
Locality Optimization in Wireless Applications

Javed Absar
IMEC (KULEUVEN)

75 Kapeldreef
Leuven, Belgium

javed.absar@gmail.com

Min Li
IMEC (KULEUVEN)

75 Kapeldreef
Leuven, Belgium
limin@imec.be

Praveen Raghavan
IMEC (KULEUVEN)

75 Kapeldreef
Leuven, Belgium

ragha@imec.be

Andy Lambrechts
IMEC (KULEUVEN)

75 Kapeldreef
Leuven, Belgium

lambreca@imec.be

Murali Jayapala
IMEC

75 Kapeldreef
Leuven, Belgium

jayapala@imec.be

Arnout Vandecappelle
IMEC

75 Kapeldreef
Leuven, Belgium

vdcappel@imec.be

ABSTRACT
There is a strong need now for compilers of embedded sys-
tems to find effective ways of optimizing series of loop-nests,
wherein majority of the memory references occur in the
form of multi-dimensional arrays, indexed primarily with
linear functions of iterators and parameterized constants.
The reason for this are the new wireless standards, e.g.
802.11n, WiMAX, Bluetooth, HIPERMAN, 3GPP-LTE and
WiBro, where the codes are predominantly of the type de-
scribed above. These standards provide high bitrate and
mobility but are also extremely power and performance hun-
gry. For even wider commercial applicability of these stan-
dards it is important to optimize their power consumption.
We propose a novel solution to multiple loop-nest optimiza-
tion problem using the concept of constraints. Experiments
show that our technique leads to 47.5% reduction in external
memory accesses over state-of-the-art.

Categories and Subject Descriptors
B.3.3 [Memory Structures]: Performance Analysis and
Design Aids—Formal models; D.3.4 [Programming Lan-
guages]: Processors—compilers, optimization

General Terms
Algorithms, Performance

Keywords
loop-nest, reuse, temporal, spatial, access, layout

1. INTRODUCTION
New wireless standards such as 802.11n, WiMAX, Blue-

tooth, HIPERMAN, 3GPP-LTE and WiBro provide high bi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-824-4/07/0009 ...$5.00.

trate and mobility but are extremely power and performance
hungry. For even wider commercial exploitation of the new
wireless technologies in homes and business environments, it
is necessary to optimize their implementations for power and
performance. While previously ASIC solutions were popu-
lar, it is now clear that for the same device to handle several
standards, a software solution i.e. Software-Defined-Radio
(SDR) is the right way forward. SDR solutions can migrate
between different wireless standards, depending on coverage
and cost considerations, simply by loading different software.
However, for an efficient SDR solution, the effectiveness of
the embedded compiler is paramount.

In our study of the wireless communications standards,
e.g. 3GPP LTE (Long Term Evolution) [8] and 802.11n
[7], we found the source-codes to be dominated by series of
loop-nests. In these loop-nests, several medium-sized, multi-
dimensional arrays are referenced through linear functions of
loop-iterators and constant parameters. Another important
aspect is that the computation and data accesses are not
concentrated in just one kernel but are spread across several
loop-nests. Multimedia applications, that are often coupled
with devices with wireless capabilities (e.g. cellular phones
with MP3), also exhibit similar characteristics.

Techniques for data locality optimization of loop-nest has
been well studied [2][18][1]. But so far the main focus has
been on the single loop-nest problem. But real applications
are more than just one loop-nest. When we have several
loop-nests and decisions made in one loop-nest have an im-
pact on the rest, finding a good solution becomes a major
challenge. We propose a systematic and scalable technique
here that improves upon the best known previous approach
[9]. Previous approach solves the problem by ranking the
loop-nests based on profiling information. This, however,
can lead to a poor solution. In our approach, we take into
consideration the degree to which a loop-nest is constrained,
by data-dependences and reuse, to rank it appropriately.
Comparing two loop-nests to figure which one is more con-
strained is a complex problem. It needs a deep understand-
ing of exactly how and when a loop-nest is constrained. We
believe that this paper provides new insights into this prob-
lem. At the same time, it gives an automated scheme that is
currently being implemented on industry-level ORC-URUK
compiler framework [3].

125

2. MOTIVATING EXAMPLE
The code section below is from Graham-Schmidt orthogo-

nalization which is used in wireless modems for signal factor-
ization[15]. For this code segment we need to find the right
combination of loop and data-layout transformations that
together provide best combination of temporal and spatial
locality.

for(i = 0 ; i < n ; i++){ ...
for(j = i+1 ; j < n ; j++){ //Loop-Nest I

for(k = 0 ; k < n ; k++){
R[i][j] = R[i][j] + A[k][j] * Q[k][i];

} } ...
for(j = 0 ; j < n ; j++){ //Loop-Nest II

for(k = i+1 ; k < n ; k++){
A[j][k] = A[j][k] - Q[j][i] * R[i][k];

} }
}

Ideally, the locality problem should be solved by look-
ing at the whole program, composed of several loop-nests.
The reason is that data-layout decisions made in one loop-
nest have impact on the spatial locality in other loop-nests.
However, as we will show later, solving for all the loop-nests
together leads to an unscalable, combinatorially explosive
problem. The best existing solution [9] works around this
problem by firstly ranking the loop-nests based on profiling.
Let us first use the technique proposed in [9]. Since there
is no difference in the number of memory accesses made by
the two loop-nests, we could start with either loop-nest.

Suppose we start with Loop-Nest II. Loop-Nest II has
good temporal locality for array Q since the innermost loop k

accesses the same element of Q in its consecutive iterations.
Interchanging the loops j and k (i.e. making j innermost)
would improve temporal locality for R but then the tempo-
ral locality for Q would be destroyed. Next, let us focus on
the data-layout. Array A is accessed as row-major in Loop-
Nest II. Therefore for good spatial locality, data-layout of
A is set as row-major. Similarly, data-layout of R is set to
row-major. Q has exploited temporal reuse and therefore
its data-layout is kept open. Having fixed the data layout
for A and R, the technique proposed in [9] propagates the
data-layouts as constraints to Loop-Nest I.

In Loop-Nest I, however, array A is accessed as column-
major (see Fig. 1). One could do a loop interchange to make
the access of A as row-major, but this is not done since Loop-
Nest I has temporal reuse for array R (both for read and
write) over k which would be destroyed by the interchange.
Note that it is more profitable to exploit temporal rather
than spatial locality and the approach by [9] therefore gives
preference to temporal and so will avoid interchanging the
loop. Therefore, one has to settle with poor spatial locality
for A in Loop-Nest I.

The source of the problem in the above case was: inappro-
priate ranking of loop-nests. Loop-Nest II is more flexible
compared to Loop-Nest I because an interchange of the loops
in Loop-Nest-II does not reduce the temporal locality. On
the other hand, similar loop-interchange in Loop-Nest I de-
creases its temporal locality. Therefore, in our technique we
would start with the more constrained loop-nest, i.e. Loop-
Nest I. As can be seen in Fig. 1, this puts data-layout of A
and Q to column-major to have good spatial locality. Next,
we propagate these layouts to Loop-Nest II where we can
now perform a loop interchange to convert the access order
of A from row-major to column-major. As a result, we arrive
at a better temporal and spatial locality solution compared
to state-of-the-art.

j

R[i][j]

i
LN

1 A

j

A[...][j]

i

Q[...][j]

i

A[j][...]

j

i

Q[j][i]

j

R[i][...]

LN

2

Q

R

arraysloops
Loop Nest I

Loop Nest II

i

access pattern in the innermost loop *Note the conflicting access pattern of A

reuse

Figure 1: Array access pattern in Graham Schmidt
Orthogonalization algorithm. Loop-Nest-I (LN1) is
optimized first since it is more constrained. The
data-layouts of the arrays are next propagated to
Loop-Nest-II (LN2).

Here we used the simple concept of – the effect of inter-
change on temporal locality – to give an example of con-
straint. Later we will extend it to cover more general forms
of loop-transformations. Also, the impact on more general
data-layouts rather than just row and column major will be
studied. Comparing sets of loop-nests to decide which ones
are more constrained is a complex problem. We believe this
paper provides new insights into this problem.

3. RELATED WORK
One of the fundamental breakthroughs in loop-nest op-

timization is due to Banerjee [2] which represents each it-
eration of the loop-nest as a vector in an iteration space.
Loop transformations are then modeled as linear transfor-
mations of the iteration space using unimodular matrices. Li
and Pingali extend the class to non-singular matrices [12],
thereby allowing loop scaling. The legality of each trans-
formation can be verified using dependence and direction
vectors [1] [18], and in more complicated cases by the omega
test [16].

In addition to reordering accesses [1, 2, 13], one can also
modify the memory locations that are accessed by remap-
ping the data elements. This is termed as data-layout trans-
formation. One of the purpose of data-layout transforma-
tion is bringing close the data items that are also accessed
close in time thereby improving spatial locality. For cache
based system, good spatial locality means each cache line
fetch contains useful data, while for scratchpad memories
good spatial locality means fewer block transfers by the
DMA. Extension to data-layout representation and trans-
formation, beyond elementary row-major to column-major,
was proposed in [11, 10] using hyper-plane equations.

As loop transformation changes the access order, it im-
pacts both spatial and temporal locality. Cerniak [5] present
an approach that integrates both data-layout and loop trans-
formations. Their approach however restricts the search
space by allowing only loop-interchange. Kandemir et al.
[11] present an improved unified data-layout and loop trans-
formation technique, for a single loop-nest, that allows all
linear data-layout transformations. A scalable extension of
the unified transformation technique to multiple loop nest is
still in its infancy. Boyle et al. [14] illustrate with examples
propagation of data-layouts. In [9], a concrete technique
was proposed based on ranking of loop-nests using profiling.
This approach has been discussed in detail in Sec. 2.

126

4. BACKGROUND AND NOTATION
A loop-nest of depth n is a finite convex polyhedron in

the integer-space Zn, called the iteration-space [2]. The
loop-bounds define the boundary of the polyhedron. Each
iteration of the loop-nest then corresponds to a point in
this polyhedron and is identified by its index vector �I =

[i1 i2 · · · in]
′
. The iterations are executed in lexico-

graphical order. In the example below, arrays A and B are
referenced inside a loop-nest of depth two, with the polyhe-
dron being just a square.

for(i = 0 ; i < N ; i++)

for(j = 0 ; j < N ; j++)

A[i][j] = B[i+j] + 2 ;

Reference to an array made inside the loop-nest above can
be represented with a reference matrix R and an offset �o.
For instance, B[i+j] can be represented as: RB

�I + �oB =[
1 1

] [
i
j

]
+

[
0

]
.

Let us now optimize the above code for temporal and
spatial locality. Firstly, from a reference R, the reuse sub-
space �r can be computed [18] as �r = ker R, where ker is
the kernel of the matrix. E.g. B[i+j] has reuse subspace

�rB = kerRB = α
[

1 −1
]′

, where α is an arbitrary con-
stant. The reuse subspace information can next be used
to transform the loop-nest to improve temporal locality. A

loop transformation is basically a linear mapping �I
T→ �I ′

such that �I ′ = T �I, where T is an integer, invertible ma-
trix and �I ′ is the iteration vector after transformation. A
reference R�I + �o in the original loop nest will transform to
RT−1�I ′ + �o.

Now, good temporal locality will exist if consecutive iter-
ations of the innermost loop access the same element of B

after the transformation. In other words, we need to find

a T such that T�rB =
[

0 1
]′

. Let Q = T−1. Also, let

�q2 =
[

q12 q22

]′
represent the last column of the matrix

Q. Now if we multiply both sides of T�rB =
[

0 1
]′

by

T−1 we obtain �rB = �q2. In other words, the reuse subspace
vector forms the last column of Q. The rest of the columns
of Q can be computed using matrix completion methods [4].

Therefore, Q =

[
0 1
1 −1

]
and so T =

[
1 1
1 0

]
. By apply-

ing this transformation T to the loop-nest above we obtain:

for(i = 0 ; i < 2N-1 ; i++)

for(j = max(0,i-N+1) ; j < min(N-1,i) ; j++)

A[j][i-j] = B[i] + 2 ;

Now B has good temporal locality. As for array A, because
loop transformation affects all references, its reference has
changed from A[i][j] to A[j][i-j]. Assuming the default
layout of row-major (C-Language), now A has poor spatial-
locality since it is accessed in an anti-diagonal fashion.

However, we can improve the spatial locality of A by chang-
ing the order in which the array elements are stored. In
this case the appropriate data-layout transformation matrix

is M =

[
1 1
1 0

]
, using the method explained in [10] us-

ing hyper-planes. Application of M to a reference R�I + �o
changes it to M(R�I + �o). So in this case A[j][i-j] re-
verts to A[i][j] after application of data-layout transfor-
mation M . From the above example we can conclude that

loop and data-layout transformation applied together can
improve spatial and temporal locality significantly.

5. COMPLEXITY ANALYSIS
Here we estimate the general complexity of the problem of

locality optimization across several loop-nests. Suppose we
have n loop-nests in an application and the iteration-space
of the kth loop-nest is �Ik. The arrays referenced in these
loop-nests are {A1, A2, ..., Am}.

Let transformation Tk be applied to loop-nest �Ik. If array
Ap was accessed in �Ik as Rp

�Ik + �op, then after the trans-

formation its index expression will become RpT−1
k

�I ′
k + �op.

Let also data-layout transformation Mp be applied to ar-

ray Ap. The new index expression is then Mp(RpT−1
k

�I ′
k +

�op). Now, to have spatial locality, the innermost loop in �I ′
k

must access consecutive elements in same row of Ap. That
is, to have spatial locality we need to satisfy the relation:

Mp

(
RpT−1

k (�I ′
k + �Udim(�Ik)) + �op

)
− Mp

(
RpT−1

k
�I ′
k + �op

)
=

�Udim(Ap), where dim(�Ik) and dim(Ap) are the dimensions

of �Ik and array Ap, respectively. �Ud is a d-dim zero vector

with last element as 1, e.g. �U3 = [0 0 1]
′
. This spatial

locality constraint further simplifies to:

MpRpT−1
k

�Udim(�Ik) = �Udim(Ap) (1)

Eq. 1 provides an insight into the complexity of locality
optimization problem. Suppose we fix the data-layout of
array Ap to be Mp to have spatial locality for Ap in loop-

nest �Ik. If Ap is also referenced in another loop-nest �Il and

its spatial locality is poor in �Il, then to improve it we can
apply a loop transformation Tl to �Il.

Next, suppose another array Aq is also accessed in both
�Ik and �Il. Tl may destroy the spatial locality of Aq in �Il.
We can rectify that by applying Mq to Aq. Next, as Aq is

also accessed in �Ik, if the spatial locality of Aq (with Mq)

in �Ik is also poor then a transformation T ′
k must be applied

(as layout of Aq is now already fixed). But now we have a

problem of going in circles. The spatial locality of Ap in �Ik

may be destroyed by T ′
k.

Conclusion: Decisions about Mp, Mq , Tk and Tl must be
taken together as they affect each other. However, as Mp

and Tk appear as product terms in Eq. 1, the problem at
hand is at least as complex as integer quadratic constraint
programming. Since Tk and Mp need to be invertible and
integer-valued, the problem quickly becomes combinatori-
ally explosive.

6. PROPOSED APPROACH
Having seen that locality optimization across multiple loop-

nests is a complex problem, we will present in this section a
set of assertions based on which a near-optimal and scalable
solution is possible 1.

Assertion 1. An improvement in temporal locality is pre-
ferred, in terms of energy and performance, over an im-
provement in spatial locality.

1The proof is available and will be presented in the journal
version

127

Assertion 2. Temporal locality optimization decision in
one loop-nest does not affect the temporal locality optimiza-
tion decision in any other loop-nest.

Assertion 3. A loop-nest can always be transformed to
provide spatial locality for a pre-defined data-layout if the
loop-nest is not constrained. An array’s data-layout can
always be transformed to provide spatial locality for a pre-
defined loop access order.

Assertion 2 tells us that temporal locality optimization
can be performed independently for a loop-nest without
compromising temporal locality in any other loop-nest. Also,
from Assertion 1 we see that temporal locality is more im-
portant than spatial. Therefore, if we tackle one loop-nest
at a time and always give priority to temporal over spatial
then we will still arrive at the best temporal locality solution
in a very scalable way, while still being close to the overall
optimal solution.

Next, let us look at spatial locality. Consider an array
Ap in loop-nest �Ik. If the data-layout of Ap is not defined,
then from Assertion 3 we know that we can always find a
suitable data-layout so that Ap achieves good spatial locality

in �Ik. If the data-layout of Ap is pre-defined but the spatial

locality of Ap in �Ik is not good, then Assertion 3 tells us
that we can always find a loop transformation Tk to improve
spatial locality, provided there are no constraints. There are
basically two types of constraints that can prevent spatial
locality optimization. We discuss them next.

6.1 Constraints of Data Dependences
In the code below, let us optimize LN1 (Loop-Nest I) first

and then propagate the data-layouts to LN2. As LN1 has
no reuse, we can only optimize for spatial locality. We set
data-layout of B and C to row-major and column-major,
respectively, to achieve good spatial locality. These layout
are then propagated to LN2.

for(i = 0 ; i < 3*N ; i++) //Loop-Nest I

for(j = 0 ; j < N ; j++)

C[j][i] = B[i][j];

...

for(i = 0 ; i < N ; i++) //Loop-Nest II

for(j = 0 ; j < N ; j++)

A[i+1][j+1]=B[i+2*j][j]-A[i][j]-A[i][j+2];

In LN2, however, B is accessed in a semi-diagonal manner.

By applying a transformation T =

[
1 2
−1 −1

]
to LN2, it is

possible to change the access order such that B is accessed as
row-major. The index expression of B after the transforma-

tion is RT−1�I ′+�o =

[
1 2
0 1

] [−1 −2
1 1

] [
i′

j′

]
+

[
0
0

]
=[

i′

i′ + j′

]
. That is, the new reference is B[i′][i′ + j′]. As

now consecutive iterations of the innermost loop access con-
secutive elements in the same row, we have successfully ob-
tained good spatial locality for B in LN2.

Let us now see if the transformation respects the data
dependences. LN2 has two data dependences. There is a
dependence between the write A[i + 1][j + 1] and the read

A[i][j]. Since the data written in iteration [i j]
′

is read

back in iteration [i + 1 j + 1]
′
, this dependence can be

represented by the dependence vector �d1 = [1 1]
′
. The

d1

cij

d1

d2
i

j

i

j

d1

d2

i

j

eij

d1ejk

i

k j

cij

eij

cij

eij

(iv)(iii)(ii)(i)

Quantifying the constraints imposed by dependence vectors

eij

Figure 2: Data-dependences may limit the extend to
which a loop-nest could be transformed to improve
spatial locality. As all loop transformations to im-
prove spatial locality rotate the dependence vectors,
the constraints imposed can be measured using the
angles subtended by the dependence vectors.

second dependence �d2 = [1 −1]
′

is between the write
A[i + 1][j + 1] and the read A[i][j + 2].

Given a dependence vector �d, a transformation T is valid

only if [18]: T �d � �0. As T �d2 =

[
1 2
−1 −1

] [
1
−1

]
=[−1

0

]
≺ �0, the transformation T turns out to be invalid.

So we see that dependences can inhibit spatial locality opti-
mization.

Now, transformations employed to improve spatial local-
ity involve only rotation and reflection of the iteration space.
For example, a loop-interchange involves a rotation by 90
degrees followed by a reflection on vertical axis. The ro-
tation is to orient the access order to the way data is laid
out for the array. Reflection as such does not create or
destroy spatial locality. Whether an array is accessed as
A[0][1], A[0][2], A[0][3] or A[0][3], A[0][2], A[0][1] is same for
spatial locality.

Therefore, we only need a metric to measure how much
data-dependences constrain spatial locality optimizations by
limiting the rotation freedom of the iteration space. Fig. 2.i

shows a dependence vector �d1 in a loop-nest of depth two,
that subtends an angle of eij with the j axis. A transforma-

tion that rotates �d1 anti-clockwise by more than eij would be

illegal as �d1 then becomes lexicographically negative. Simi-
larly, a rotation clockwise by more than cij would again be
illegal.

Fig. 2.ii shows two dependence vectors �d1 and �d2. Note
that the maximum rotation anti-clockwise is limited to eij .
Similarly, clockwise rotation is limited to cij . We take the
sum of these two and divide it by π.

The ratio (eij + cij)/π, which we define as dependence-
ratio, is always between 0 and 1 with higher values signi-
fying more rotation freedom. Note that the dependences
in Fig. 2.ii are less constraining than the dependences in
Fig. 2.iii as the dependence-ratio in Fig. 2.ii has a higher
value than the dependence-ratio in Fig. 2.iii. In a three di-
mension space, such as in Fig. 2.iv, the dependence-ratio
can again be computed easily as (eij + cij + eik + cik + ejk +
cjk)/3π.

6.2 Constraints of Temporal Reuse
The freedom to transform a loop-nest to improve spatial

locality can also be limited if spatial locality improvement
comes at the cost of temporal locality. We classify con-
straints imposed by temporal locality into four reuse-class
in increasing order of freedom.

128

ORC

W

ORC (Open Research Compiler) :

Builds the syntax tree, symbol table

K

WHIRL (Winning Hierarchichal

Intermediate Representation Language):

Intermediate representation in ORC

WRaP-IT (Whirl Represented as

Polyhedra Interface Tool):

Whirl to Polyhedral conversion

URUK (Unified Representation Unified Kernel):

Enables loop transformations

R

P

I
T

-

A

STELO (Spatial and TEmporal Locality

Optimization): Applies loop and data

layout transformations to improve

locality across multiple loop nests.

R

U

U

T

S

L

E

O

TOOL STRUCTURE

WRaP :represenation of

Polyhedral model

.DEF: gives ability to specify

elementary transformations

PolyLib, PIP,

Quiver, CLooG

Figure 3: STELO (Spatial TEmporal Locality Opti-
mizer) built with ORC (Open Research Compiler).

Class SV are loop-nests where there is just one best reuse
option and it is spanned by a single reuse vector. Loop-
Nest I in Sec. 2 has two reuse options: in references Q[k][i]
and R[i][j]. However, reference R[i][j] appears twice, in read
and in write, therefore there is only one best reuse option.
The reuse vector that spans the reuse of R[i][j] is [0 0 1]′.
Temporal locality can be exploited in only one way for loop-
nests in this reuse-class, which is when the best reuse vector
is aligned parallel to the innermost loop.

Class MV contains loop-nests with multiple equivalent reuse
opportunities but each reuse opportunity is still just a single
reuse vector. Loop-Nest II in Sec. 2 has two reuse options:
in reference Q[j][i] and in R[i][k]. Both the reuse are equiv-
alent in that they produce the same gains. Having multiple
equivalent reuse vectors means more flexibility for spatial
locality optimization.

Class IV contains loop-nests where the reuse is along two
or more dimensions and is therefore spanned by more than
one reuse vector. For example, a reference such as D[i] in
a loop-nest [i j k] has reuse-space α[0 1 0] + β[0 0 1]
since the reuse is both in j and in k direction. This class of
loop-nests have more flexibility than the loop-nests in reuse-
class MV since they provide in principle infinite choices for
the exploitation of temporal locality.

Class NV contains loop-nests with no temporal reuse. There-
fore the loop-nests can be transformed whichever way with-
out affecting temporal locality.

6.3 Loop-Nest Optimization Algorithm
Fig. 4 presents our multiple loop-nests locality optimiza-

tion algorithm. Let L = {l1, l2, ..., ln} be the set of loop-
nests in the application. We partition L into four reuse-
classes in the order of increasing flexibility as described in
Sec. 6.2. Next, within each reuse-class we rank the loop-
nests using dependence-ratios as described in Sec. 6.1. The
different reuse-classes are then concatenated to form a com-
plete ranked list of loop-nests with the most constrained
loop-nest ranked first.

Next we start to optimize one loop-nest li at a time. The
reuse vectors rij are used to design the loop transforma-
tion Tt which improves the temporal locality (when multiple
reuse options are present, a set of Tts are constructed).

Let Q be the set of arrays whose layout has been fixed.
From the arrays in Q we select those which are referenced
in li and for which temporal locality does not exist. We
construct a transformation Ts which improves the spatial
locality of such arrays. Ts should not undo the temporal
locality achieved by Tt. The composite transformation T =
Ts ∗ Tt is applied to li. Now, taking the new access order in

function: Locality optimization algorithm
let L = {l1, l2, ..., ln} be the set of loop-nests
let A = {a1, a2, ..., am} be the arrays referenced in L
for i = 1...n do

compute the reuse vectors �rij for the loop-nest li
compute the dependence vectors �dij

compute the dependence-ratio using �dijs
endfor
partition L into four reuse-class:

SV: loop-nests with just one best reuse vector
MV: loop-nests with multiple equivalent reuse vectors
IV: loop-nests reuse along two or more dimensions
NV: loop-nests with no reuse opportunity

rank the loop-nests in each reuse-class using dependence-ratio
generate the new ranked list L′ = (SV,MV,IV,NV)
let Q be the set of arrays whose layout is fixed. Initialize Q = {}
for i = 1...n do

using �rij construct a Tt which optimizes temporal locality in li
construct a Ts that optimizes spatial locality for arrays ...

... in Q w/o destroying any temporal locality in li
apply composite transformation T = Ts ∗ Tt to li
fix layouts of arrays accessed in li to exploit spatial locality
add to Q the arrays whose data-layout were fixed in li

endfor
end function

Figure 4: Spatial and Temporal Locality Optimiza-
tion Algorithm using Reuse-Class and Dependence-
Ratio.
li as fixed, we fix the layout (to improve spatial locality) for
those arrays accessed in li that are not in Q and for whom
temporal locality does not exist. The arrays arrays whose
layouts were fixed are added to Q.

7. EXPERIMENTAL RESULTS
The framework for our tool STELO (Spatial and TEmpo-

ral Locality Optimization) which implements the proposed
technique is shown in Fig. 3. It is built on top of ORC [19],
WRaP-IT and URUK [6][3] compiler. We applied our tech-
nique to real-life applications to evaluate the improvement.
The following applications were used:

• 3GPP-LTE: 3GPP enhancement of Universal Terres-
trial Radio Access (UTRA) [8].

• 802.11n : New Wi-Fi standard by IEEE LAN/MAN
Standard Committee [7].

• WB-AMR : Wideband Adaptive Multi Rate speech
coder, adopted by ITU-T as G.722.2.

• Graham Schmidt : Used in wireless to factorize sig-
nals into orthogonal components [15].

We compare our technique against the SOA (state-of-the-
art) [9]. Improved locality leads to better cache perfor-
mance. Our technique is at par with SOA in improving
temporal locality. We, however, improve spatial locality sig-
nificantly with our insights into dependence-ratio and reuse-
class. The affects of better spatial locality become visible as
we go to line (or block) size of two or more words (typi-
cally, line sizes are 8bytes-128bytes). Therefore, we demon-
strate our improvement (Improved-SOA) by plotting the
cache miss-rate against different cache line sizes as shown
in Fig. 5. Note that miss-rate of Improved-SOA is signifi-
cantly less than SOA. Even though SOA and Improved-SOA

129

improve temporal locality exactly to the same extent, we see
Improved-SOA to be doing better because in most of these
applications spatial locality plays an important part. Ap-
plications such as 3PP-LTE have small level of temporal
locality and therefore our improved approach to spatial lo-
cality really makes a difference. The average reduction in
miss-rate across all applications and line-sizes was found to
be 47.5% over SOA.

Conclusion: We provide a scalable technique for lo-
cality optimizations of series of loop-nests such as found in
wireless, that improves significantly upon the state-of-the-
art. Our technique is based on new insights into role of de-
pendence and temporal-reuse in constraining spatial locality
optimizations. We propose new concepts of reuse-class and
dependence-ratio that accurately measure how much a given
loop-nest is constrained by data-dependence and reuse, so
that it can or cannot be transformed further to improve
layout locality for the arrays referenced inside this loop-
nest. Our method is implemented on industry-level compiler
framework.

8. ADDITIONAL AUTHORS
Francky Catthoor (email:catthoor@imec.be).

9. REFERENCES
[1] R. Allen and K. Kennedy. Optimizing Compilers for

Modern Architectures. Morgan Kaufmann Publishers,
2001.

[2] U. Banerjee. Data Dependencies. Kluwer, 1988.

[3] C. Bastoul, A. Cohen, A. Girbal, S. Sharma, and
O. Temam. Putting polyhedral loop transformations
to work. In Intl. Workshop on Languages and
Compilers for Parallel Computers, LNCS 2958, pages
209–225, 2003.

[4] A. J. C. Bik. The Software Vectorization Book. Intel
Press, Reading, Mass., 2005.

[5] M. Cierniak and W. Li. Unifying data and control
transformations for distributed shared memory
machines. In PLDI, pages 205–217, 1995.

[6] A. Cohen, M. Sigler, S. Girbal and O. Temam.
Facilitating the search for compositions of program
transformations. In Intl. Conference on
Supercomputing, pages 151–160, 2005.

[7] T. Cooklev. Wireless Communication Standards: A
Study of IEEE 802.11, 802.15 and 802.16. IEEE Std.
Assoc., 2004.

[8] IMEC. Imec software defined radio concept compliant
with 3gpp-lte. Design and Reuse,
http://www.us.design-
reuse.com/news/news13680.html, (13680),
2006.

[9] M. T. Kandemir. A compiler technique for improving
whole-program locality. Proceedings of International
Conference on Principles of Programming Language
(POPL), 2001.

[10] M. T. Kandemir. Data relation vectors: A new
abstraction for data optimizations. IEEE Trans. on
Computers, 50(8):798–810, August 2001.

[11] M. T. Kandemir, J. Ramanujan, and A. Chowdhury.
Improving cache locality by a combination of loop and
data transformation. IEEE Trans. on Computers,
48(2), 1999.

3GPP-LTE

0

10

20

30

40

50

60

70

80

90

8 Bytes 16 Bytes 32 Bytes 64 Bytes 128 Bytes

line sizes

m
is

s
ra

te
%

Original SOA Improved-SOA

802.11n (Wi-Fi)

0

10

20

30

40

50

60

8 Bytes 16 Bytes 32 Bytes 64 Bytes 128 Bytes

line sizes

m
is

s
ra

te
%

Original SOA Improved-SOA

WB-AMR (G.722.2)

0

5

10

15

20

25

30

8 Bytes 16 Bytes 32 Bytes 64 Bytes 128 Bytes

line sizes

m
is

s
ra

te
%

Original SOA Improved-SOA

Graham Schmidt

0

10

20

30

40

50

60

8 Bytes 16 Bytes 32 Bytes 64 Bytes 128 Bytes

line sizes

m
is

s
ra

te
%

Original SOA Improved-SOA

Overall Miss Rate for different cache line sizes

0

10

20

30

40

50

60

8 Bytes 16 Bytes 32 Bytes 64 Bytes 128 Bytes

line sizes
m

s
s

ra
te

%

Original SOA Improved-SOA

Figure 5: Miss-rate results for 3GPP-LTE (Long
Term Evolution), IEEE 802.11n (Wi-Fi), WB-AMR
(G.722.2) and Graham Schimdt. Note the reduction
in miss-rate by our Improved-SOA over the SOA
(state-of-the-art).

[12] W. Li and K. Pingali. Access normalization: loop
restructuring for numa computers. ACM Trans.
Comput. Syst., 11(4):353–375, 1993.

[13] K. S. McKinley, S. Carr, and C.-W. Tseng. Improving
data locality with loop transformations. ACM Trans.
Program. Lang. Syst., 18(4):424–453, 1996.

[14] M. F. P. O’Boyle and P. M. W. Knijnenburg.
Non-singular data transformations: definition, validity
and applications. In Intl. Conference on
Supercomputing, pages 309–316, 1997.

[15] V. Poor and X. Wang. Wireless Communications
System: Advanced Techniques for Signal Reception.
Prentice Hall.

[16] W. Pugh and D. Wonnacott. Constraint-based array
dependence analysis. ACM Trans. Program. Lang.
Syst., 20(3):635–678, 1998.

[17] C. Todd and G. Davidson. Ac-3: Flexible perceptual
coding for audio transmission and storage. In 96th
Convention of the Audio Engineering Society, pages
89–102. AES, 1994.

[18] M. E. Wolf and M. S. Lam. A data locality optimizing
algorithm. In PLDI ’91., pages 30–44, 1991.

[19] C. Wu, R. Lian, J. Zhang, R. Ju, S. Chan, and L. Liu.
An overview of the open research compiler. Lecture
Notes in Computer Science, 3602(2005):17–31, 2005.

130

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

