs for DMA cores
should signal that a transfer is to be started. To this end, a
class 2 HPC carries the base address and size of the memory
region that is to be processed, so that the HW core or a
dedicated DMA controller can start DMA operation. The
HPC’s return value indicates completion and points to the
memory address where the output values can be found.

One could argue that for systems with DMA controllers
this approach is inconvenient as it implies that the DMA
controllers are explicitly considered in the HPC model, thus
lowering the level of abstraction. However, all conceivable
‘higher level’ solutions would require some technique for au-
tomatic DMA controller synthesis out of the HPC model,
which is not in the scope of this paper.

3.2 SystemC implementation
We have created a SystemC implementation of the HPC

protocol on top of the GreenBus [8] TLM fabric. To this end,
we took several SoC models including a video processor and
a cellphone system1, and converted them into HPC models
by writing adequate HPC proxies and transactors. The SoC
models are comprised of various HW components at different
levels of abstraction. GreenBus supports the composition of

1The HPC implementation for SystemC and test models are
available for download at www.greensocs.com/GreenBus

30

mixed-mode models by its ‘transaction container’ (TC). The
TC provides a generic representation of transaction phases
(‘atoms’) and transaction data (‘quarks’) so that interaction
between different TLM APIs and abstraction levels is made
possible. Our HPC proxies and transactors adhere to this
scheme and can perform HPCs over any GreenBus-compliant
communication architecture. To this end, we used the Green-
Bus ‘generic API’ to implement transaction-level communi-
cation. The interrupts that are part of the HPC protocol (see
fig. 3) were implemented with SystemC events (sc_event).

Data serialization is supported by an HPC_EXTENSIONS

macro. It is used as a wrapper around datatypes, equipping
them with a serialize and a deserialize method. These
methods are used by the HPC proxies and transactors to pack
and unpack transaction containers. Our HPC_EXTENSIONS

macro covers all standard C++ and SystemC datatypes.
Since GreenBus allows for timed simulations at both a bus

accurate and a cycle-count accurate level of abstraction, HPC
models can be used for comprehensive communication archi-
tecture exploration. The precision of the simulation results
does not differ from the precision of non-HPC SoC models.

4. TRANSACTION-LEVEL MODEL
GENERATION

Based on various experiments with the HPC concept, we
have created a set of generic HPC proxy and transactor frag-
ments from which application-specific proxies and transac-
tors can be generated automatically. These specialized prox-
ies and transactors provide exactly the functionality neces-
sary for the supported HPCs.

To create an HPC model, the following preparations are
necessary: For each IP core with services to be made available
by HPCs, a set of service execution methods needs to be in
place. These methods must communicate with the IP core
over its interface/API to execute the HW procedures that
are to be invoked by the corresponding HPCs. Thus, they
are absolutely IP-specific, and there are no limitations to the
techniques used for the implementation of these methods.
We refer to this set of methods with the term IP translator.

When the IP translators are in place, the HPC model gen-
eration can begin (see figure 5): For each target module with
one or more services to be invoked from SW, the developer
adds HPC annotations to the methods to allow automatic
understanding of the SystemC code. Using our SystemC
analysis framework DUST [7], the annotations can be writ-
ten to an XML file that also contains information about the
design structure. Automatic processing of this data is pos-
sible without big effort. A Java tool can generate model-
specific HPC proxies and transactors by simply assembling
them from our library of code fragments to specialized prox-
ies and transactors for each method that was annotated as
an HPC_METHOD.

In order to use the proxies and transactors they can
be included in a HW and SW model with two simple
commands: #define HPC_CONFIG_SLAVE_<SlaveName>

selects a proxy-transactor-pair and #include "hpc.h"

makes them available. That followed the transac-
tor can be instantiated in the HW module with
hpcAPISlave_transactor_<SlaveName> myTransactor

and the proxy can be instantiated in the SW module
with hpcAPISlave_proxy_<SlaveName> myJpegProxy.
The SW makes HPCs on the proxy, e.g.

Figure 5: HPC concept

myJPEGImg = myJpegProxy.encodeJpeg(myImg, 8). The
HPC will be transferred through the TLM interconnect to
the HW module, where the transactor instance will call the
proper IP translator method.

While the proxy and transactor generation can be per-
formed fully automatically, the implementation of the HW
access methods in the IP translator is the only ‘tricky’ part
of the HPC model generation. Here, a full understanding of
the HW-specific handshake protocols and interfaces is neces-
sary. However, this also would be the case in any ‘normal’
non-HPC transaction-level model, although with the differ-
ence that there the HW access must be implemented in the
SW processes. Thus, the HPC concept moves this implemen-
tation from the service accessor (SW) to the service provider
(HW). Moreover, the code that accesses the HW’s interfaces
is completely separated from the code that connects it to the
TLM interconnect. The latter can be generated fully auto-
matically with our methodology. As a result, the TLM fabric
can be exchanged or modified anytime during the design pro-
cess, without requiring adjustments to the IP translators.

5. A CASE EXAMPLE
To investigate how and to what extent the HPC concept

can aid the designer two models of the same video processor
system were designed independently. This system consists of
various IP blocks that reside at different abstraction layers
and use different APIs/interfaces. All cores were available
out of our IP library, and only the software that controlled
the functionality of the IP blocks was developed from scratch.

The first model was created using a common TLM de-
sign flow in which the heterogeneous IPs were connected to
a TLM framework (GreenBus), and were therefore equipped
with appropriate TLM transactors translating the GreenBus
API into the IP’s interface. The SW thread invokes the IP’s
services using the TAC interface, which is translated into the
GreenBus API using a TLM transactor (see figure 6).

The second model was created using the HPC concept,
so the IP cores were now treated as service providers, e.g.
the video digitizer was now supposed to provide a service
named getYUVFrame. To this end, we implemented IP trans-
lators that provide the HPC functions to the environment
and translate them into the API of a specific IP block, that
can then be connected to this module. For example the func-
tion getYUVFrame of the IP translator for the video digitizer
executes a complete OCP-TL1 communication sequence in
order to instruct the IP core to grab and send a video frame
using the YUV color format. The HPC proxies and trans-
actors were automatically created as described in section 4,
such that the software thread can use the IP services as plain
function calls (see figure 7).

31

Figure 6: Original video processor TLM model

Figure 7: Video processor HPC model

As can be seen in table 2 the number of lines of code (loc)
required to write the TLM transactors is usually greater than
the number of loc needed to write the IP translation mod-
ules. Both basically should need the same number of loc to
communicate with the IP, but the TLM transactor addition-
ally contains ‘general-purpose’ code to deal with incorrect
accesses from the TLM framework, which the HPC protocol
renders unnecessary. The number of loc needed in the SW
is also larger if using TAC, since the complete TAC protocol
including error handling and retry mechanisms has to be im-
plemented, while an HPC can be done by a simple method
call. An important row in table 2 is row five. There the IP
is directly connected to the TLM framwork which does not
require a TLM transactor, but of course the aforementioned
locs in the SW to access the TLM framework. In this case the
use of HPC introduces a code overhead concerning the TLM
transactor, but still simplifies the SW code significantly.

In summary, the use of HPC reduces SW complexity, and
thereby development time, as the use of HW services is now
done by single function calls instead of TLM API specific
communication sequences. The SW model and the TLM
fabric are decoupled. Hence, using automatically generated
HPC proxies and transactors the software can now be used
on top of different TLM APIs and frameworks, thus simpli-
fying architecture exploration and refinement. The example
demonstrates that HPC eases the assembly of heterogeneous
systems. Only in case of IP and TLM fabric using the same
interface a small overhead is introduced. This drawback is
compensated by the fact that the HPC-enabled HW core can
be reused with other TLM fabrics.

6. CONCLUSION
In this paper we discussed a high-level middleware ap-

proach for transaction-level MPSoC models that makes on-
chip HW functions available to SW processes by simple

Table 2: Video processor modeling effort

IP core Abstr.
level

Interface TLM trans.
+ SW loc

HPC descr.
+ SW loc

Video digitizer RTL OCP-pin 77+11 52+3
Color matching PV TAC 48+16 11+3
Noise reduction PV TAC 48+16 11+3
Labeling BA OCP-tl1 56+16 32+3
Region detection BA GreenBus 0+21 56+3

method calls in a service oriented manner. The proposed
methodology introduces almost no communication overhead
(see section 3.1.5) and the experiments show that it con-
siderably eases SW development, assembly of heterogeneous
systems and design space exploration by insulating SW code
and HW service access from the used TLM framework. The
feasibility of automatic HPC proxy and transactor genera-
tion was shown for the TLM framework GreenBus, but can
be put into practice for every TLM framework that supports
fixed length, adressable read/write transactions (see section
3.1.2).

Our ongoing work focusses on defining a set of generic pin-
level service access interfaces for IP cores and based on this
we examine how HPC-enabled communication co-processors
and appropriate RTOS drivers can automatically be gener-
ated to allow for full HPC model synthesis.

7. REFERENCES
[1] W. Cesario and A. Jerraya. Component-Based Design for

Multiprocessor Systems-on-Chip. Multiprocessor
Systems-on-Chip, Morgan Kaufmann, 2005.

[2] J. Chevalier, M. de Nanclas, L. Filion, O. Benny,
M. Rondonneau, G. Bois, and E. M. Aboulhamid. A SystemC
Refinement Methodology for Embedded Software. IEEE Design
& Test of Computers, pages 148–158, 2006.

[3] P. Gerin, H. Shen, A. Chureau, A. Bouchhima, and A. A.
Jerraya. Flexible and Executable Hardware/Software Interface
Modeling for Multiprocessor SoC Design Using SystemC. Proc.
ASP-DAC, 2007.

[4] F. Ghenassia. Transaction-Level Modeling with SystemC.
Kluwer Academic Publishers, 2006.

[5] F. Herrera, H. Posadas, P. Sanchez, and E. Villar. Systematic
Embedded Software Generation from SystemC. Proc. DATE,
2003.

[6] IBM. IBM PowerPC 405 Evaluation Kit with CoreConnect
SystemC TLMs. IBM, September 2005. Available at
http://www.ibm.com.

[7] W. Klingauf and M. Geffken. Design Structure Analysis and
Transaction Recording in SystemC Designs: A
Minimal-Intrusive Approach. Proc. FDL, 2006.

[8] W. Klingauf, R. Günzel, O. Bringmann, M. Burton, and
P. Parfuntseu. GreenBus - A Generic Interconnect Fabric for
Transaction Level Modelling. Proc. DAC, 2006.

[9] M. Krause, O. Bringmann, and W. Rosenstiel. Target software
generation: an approach for automatic mapping of SystemC
specifications onto real-time operating systems. Design
Automation for Embedded Systems, 10(4):229–251, 2005.

[10] R. Le Mogine, O. Pasquier, and J.-P. Calvez. A Generic RTOS
Model for Real-time Systems Simulation with SystemC. Proc.
DATE, 2004.

[11] Open Core Protocol International Partnership. A SystemC OCP
Transaction Level Communication Channel. Available at
http://www.ocpip.org, February 2007.

[12] S. Ouadjaout and D. Houzet. Generation of Embedded
Hardware/Software from SystemC. EURASIP Journal on
Embedded Systems, Article ID 18526, 2006.

[13] A. Rose, S. Swan, J. Pierce, and J. M. Fernandez. Transaction
Level Modeling in SystemC. OSCI TLM Working Group, 2005.

[14] D. Shin, A. Gerstlauer, J. Peng, R. Dömer, and D. Gajski.
Automatic generation of transaction-level models for rapid
design space exploration. Proc. CODES+ISSS, 2006.

[15] H. Yu, R. Dömer, and D. Gajski. Embedded Software
Generation from System Level Design Languages. Proc.
ASP-DAC, 2004.

32

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

