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ABSTRACT
With growing capacities of flash memories, an efficient layer
to manage read and write access to flash is required. NFTL
is a widely used block based flash translation layer designed
to manage NAND flash memories. NFTL is designed to
achieve fast write times at the expense of slower read times.
While traditionally, it is assumed that the read traffic to sec-
ondary storage is insignificant, as reads are cached, we show
that this need not be true for NAND flash based storage
due to garbage collection and reclamation processes. In this
work, we present two independent techniques that extend
NFTL and improve the read throughput in particular. The
techniques presented add a minimal amount of RAM over-
head to a flash controller, while providing, on an average,
a 22.9% improvement in page read times and a 2.6% im-
provements in page write times on a set of file system and
rigorous synthetic benchmarks. The techniques presented
are well suited for flash controllers that are typically space
constrained and have minimal processing power.

Categories and Subjsect Descriptors: D.4.2 Operating
Systems: Storage Management − Secondary Storage
General Terms: Design, Management, Performance
Keywords: NAND Flash, Block mapping, Storage

1. INTRODUCTION
The use of flash memory as a non-volatile storage medium

is on the rise. The characteristics of flash memory such as
low power, shock resistance, lightweight, small form factor
and absence of mechanical parts has long been recognized
as a storage alternative for mobile embedded systems [6].
There are two kinds of flash memories - NOR flash and
NAND flash. NOR flash is processor addressable and com-
monly used for small amounts of code storage. NAND flash,
on the other hand, is mostly used for data storage and scales
from megabytes to gigabytes in terms of storage capacity.

NAND flash of varying sizes can be found in devices such
as compact flash cards, USB storage devices, mp3 players,
and many more. The proliferation of embedded and mobile
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devices along with increasing demand for storage in such
systems has contributed to a rise in NAND flash storage
capacities. According to the Gartner group estimates, the
flash market grew from 1.56 billion in 2000 to 11.42 billion
in 2005. This trend is expected to continue in the coming
years [11].

Flash memories have certain properties that prevent them
from being a direct replacement for conventional storage de-
vices. Specifically, flash memories do not support in-place
updates, i.e., an update (re-write) to a given location (known
as a page) is not possible, unless a larger region (known as
a block) is first erased. In order to overcome the lack of in-
place updates, a hardware and/or software layer is added to
the flash. This layer, along with the flash memory, mimics a
secondary storage device. This layer is called the flash trans-
lation layer. The flash translation layer takes care of map-
ping a sector to a 〈block, page〉 on the NAND flash, thereby
giving the file system a view of an in-place mass storage de-
vice (Figure 1a). For a large class of flash based devices,
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Figure 1: Flash Translation Layer

the flash translation layer is implemented as a controller
in hardware. The controller consists of a low-end proces-
sor or microcontroller along with small amounts of RAM
(Figure 1b). The controller is responsible for two impor-
tant functions (i) Translating a read/write request from the
file system (i.e., a sector) into a read/write operation on a
specific 〈block, page〉 of the flash (Figure 1c), and (ii) Ini-
tiating garbage collection to erase dirty blocks and reclaim
free space. The bulk of RAM serves as a placeholder for the
translation data structure (e.g.: translation table). The size
of RAM is driven by the flash capacity. However, with rising
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flash capacities, scaling the RAM becomes unaffordable due
to rise in cost, area and power consumption of the controller.
Thus techniques are employed to manage the flash address
translation using a limited amount of RAM. However, com-
promising on RAM size results in a performance trade-off in
terms of read/write access time to the flash.

In this paper, we present two application agnostic tech-
niques that improve the performance of NFTL, one of the
most popular flash translation layers [4]. Our techniques re-
quire additional data structures to be stored in RAM. How-
ever, the cost of such data structures is minimal, determin-
istic and does not affect the space complexity with growing
sizes of flash memory. The performance optimizations are
a result of identifying NFTL bottlenecks by running and
evaluating file system traces.

The rest of this paper is organized as follows. Section 2
introduces NAND flash. Section 3 illustrates NFTL and our
proposed extensions. Section 4 provides details on bench-
marks and traces. Results are provided in Section 5, followed
by discussion of related work and conclusion.

2. BACKGROUND
A NAND flash consists of multiple blocks. Each block is

further divided into multiple pages, which is the minimum
unit of data transfer. Typically, the page size is 512 bytes,
resembling the size of a sector in traditional hard disk drives.
Blocks are usually either 8 KB or 16 KB in size (i.e., consist-
ing of 16 or 32 pages). There are other variants of NAND
flash known as large block NAND flash that have 2KB of
page size. In this paper, we use small block NAND flash
(i.e., page size is 512 bytes). The techniques presented, how-
ever can be applied to large block NAND flash. Each page
also contains additional control bytes, also known as Out Of
Band (OOB) data. Typically, the size of OOB data is 16
bytes. The primary purpose of the OOB data is to store
Error Correcting Code (ECC). Most flash translation layers
use the OOB data to store housekeeping information (such
as inverse page table, status flags) along with the ECC. This
information is used to reconstruct the translation table when
the device is powered up. NAND flash has certain charac-
teristics that impose restrictions on how it can be used: (i) a
page, once written, cannot be re-written unless it is erased;
(ii) an erase cannot be done on a per-page basis. The min-
imum unit of erase is a block; (iii) a block has a limited
number of erase operations (typically, 100,000) after which
it becomes unusable . Erase is costly i.e., it is slow.

The above properties of NAND flash result in out-of-place
updates and garbage collection. A page P starts off in a free
(erased) state. Once data is written into page P , its state
changes to a valid state. However, an update (re-write) to
page P is made out-of-place i.e., to another page Q that is
in free state.

Garbage collection is the process of reclaiming space by
erasing the blocks that contain obsolete pages. Note that not
all pages in a block might be obsolete, hence garbage collec-
tion takes care of moving valid pages into a different block
before erasing the whole block. Due to the out-of-place up-
dates and garbage collection, it is not possible to have a fixed
association between a sector and a page. Table 1 depicts
NAND flash access time characteristics from datasheets of
two leading manufacturers [1, 2]. One of the striking charac-
teristics of NAND flash is the disparity between erase, write
and read times.

Table 1: NAND Flash Specifications
Characteristics Toshiba 16MB Samsung 16MB

Block size 16384 (bytes) 16384 (bytes)
Page size 512 (bytes) 512 (bytes)
OOB size 16 (bytes) 16 (bytes)
Read Page 52 (usec) 36 (usec)
Read OOB 26 (usec) 10 (usec)
Write Page 200 (usec) 200 (usec)
Write OOB 200 (usec) 200 (usec)

Erase 2000 (usec) 2000 (usec)

The mapping from sector to 〈block, page〉 is done by the
flash translation layer. This translation is mostly done at
a page or a block granularity. One of the early flash trans-
lation layers known as the FTL was proposed by [3]. FTL
is a page based translation layer. In FTL, given a sector s,
the translation table entry T [s] contains the corresponding
block, page pair 〈b0, p0〉. Furthermore, the OOB data area
of 〈b0, p0〉 contains the sector number s (inverse map) and
a flag indicating the valid status of the page p0. An update
to sector s results in finding the next free block, page pair
〈b1, p1〉. Furthermore, the entry T [s] is updated to 〈b1, p1〉;
the OOB data area of 〈b0, p0〉 is marked as obsolete; the sec-
tor number s and valid flag are written into the OOB data
area of 〈b1, p1〉. Garbage collection takes care of reclaim-
ing obsolete blocks and modifying the translation table for
pages that are moved in the process of garbage collection.
The number of entries in a translation table is equal to the
total number of pages in flash. This scheme, though simple
and efficient, does not scale well with the size of flash. For
instance, the translation table size for 1GB flash with 512
bytes page size and 8 bytes per translation table would be
16MB ((1GB/512) × 8). As flash controllers are resource
constrained, FTL is not a feasible option.

3. TECHNICAL APPROACH
Page based mapping (e.g., FTL) is a fine-grained approach

that is efficient but requires a large amount of memory.
Block based mapping is a coarse-grained approach which
is less efficient compared to the page based approach, but
consumes less space, thereby presenting a viable option for
resource constrained flash controllers.

3.1 Preliminaries
A well known block based translation layer, called NFTL,

was proposed by [4]. In NFTL, a sector (also known as
logical block address) is divided into a virtual block address
(most significant bits) and a page offset (least significant
bits). A block based mapping table maps the virtual block
address into a physical block. This physical block is also
known as the primary block. The first write to a sector is
always done to a sector in the primary block. Subsequent
updates to the same sector are made on another physical
block, also known as the replacement block. Furthermore,
an update to any page in the primary block is made to a
new page in the replacement block. Each primary block
is associated with one replacement block and writes to the
replacement block are sequential starting with page 0. In
case of reads, the replacement block is read backwards. If
a page corresponding to the desired sector is not found in
the replacement block, the primary block is searched. A
survey of data structures (including the ones used in block
and page based mapping) and garbage collection algorithms
can be found in [7].

The following example illustrates NFTL in more detail.
Consider a flash made of 8 blocks and 4 pages per block.
Thus, the block address is 3 bits and the offset is 2 bits.
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Figure 2: NFTL

A sequence of read and write operations (t1 . . . t6) is shown
in Figure 2. Request t1 Wr A 9 implies a write to sector
9 (binary - 01001) with the data to be written being ‘A’.
The virtual block address is therefore {010} and the page
offset is {01}. A free physical block (block number b0) is
found and designated as the primary block for virtual block
{010} (Figure 2 Block Mapping Table). Further, data ‘A’ is
written to block b0 page 1. The sector number ‘9’ is written
in the OOB data area and it is marked as valid. Request t2:
Since a rewrite to block 0, page 1 is not possible, another free
physical block (block number b1) is found and designated as
the replacement block for virtual block {010}. The data ‘A1’
is written to the first available free page in the replacement
block, i.e., page 0. The replacement block information is
stored in a pre-defined header area in the primary block
namely, OOB data area 0. Request t3: The OOB data
area corresponding to page offset {11} is read to see if it
already has any valid data (in which case the write would
be directed to the replacement block). Request t4, t5 being
updates, are written to the replacement block. Request t6
is a read request to sector 9 (virtual block {010}). The
mapping table directs the request to the physical block b0.
Reading the header of block b0 reveals the presence of a
replacement block. The most recent (valid) copy of the data
can be found by reading the replacement block backwards
starting from the “free page ptr”. If there is no match found
in the replacement block, the page exists in the primary
block.

Over a period of time a replacement block might get full.
In this case, a new physical block is chosen and valid data
from the primary block and the replacement block are merged
into the new block. The primary block and the replacement
blocks are then erased. The new block becomes the primary
block and the mapping table entry is updated to reflect this
fact. This process of merging a physical block and its corre-
sponding replacement block to create a new block is known
as folding. NFTL use can lead to a situation when there
are no free blocks left. A Garbage Collection (GC) process
is initiated in such situations to initiate folding across all
the blocks of flash. In summary, NFTL is optimized to do
writes in a constant, shortest possible time, at the expense
of reads that can take as long as searching the length re-
placement block OOB data in the worst case. Such a design
is intentional due to the wide gap between read and write
times. The techniques presented in this paper aim at reduc-
ing OOB data reads, thereby contributing to improved read
and write throughput.

Note that in the above example there are two important
pieces of meta-data information that are accessed frequently.
The first is a frequent check to ascertain if a given page has
valid data. This is a boolean information, thus having an
in-RAM copy of a page’s valid status can avoid OOB data
reads. The second information that is frequently required
is to ascertain a replacement block information that corre-
sponds to a primary block. Our first technique - the lookup

table maintains an in-RAM data structure for fast lookup of
meta-data information. This is followed by our second tech-
nique, in which we exploit temporal locality to cache most
recently accessed pages. On a cache hit, this technique leads
to a constant time mapping from a sector to a 〈block, page〉.

3.2 Technique 1 - Lookup Table
In our first technique, we introduce two in-RAM data

structures - rep-block table and page-status bitmap. The
rep-block table accelerates the process of finding out the re-
placement block corresponding to a given primary block i.e.,
if it exists. The page-status bitmap accelerates the check to
ascertain if a given page has valid data in it.

The rep-block table provides fast access to replacement
block information. The rep-block table is indexed by the
virtual block address. For a given virtual block, an entry in
rep-block is the physical address of a replacement block if
it exists. The rep-block table saves OOB read overhead by
providing a faster in-RAM lookup. The rep-block improves
NFTL by avoiding flash OOB reads in the following cases:
(i) every page read results in OOB read in order to check
the existence of a replacement block; (ii) a rewrite to a page
requires the physical address of replacement block; (iii) ac-
celerates the GC process by providing the replacement block
address for every primary block that needs to be folded.

The page-status bitmap is a per page status indicator in-
dexed by the page offset. For a given page offset, a 1 indi-
cates that the corresponding page has been written at least
once and a 0 indicates that the corresponding page has never
been written (i.e., the page-status bitmap is a copy of per
page valid flag). Note that this information can avoid OOB
reads because: (i) every write request checks OOB to de-
termine if the request should go to the primary block or the
replacement block and (ii) every read request checks the
OOB to determine the possibility of an illegal read request.
The page-status bitmap accelerates both writes and reads.

The space overhead of the rep-block table is the same as
the space requirements of the translation table. The space
requirements for page-status bitmap is minimal - a bit for
every page. Thus, for a given flash of size S, block size B
and page size P , the rep-block table has (S/B) entries. The
page-status bitmap requires (S/P ) bits. For instance, a 1GB
flash with 512 bytes page size, 8KB block size and 4 bytes per
entry would require

``
230/213

´
× 4

´
= 512KB of memory

and the page-status bitmap would require
`
230/

`
29 × 8

´´
=

256KB of memory.

3.3 Technique 2 - Page Cache
The page cache is a configurable cache that holds the phys-

ical address of 〈block, page〉 of the most recently written
sectors. This mapping can be used to locate a 〈block, page〉
directly, instead of reading OOB data, which, in worst case,
could lead to OOB reads equal to the number of pages per
block (during a read request). However, unlike the lookup
table approach, the page cache relies on the temporal local-
ity. Similar to the lookup table approach, the page cache
entries are also copies of information that is already present
in the OOB data area. Thus, there is no need to flush this
information to the flash. The page cache can improve the
mapping time from sector to block/page in the following
cases: ( i) during a sector read requests and (ii) during reads
initiated by a fold operation. Note that the gains in both
cases rely on temporal locality. Table 2 summarizes where
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each data structure i.e., rep-block, page-bitmap and page
cache can help improve the performance.

Table 2: Improvement Scope of Techniques
Technique Read Write Rewrite Fold GC
rep-block l m l m l
page bitmap l w l m m
page cache w m m w m

l Always m Never w May

4. EXPERIMENTS
Figure 3 depicts our experimental setup. A USB flash

disk, formatted as a FAT 32 file system was connected to
a PC running Linux kernel 2.6.16. The kernel was modi-
fied to sniff low level file read/write requests being issued to
the USB flash and log the requests (sector, read/write op-
eration) into a /proc/flash entry. A series of benchmarks
were run to generate trace data. The trace, along with in-
put parameters (flash characteristics - block size, page size,
etc) is fed to our simulation framework. The simulation
framework has two parts - a NAND flash simulation module
providing basic read, write and erase capabilities. A desired
flash translation layer implementation can be run on top of
the NAND flash simulator.

/proc/flash

USB Flash
FAT 32

Input params

Benchmarks

Linux Kernel

NAND 
Simulator

FTLs

Trace

Results

Stats

Simulation
 Framework

rd/wr sector#

Figure 3: Experimental Setup

4.1 Benchmark Characteristics
As our work is not intended to be application specific,

we chose the following benchmarks representing a variety
of workloads. The Andrew benchmark [8] consists of five
phases involving creating files, copying files, searching files,
reading every byte of a file and compiling source files. The
Postmark benchmark measures performance of file systems
running networked applications like e-mail, news server and
e-commerce [10]. Two versions of postmark were run. The
short version created files in the range of 500 bytes to 9.77
KB and the longer version Postmark - long, created files in
the range of 500 byte to 3 MB. The postmark benchmark
has three phases involving creating files, running 500 trans-
actions on files and deleting files. The iozone benchmark
[12] is a well known synthetic benchmark. We ran iozone to
do read, write, rewrite, reread, random read, random write,
backward read, record rewrite (i.e., writing and rewriting to
a particular hotspot within a file) and stride read. The file
sizes ranged from 64KB to 32MB in strides of 2× (i.e., 64,
128, 512 . . . 32768). Table 3 depicts the number of read and
write requests in each benchmark.

Table 3: Benchmark Characteristics
Benchmark Reads Writes Read % Sect Range

Format 15 36 29.4 0 - 533
Andrew 2 3126 0.06 1 - 2867

Postmark 412 21153 1.9 2 - 10000
Postmark long 23694 1238135 0.9 1 - 65543

IOzone 3713 3089393 0.12 1 - 65588

4.2 File System Trace
A set of benchmarks were run in sequence to generate a file

system trace. The first trace, called the combo trace was gen-
erated by running the following sequence: format flash →

andrew setup → andrew run → postmark setup
→ postmark run → postmark long run → iozone setup →
iozone run. The combo trace resulted in access of sectors
ranging from 0 to 65588. A flash size of 34 MB [i.e., (34MB
/512bytes) = 69632 sectors] was chosen so that it leads to
a high utilization of 94.19% [(65588/69632) × 100]. In or-
der to study the effects of an underutilized flash, our second
trace, AtoPM was derived. The AtoPM trace was derived
by running benchmarks starting from format flash through
postmark run. The flash utilization of the AtoPM trace is
23% with sectors ranging from 0 through 10000. We use
the following notation to represent traces: C8K - combo
trace, 8KB block size, C16K - combo trace, 16KB block size,
AP8K - AtoPM trace, 8KB block size, AP16K - AtoPM
trace, 16KB block size.

4.3 Disparity in Flash Read-Write Ratios
It has been well known that file system accesses to disk

are write dominated as reads are cached in the main mem-
ory [14]. This is also reflected in Table 3 which shows a low
read percentage for individual benchmarks. However, in the
case of flash, the number of page reads issued to the flash
(hardware) are typically greater than the number of reads
issued by the file system. These additional page read opera-
tions are due to the folding and garbage processes triggered
by the file system write requests. For example, a write to
a replacement block that has no free page available leads to
a fold operation. The fold operation results in several page
reads. Thus, flash disk activities, unlike traditional disks,
are not essentially write dominated. Table 4 shows the trace
read-write characteristics for NFTL. As can be seen in Ta-
ble 4, there is a disparity in the percentage of read requests
issued by the file system versus those issued to the actual
flash.

Table 4: Trace Characteristics
Trace File Sys. File Sys. File Sys. Flash Flash Flash

Reads Writes Read % Reads Writes Read%
C8K 27731 4351879 0.63 4904441 9228589 34
C16K 27731 4351879 0.63 5327138 9651286 35
AP8K 421 24351 1.7 6772 30702 18
AP16K 421 24351 1.7 5503 29433 15

5. RESULTS
We present our experimental results and analysis in this

section. Table 5 summarizes the performance improvements
over NFTL due to each of our techniques. The metric for
comparison in Table 5 is the average read time per sector
and the average write time per sector. For each trace in Ta-
ble 5, the number of entries in the page cache is set to a fixed
number such that the in-RAM page cache size equals to the
in-RAM lookup table size. This gives a common ground to
compare the two techniques. The average write time cal-
culation includes the time due to fold, garbage collection
and the time spent in OOB reads and OOB writes. Note
that the fold and garbage collection times are included in
calculating write times as these two operations are always a
consequence of a write request. The average read time in-
cludes time spent in OOB reads due to possible searches in
the replacement block. The following analysis is made out
of Table 5:

(1) The performance gain is device specific. For the same
trace, the performance benefits differ due to differences in
page read and OOB read times (Table 1).

(2) The performance gains from page cache is consistently
less than the gains from lookup table approach. We believe

260



Table 5: Performance Improvements - Average Read/Write Access Times
NFTL Lookup Table Page Cache

Trace Util
Blk

Folds GC
Write Read Write Gain Read Gain Write Gain Read Gain

KB (usec) (usec) (usec) % (usec) % (usec) % (usec) %

Combo 94%
8 309282 644 1230.51 64.44 1203.96 2.16 44.37 31.15 1226.85 0.30 56.95 11.62

S
a
m

su
n
g

16 167556 762 1134.34 74.27 1102.50 2.81 54.19 27.03 1130.69 0.32 60.91 17.99

AtoPM 23%
8 782 0 676.61 58.71 651.79 3.67 38.71 34.07 676.38 0.03 58.00 1.21
16 386 0 584.96 63.03 564.15 3.56 43.03 31.73 584.58 0.07 60.89 3.39

Combo 94%
8 309282 644 1317.05 125.89 1231.96 6.46 73.71 41.44 1307.52 0.72 106.43 15.46 T

o
sh

ib
a

16 167556 762 1219.48 151.43 1149.01 5.78 99.25 34.46 1210.00 0.78 116.77 22.89

AtoPM 23%
8 782 0 721.84 111.04 671.36 6.99 59.04 46.83 721.25 0.08 109.19 1.67
16 386 0 629.04 122.28 583.09 7.31 70.28 42.53 628.05 0.16 116.72 4.55

that this is partly due to the fact that page cache relies heav-
ily on the temporal locality and the fact that our page cache
is not based on any sophisticated algorithms (e.g., LRU
based eviction). A more sophisticated algorithm may give
better gains at the cost of implementation complexity and
additional space overhead. Our page cache scheme, being
simple, is well suited for flash controllers that are based on
microcontrollers or low-end processors with limited RAM.
The average improvements are: lookup table approach 4.8%
for writes, 36.1% for reads; page cache approach 0.30% for
writes, 9.8% for reads.

(3) The performance gain due to writes is minimal com-
pared to the performance gain due to reads. The following
reason explains this trend - NFTL is optimized for writes,
taking a fixed amount of time (i.e., page data write + OOB
data write) for writes that fit either a primary block or a
replacement block. However, a write may also lead to fold-
ing and/or garbage collection due to lack of free pages. Both
block erase and page writes take time that is an order of mag-
nitude more than other operations like page read or OOB
data read (Table 1). Thus, the average write time is domi-
nated by page data write time and block erase time. Figure
4 shows the time spent in different activities in case of a
write request (normalized to 100%). Notice that in Figure
4, the majority of time (over 80%) is spent on erase and
page data writes. Therefore the only scope of improvements
is on the rest 20% (shown as “others” in Figure 4), leading
to gains that are considerably less compared to gains from
read requests.

(4) The lookup table approach yields better read perfor-
mance for smaller block sizes. In the lookup table, the gain
of finding the physical address of replacement block is amor-
tized by the number of OOB data reads incurred during a
backwards search to locate a required page. Therefore, the
advantages of the lookup table are smaller in a flash with
larger block size, since a larger block holds more replacement
pages compared to a same size flash with smaller block size.
The page cache approach, however, shows a reverse trend.
The gains in the case of larger blocks size is higher com-
pared to a smaller block size. This can be attributed to the
fact that in the case of larger block size, a page lives longer
in the replacement block before a fold operation erases it.
This yields better temporal locality. Additionally, the over-
head of searching a larger block is higher and a cache hit in
such cases avoids numerous expensive OOB data lookups,
resulting in higher gain percentages.

The performance improvements from the lookup table and
the page cache are due to avoiding unnecessary OOB data
lookup in traditional NFTL. Table 6 provides a device inde-
pendent look at the number of OOB data reads that were
avoided for each technique. Though a significant percentage

of OOB lookups are avoided, the same percentages are not
reflected in Table 5. The reason is due to the fact that the
OOB data read access takes less time compared to other op-
erations (Table 1). Thus the overall gain percentage in Table
5 is lesser compared to Table 6, due to a smaller contribution
of the OOB read time to the overall page read time. Figure
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Table 6: Device Independent Gains
NFTL Lookup Table Page Cache
Reads Reads Gain Reads Gain

C8K 18739977 6820423 63.00% 17124427 8.60%
C16K 17963617 7403132 58.78% 16340587 9.03%
AP8K 63445 23547 62.88% 62862 0.91%
AP16K 63149 24038 61.93% 62133 1.60%

5 shows the variation in read times due to varying cache sizes
on the x-axis, starting with no page cache. The four page
cache sizes are chosen to be 50%, 100%, 200% and 400%
of the size of the lookup table as a base reference. Note
that, after a certain threshold, increasing the page cache
size results in a point of diminishing returns. Thus, increas-
ing the number of entries does not necessarily improve the
read performance after a certain threshold. From our simu-
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Figure 5: Page Cache Size vs. Read Time

lation of a 34 MB NAND flash, the additional RAM space
requirements due to lookup table is the sum of sizes required
for the rep-block and page cache bitmap - 26112 bytes for
8KB block size and 17408 bytes for a 16KB block size flash.

261



The size of the page cache can be adjusted based on need.
For our simulations, we set the page cache to be the same
size as the lookup table. Considering that the mapping ta-
ble itself requires 17408 bytes for 8KB flash and 8704 bytes
for 16 KB flash, our approaches provide a viable option at
the cost of fixed RAM space requirements. The approaches
presented are based on caching OOB data and exploiting
locality. Thus, the issue of data inconsistency due to abrupt
shutdowns is not an issue.

Scalability: In order to study the affect of our approach
on large NAND flash memory, we ran iozone benchmark on
a 1GB flash with 95% utilization (details omitted for lack of
space). iobench was configured to do only reads and writes
(to simulate file transfers). The average improvement in
read was 31.6% and write 5.19%. Similar to the traces pre-
sented in this Table 5, the gains due to reads are higher
compared to writes. The only noticeable difference in the
1GB configuration is that the ratio of reads is close to 49%.
The reason behind this could be the large amounts of folds
in the 1GB flash and that iozone was configured to do only
reads and writes. Reliability: The rep-block table and the
page-status bitmap are updated along with updates to the
actual OOB data. Note that, both the rep-block and the
page-status bitmaps are copies of information that is writ-
ten to the OOB data area. The page cache is constructed
during write operation. Thus, there is no need to update
this information to the flash i.e., any abrupt shutdown or
power loss will not lead to inconsistency in data structures.
Overhead: The techniques presented lend themselves eas-
ily to small microcontrollers that are used in flash and also
the data structures can be easily reconstructed at device
startup along with the translation table.

6. RELATED WORK
Space efficient schemes for flash translation layer has been

a topic of research. In [5], the authors propose a sector to
page translation layer based on buddy system [13]. The al-
location and de-allocation of pages is managed by binary
trees and two linked lists that keep track of free and occu-
pied pages. At the node of the binary tree is a data struc-
ture that stores information in units of a “physical cluster”
which is a set of contiguous sectors. The scheme relies on
write requests being sequential in nature. The drawback of
this approach is that the RAM space requirements is non-
deterministic and can grow out of proportions depending on
nature of requests. In order to keep a bound on the RAM
space requirements, the data structures are flushed to the
flash when the RAM size grows beyond a certain thresh-
old − thus making a part of flash act like a swap area for
the in-RAM data structures. This can lead to variable ac-
cess time. The RAM space requirements for a 16 GB flash
in [5] is shown as 17 MB. In case of NFTL, the mapping
tables require 4 MB and 4.12 MB for a lookup table. In
CNFTL [15], the authors propose a mapping scheme based
on multiple levels of indirection. A physical block is broken
down into segments, frames and pages, a frame being the
minimum unit of read and write. The drawbacks of this ap-
proach are (i) minimum unit of write is a frame which could
result in internal fragmentation; (ii) a write request can be
mapped only to sectors belonging to a segment. This could
lpagesead to frequent garbage collection operations and, (iii)
neither writes or reads are optimized, a write request could
lead to linear search of the OOB data areas of every frame in

a given segment. Moreover, the number of OOB data reads
increases sharply with a rise in frames per segment. For
a 34 MB flash configuration (similar to our experiments),
the RAM space requirements of CNFTL to store only the
mapping tables is 13872 bytes for a 16 KB block size (com-
pared to 8704 bytes in NFTL which provides a faster write
time). In [16], the authors propose a two level (both page
and block) adaptive scheme to speed up read accesses. This
scheme has memory requirements for maintaining hash ta-
bles, doubly linked LRU lists in addition to the mapping
tables. The approach proposed in this work delays the fold
operations of NFTL, hence, it is not well suited for flash
memories that have a high utilization. In our work we show
results under conditions of over 90% utilization. In [9] the
authors propose a space efficient flash translation layer that
is application specific, tuned for multimedia workloads.

7. CONCLUSION
NFTL is designed for fast writes and reads of varying

speeds. In this work we presented a system designer with
two techniques that extend NFTL by improving the read and
write throughput. The lookup table extension incurs a fixed
RAM overhead, whereas the page cache extension presents a
system designer with a configurable option. The RAM space
requirements of these extensions are minimal and determin-
istic. The techniques presented are application agnostic and
lend themselves easily to be implemented on flash controllers
that are typically both space constrained and have minimal
processing power. We also show that unlike traditional disk
based storage, in NAND flash based storage, both reads and
writes contribute to the flash data traffic.
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