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ABSTRACT
The last decade has witnessed the emergence of the Application
Specific Instruction-set Processor (ASIP) as a viable platform for
embedded systems. Extensible ASIPs allow the user to augment
a base processor with Instruction Set Extensions (ISEs) that exe-
cute on Application Specific Functional Units (AFUs) − dedicated
hardware that executes the ISEs. Due to the limited number of
read and write ports in the register file of the base processor, the
size and complexity of AFUs are generally limited. Recent work
has focused on overcoming these constraints by serialising access
to the register file. Apart from these complications, the primary
challenge in the identification and selection of the best AFU is the
modelling of AFU performance in the context of different base pro-
cessors: once the base processor changes, the ISE identification and
AFU selection process must be redone from scratch. Exhaustive
ISE/AFU enumeration methods are not scalable and generally fail
for larger applications. To address this concern, a new approach to
ISE/AFU identification is proposed. In particular, we show that the
speedup model of ISEs/AFUs is independent of the specific details
of the base processor, under fairly reasonable assumptions. The ap-
proach presented here significantly prunes the list of best ISE/AFU
candidates compared to previous approaches. Experimentally, we
observe the new approach produces optimal results on larger ap-
plications where prior approaches either fail or produce inferior re-
sults.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special Purpose and Ap-
plication Based Systems

General Terms
Algorithms, Performance, Design
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Custom Processors, ISE Identification, Maximal Cluster
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1. INTRODUCTION AND GOAL
ISE identification and AFU generation are the primary methods

by which automated tools accelerate the performance of extensible
ASIPs. To date, a wealth of literature [1, 3, 4] has been published
on this topic. Typical approaches identify and extract ideal ISE
candidates from a compiler′s intermediate representation of an ap-
plication; the best ISE is then identified using a cost function, and
an AFU is generated to execute the ISE. Although prior techniques
have proven quite successful, there is still considerable room for
improvement. This paper advances the state of the art in ISE iden-
tification and AFU generation in several respects.

First and foremost, we formally prove that the optimal ISE can
be identified using a speedup model that is independent of the spe-
cific details of the execution pipeline of the base processor, un-
der assumptions that are generally reasonable for current extensi-
ble ASIPs on the market. Based on these assumptions, a sparse set
of ISE candidates is generated, out of which the best one can be
chosen.

The first assumption is that the base processor must be a RISC.
As a counter-example, the proof does not hold for superscalar pro-
cessors that perform dynamic optimisations in hardware such as
out-of-order speculative execution and register renaming. The sec-
ond assumption is that the cost of executing an ISE on an AFU is
never slower than executing the same operations in software. This
assumption is generally true, except for hybrid systems where the
base processor and AFUs are synthesised on different technologies.
An example of a hybrid system is the Xilinx Virtex-2 Pro FPGA,
where the base processor is an IBM PowerPC, but the ISEs are syn-
thesised on the general logic of an FPGA. An individual addition or
multiplication operation, for example, is likely to be slower on the
general logic of an FPGA than on the highly optimised ALU of the
FPGA. This dichotomy remains true even if dedicated multiplier
and DSP blocks are utilised. As reported by Kuon and Rose [2],
mismatches in terms of bitwidth (e.g., performing 5 × 5 bit multi-
plication on a 9 × 9 bit multiplier) and the cost of routing data to
and from the dedicated blocks can severely impede performance.
In a pure CMOS system, in contrast, the generated AFUs will al-
ways have the correct bitwidth and delays, and hence the cost of
executing an AFU will be less than executing the same operations
in software.

A second contribution is a reevaluation of the assumptions un-
derlying the processor of ISE generation. Previous work [5] as-
sumes that each AFU receives all operands at once, and produces
all results in exactly one clock cycle. Under this model, the number
of inputs and outputs of each ISE cannot exceed the number of read
and write ports of the register file in the base processor. In 2005,
Pozzi and Ienne [6] developed a technique for multi-cycle pipelined
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Figure 1: An overall description of the previous approach for
ISE identification.

ISE execution; during each cycle, data is read from and written to
the base processor′s register file. Under this execution model, there
is no need to limit the number of inputs and outputs of each cus-
tom instruction. Unfortunately, this eliminates the most effective
pruning criteria that allowed previous ISE enumeration methods to
converge.

Prior techniques for ISE generation exhaustively enumerate the
subgraphs of the compiler′s intermediate representation, implicitly
rejecting all of those that do not meet the I/O constraints of the
register file on the base processor; however, this pruning criteria
was the key to fast convergence of an otherwise exponential worst-
case method. It is already well-known that increasing the number
of read and write ports on the base processor′s register file signif-
icantly increases the runtime of ISE enumeration [5], due to the
decreasing effectiveness of pruning. To get a significant speedup
for multi-cycle ISEs, Pozzi and Ienne [6] repeatedly ran traditional
ISE enumeration methods, increasing the number of read and write
ports each time.

The ISE identification method presented here, in contrast, does
not require I/O constraints to effectively prune the search space, and
must only run once. Since there are no I/O constraints, the enumer-
ation method can generally choose the largest subgraphs possible
(in the most general case, the entire graph itself). In fact, the only
constraining factors are forbidden nodes, which are operations in
the compiler′s intermediate representation that must be executed
in software, and the requirement that all enumerated subgraphs be
convex. The approach to ISE identification presented in this paper
generates a potentially optimal set of ISEs that are convex and con-
tain no forbidden nodes. This set is then pruned using theoretical
properties that will be derived later in the paper.

A third contribution is a faster algorithm for pipelining compared
to the one proposed by Pozzi and Ienne [6]. This, in turn, enables
a fourth contribution. Due to the high runtime cost of pipelining,
Pozzi and Ienne used a single-cycle speedup model to identify the
best custom instruction, and then pipeline it. There is no guarantee,
however, that this custom instruction will still be the best once it has
been pipelined. Due to the more efficient algorithm for pipelining,
it becomes possible to pipeline each of the potentially optimal ISEs,
so the best candidate can be selected after pipelining.

The previous approach to ISE generation is shown in Fig. 1. As
discussed above, this approach is problematic for several reasons:
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Figure 2: An example showing that the relative merit of AFUs
might change after pipelining Assume that software latency of
each node is 1.0.

• Nonoptimal ISEs should also be considered, because these
ISEs may become optimal after pipelining. Fig. 2 shows an
example where this occurs. In Fig. 2, the software latency
of each node is 1.0 cycles, and the timing constraint requires
that each stage in the pipeline have a period of no more than
1.0 cycles. The optimal ISE, using the original method, is a
path containing 6 nodes, where nodes have alternating delays
of 0.5 and 0.6 cycles. The suboptimal ISE has 2 nodes, of
delays 0.2 and 0.3 cycles. Due to the timing constraint, the
only possible way to pipeline the optimal ISE is to create an
AFU with 6 pipeline stages and a total latency of 6 cycles:
the same as software execution. In the suboptimal ISE, both
nodes can be collapsed into a single-cycle AFU, compared
to a 2-cycle latency in software. Consequently, after taking
pipelining into account, the optimal ISE, based on previous
methods, yields a suboptimal AFU that offers no speedup.
Based on this example, the problem of ISE generation un-
der I/O constraints would appear to reduce to the problem of
enumerating every feasible subgraph as a potential ISE, and
then pipelining each candidate to measure the latency of its
AFU.

• The pipelining algorithm taken by Pozzi and Ienne [6] is to
repeat the enumeration process for all I/O constraints from
(2, 1) to (N, N), where N is the number of nodes in the
DAG. Due to runtime considerations, the maximal size of the
search is stopped at (10, 5). The runtime increases exponen-
tially due to the ineffectiveness of pruning as I/O constraints
increase. Furthermore, the algorithm used for pipelining is
exponential in the number of input and output nodes of the
DAG. Clearly, this approach cannot scale as the number of
nodes in the DAG increases.

• If the software/hardware latency of some instruction changes,
the result of the ISE enumeration and AFU generation algo-
rithm is no longer guaranteed to be optimal. For example, a
custom instruction that is optimal for a speedup model based
on 0.18 micron CMOS technology may become suboptimal
for 0.13 micron CMOS technology. One must either repeat
the entire process or accept a potentially suboptimal solution.
The approach presented here, in contrast, finds a sparse set of
potential ISEs. Irrespective of the specific technology used,
the optimal ISE is always included in this set.

Fig. 3 illustrates the new approach for ISE identification. ISE
generation proceeds without I/O constraints, based on the knowl-
edge the pipelining will appropriately serialise access to the register
file. The algorithm has 6 main steps:
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Figure 3: An overall description of our approach.

Step 1, Clustering—In this step, nodes are grouped into a set
of equivalent classes based on assumptions regarding the speedup
model, which will be discussed in Section 4. If nodes x and y
belong to the same equivalence class C, then any ISE that includes
x can also include y without losing convexity. Consequently, any
ISE that includes x but not y is suboptimal, because y could always
be added to it−and our equivalence model assumes that adding y
to the ISE cannot negatively affect the speedup obtained.

Step 2, Cluster Graph Construction—In the compiler′s interme-
diate representation, each basic block is a DAG, where vertices
represent operations and edges represent data dependencies. Each
equivalence class identified in Step 1 is then compressed into a sin-
gle vertex in the DAG. An edge is placed between every pair of
equivalence classes that could be merged into the same ISE with-
out violating convexity constraints. The result graph, which is undi-
rected, is called a Cluster Graph. Compared to the original DAG,
the cluster graph has significantly fewer vertices and edges, which
reduces the overall size of the search space for ISE identification.

Step 3, Pruning—This step is optional. Pruning techniques are
used to identify equivalence classes that provably cannot be part
of an optimal ISE; these classes are then removed from the cluster
graph, further reducing the size of the search space.

Step 4, Clique Enumeration—This step enumerates every maxi-
mal clique in the cluster graph, which corresponds to a potentially
optimal custom instruction. The clique enumeration process is an
exhaustive search, which has an exponential worst-case running
time. In practice, however, it is significantly faster than the sub-
graph enumeration method used by prior techniques [5, 4].

Step 5, Clique Pruning—This step is optional and depends on
the specifics of the speedup model. We use certain properties of the
speedup model to bound the speedup of an AFU. Based on these
bounds we can remove some of the nodes and edges from the clus-
ter graph (when the maximal cluster containing a node or edge is
guaranteed to provide minuscule speedup).

Step 6, Pipelining—The final step is to pipeline the ISEs corre-
sponding to each of the remaining cliques. The ISE that offers the
maximal speedup is then selected.

To select multiple ISEs from the same DAG, the process can be
repeated. The optimal ISEs from previous iterations are marked as
forbidden, to prevent overlapping ISEs. The process can terminate
as desired by the user. Possible stopping criteria include: a fixed
allowable number of ISEs, the aggregate area of the set of selected
ISEs cannot exceed some fixed value, or all operations in the DAG
are marked as forbidden.

The remainder of the paper is organised as follows. Section 2
discusses related work in the area of ISE generation. Section 3
formally defines the ISE generation and pipelining problems. Sec-

tion 4 describes our approach to solve the problem, including for-
mal proofs regarding the speedup model, as well as algorithms for
ISE enumeration and pipelining. Section 5 presents an experimen-
tal evaluation of the proposed approach, and compares it to prior
work. Section 6 concludes the paper.

2. RELATED WORK
The vast majority of prior techniques for ISE generation use the

number of input and output ports between AFU and register file to
constrain the set of subgraphs that can be enumerated [4]; however,
the pipelining algorithm of Pozzi and Ienne [6] eliminates the need
for these constraints.

To date, one algorithm for ISE generation has been developed by
Pothineni et al. [7] with pipelining in mind. Their work is similar
to this paper with respect to the assumptions regarding the mono-
tonicity of convex subgraphs; however, their algorithm considers
only connected subgraphs as potential AFUs. They use an un-
constrained MaxMIMO algorithm to enumerate ISEs. Afterwards,
they pipeline the MaxMIMOs using the algorithm of Pozzi and
Ienne. Rather than searching for the best ISE, they find an overlap-
ping set of ISE candidates and then select a nonoverlapping subset
using an algorithm similar in principle to Guo et al. [8]. Pothenini
et al. do not describe any techniques that are comparable to our
methods for clustering and clique enumeration.

The cluster graph described in this paper has some similarities to
the All Pairs Common Slack Graph (APCSG) described by Brisk
et al. [9]. The difference is that APCSG edges are placed between
operations that can be scheduled in parallel. Their approach is not
optimal and focuses primarily on finding VLIW-style parallel in-
structions.

Other ISE generation techniques have discarded I/O constraints
for reasons unrelated to pipelining. Kastner et al. [10], for example,
use a similar method to find ideal IP blocks to integrate into a recon-
figurable fabric. Likewise, Cadambi and Goldstein [11] use simi-
lar methods to build a macro-generator library for FPGAs. These
techniques do not extend a base processor with constraints on the
register file.

3. PROBLEM STATEMENT
Each basic block can be represented as a DAG G = (V, E)

where nodes correspond to primitive operations (e.g. ADD, MUL,
LOAD) and edges correspond to data dependencies between oper-
ations. We can extend G into a larger DAG, G+ = (V ∪ V +, E ∪
E+), where V + is the set of inputs and outputs of the basic block,
and E+ is the set of edges connecting vertices in V and V +. To
simplify notation, we will henceforth use G in place of G+.

Along with G, we are given a subset F ⊆ V of forbidden nodes
that cannot be included in any ISE. Initially, forbidden nodes cor-
respond to operations such as LOAD, STORE, and JUMP, which
require access to main memory. If the ISE generation algorithm
is run multiple times to find multiple ISEs in the same DAG, then
already-identified ISEs are also marked as forbidden nodes.

For each node u ∈ V , there are two positive real values SWu

and HWu, which are the latencies of u implemented in software
(on the base processor) and hardware. A convex subgraph S ⊆ V
is a subset of nodes, such that for every pair of nodes u, v ∈ S,
every path from u to v in G consists solely of nodes in S. For a
convex subgraph S, SW (S) and HW (S) are the latencies of S
when implemented in hardware and software respectively.

The total number of cycles saved by implementing S as an ISE
is M(S) = SW (S) − HW (S). The ISE generation problem is
to find a convex subgraph S of G that contains no forbidden nodes
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(i.e., S∩F is empty) and maximises M(S). In general, both SW ()
and HW () are process-specific functions. For example, in a RISC
processor, SW (S) can be approximated by adding the software
latencies of all nodes in S, e.g.,

SW (S) =
∑
u∈S

SWu.

Throughout this paper, we assume that the base processor is a RISC.
HW (S), in contrast, is dependent on specific issues of AFU

synthesis (algorithms, ASIC vs. FPGA, etc.). Clearly, HW (S) de-
pends on the available I/O ports between the AFU that implements
S as an ISE and the register file in the base processor. If m and n
are the number of input and output ports of the register file, then
HW (S) can be computed by pipelining the AFU for S under I/O
constraints (m,n) [6].

Pipelining, itself, is also a complicated problem. Let GS =
(S, ES) be the subgraph of G induced by S. We extend GS with
two additional nodes, vsrc and vsink , which are connected to all
of the inputs and outputs of S respectively by edge sets Esrc and
Esink . Let S+ = S∪vsrc ∪vsink and E+

S = ES ∪Esrc ∪Esink.
Pipelining is then applied to the resulting DAG G+

S = (S+, E+
S ).

Let R denote the total latency of the G+
S after pipelining, which

is achieved by inserting registers on the edge set E+
S . Let ρ(u, v)

denote the number of registers inserted onto edge (u, v).
Given these definitions, pipelining can be formulated as an opti-

misation problem [6]:

PROBLEM 1. Minimise R under the following constraints:

• Pipelining: The maximum register-to-register latency of the
circuit cannot exceed λ, a user-specified value. For any path
p through G+

S whose edges contain no registers, the sum of
the hardware latencies of the operations in p cannot exceed
λ.

• Legality: All operands of a node must arrive at the same
time. In other words, for any node v ∈ S+, all paths from
vsrc to v must contain the same number of registers. The
number of registers on any path between vsrc and vsink will
be R − 1 (yielding R pipeline stages).

• I/O Serialisation: At any cycle, at most m inputs can be
read from the register file and at most n outputs can be writ-
ten back. Formally, let Sin(i) be the set of input nodes whose
incoming edges have exactly i registers, meaning that these
nodes read their values from the register file at the ith clock
cycle. Likewise, let Sout(j) be the set of output nodes whose
outgoing edges have exactly j registers. Then | Sin(i) |≤ m
and | Sout(j) |≤ n.

The optimal value of R corresponds to HW (S). Consequently,
one must solve the pipelining problem optimally in order to solve
the ISE generation problem optimally as well.

4. ALGORITHMS FOR ISE GENERATION
AND PIPELINING

Fig. 3 provided an overview of the new approach to ISE genera-
tion. This section describes the approach in greater detail, while fo-
cusing on its advantages over previous approaches. It is important
to note that if there are no inherent assumptions regarding the per-
formance model of the base processor and AFUs, then it is impossi-
ble to compare the merits of two different ISEs, S1 and S2, without
comparing their speedups, i.e., computing M(S1)−M(S2). With-
out any assumptions, the only feasible approach for ISE generation

is to enumerate all convex subgraphs, compute their speedups, and
choose the best one.

It is important to recognise, however, that the speedup model is
not a random function, and that it is certainly reasonable to make
assumptions about it, as long as the properties used to justify the
assumptions are relatively safe. The algorithms for ISE genera-
tion presented here exploit these properties to reduce the size of the
search space significantly.

4.1 Monotonicity of Speedup Model
The most important property of the speedup model is Monotonic-

ity, and is defined as follows.

DEFINITION 1. A speedup model is monotonic, if for any two
convex subgraphs S1 and S2,

(S1 ⊆ S2) ⇒ M(S1) ≤ M(S2).

Theorem 1, which follows, shows that the speedup model for
RISC processors, under several fairly weak assumptions, is mono-
tonic; moreover, its monotonicity is independent of the hardware
and software latencies of operations.

THEOREM 1. The speedup model for ISE generation for RISC
processor is monotonic, under the assumption that for any convex
subgraph S, SW (S) ≥ HW (S).

PROOF. Let S1 and S2 be convex subgraphs of G, and assume
that S2 is a supergraph of S1. Since both S1 and S2 are convex,
S2 can be obtained from S1 by a sequence of the following three
operations:

• Choose a convex subgraph T , such that T ∩ S1 is empty and
there are no paths from any node in S1 to a node in T , and
vice versa. Let S′

1 = S1 ∪ T .

• Choose a node v from outside S1. Let P (v, S1) be the sub-
graph of G induced by the set of nodes on all paths from v to
nodes in S1, and let S′

1 = S1 ∪ P (v, S1).

• Choose a node v from outside S1. Let P (S1, v) be the sub-
graph of G induced by the set of nodes on all paths from
nodes in S1 to v, and let S′

1 = S1 ∪ P (S1, v).

Since S1 is a convex subgraph, S′
1 must also be convex if it

is constructed using these three operations. Given S1 and S2, as
described above, we can construct S2 from S1 by repeatedly ap-
plying these three operations, yielding the following sequence of
subgraphs:

S1 = S(0) ⊂ S(1) ⊂ · · · ⊂ S(k) = S2.

S(i+1) is generated from S(i) by applying a transformation.
To prove the correctness of the theorem, we must prove that none

of these transformations reduces the speedup of resulting subgraph.
Consider the first operation, where SW (S1) and SW (T ) be the

software latencies of AFUs corresponding to subgraphs S1 and T .
After pipelining, let R1 and RT be the number of registers inserted
between vsrc and vsink for S1 and T respectively. Now we must
pipeline S′

1.
One possibility would be to add RT additional registers on each

incoming edge of inputs to S1 and R1 additional registers on each
outgoing edge of outputs of T , as shown in Fig. 4. We argue that no
more than m input nodes of S′

1 have the same number of registers
on their incoming edges. This constraint is already satisfied among
the input nodes of S1 and T individually. Since HW (T ) ≤ RT ,
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Figure 4: Disjoint union of two convex subgraphs increases the
speedup.

each input of T will have fewer than RT registers on its incoming
edges. Each input of S1 has at least RT registers on its incoming
edges. This means that no input of S1 can have the same number
of registers on its incoming edge as any input of T . This ensures
that the input constraint is satisfied for S′

1. Likewise, the analogous
argument holds for the outputs of S′

1 as well.
For S′

1, the number of registers on every path from vsrc to vsink

is R1 + R2. This ensures that M(S′
1) ≥ SW (S1) + SW (T ) −

(R1 + R2) ≥ M(S1) = SW (S1) − R1.
Now, consider the second operation, and assume that there are

t paths from v to S1. Consider the set X = {v1, v2, . . . , vr} of
nodes on these paths that are directly connected to the nodes of S1.
The smallest convex graph H containing all of the nodes in X is
the union of the t paths. Let HW (H) be the number of registers
inserted after pipelining H . Under the assumption of monotonicity,
HW (H) ≤ SW (H).

Once again, consider supergraph S′
1. Place HW (H) additional

registers on each incoming edge of the inputs of S1 and HW (S1)
addition registers on the outgoing edges of outputs of H that are
not connected to inputs of S1. By applying the same argument as
above, this ensures that no more than m input nodes of S′

1 will have
the same number of registers on their incoming edges, and no more
than n output nodes of S′

1 will have the same number of registers
on their outgoing edges.

Now, let N(S1) be a set of nodes in S1 that are directly con-
nected to nodes in H . This adds extra paths from vsrc to nodes in
N(S1), which come via H . To satisfy the legality constraint for
these nodes, we must insert extra pipeline registers on some edges.
Note that all paths from vsrc to nodes in N(S1) that pass through
S1 will have at least HW (H) registers; however, all paths from
vsrc to nodes in N(S1) that pass through H will have fewer than
HW (H) registers. It suffices to insert additional pipeline registers
on the edges between nodes in H and nodes in S1 to satisfy the
legality constraint. This does not affect the quality of the original
pipelining because these edges do not exist in S1 or H alone. It is
important to note that the addition of these pipeline registers do not
increase the maximum number of registers on all paths from vsrc

to vsink .
In the entire procedure, we have added only HW (H) extra reg-

isters to each path through S1 and HW (S1) extra registers on each
path through H . Thus, the number of registers from vsrc to vsink ,
e.g., HW (S′

1) cannot exceed HW (S1) + HW (H). As discussed

(a) Addition of all paths from 
a node to original subgraph

S1

additional
registers

v

H

S1
additional
registers

(b) The graph corresponding 
to added node

(c) Pipelined combined graph

Figure 5: Adding a single node and all paths from this node to
the subgraph increases the speedup.

above, the registers added on the paths containing nodes from both
H and S1 do not increase the number of registers between vsrc

and vsink . Thus, M(S′
1) ≥ SW (S1) + SW (H) − (HW (S1) +

HW (H)) ≥ M(S1). Fig. 5 illustrates the key points of the proof
in this case.

The proof for the third operation is analogous to the proof of the
second, and has been omitted to conserve space.

Theorem 1 indicates that increasing the number of nodes in an
ISE can never reduce the speedup. Consequently, the optimal AFU
will be maximal.

4.2 Reducing the DAG Size via Clustering
The previous section showed that the subgraph corresponding to

an optimal AFU should be maximal; however, we must still show
how to generate maximal subgraphs that are Valid, meaning they
are convex and contain no forbidden nodes. One possibility would
be to enumerate all convex subgraphs and then consider only max-
imal ones as AFU candidates. Although this approach eliminates
the need to pipeline every nonmaximal subgraph that is enumer-
ated, it is still not computationally feasible.

In this section, we show how to reduce the size of the original
DAG in such a way that the set of maximal valid subgraphs is pre-
served. The key idea behind this reduction is that there are pairs
(or sets) of certain nodes that will always occur together in maxi-
mal valid subgraphs. We cluster these nodes together into a single
node, reducing the number of nodes and edges in the DAG. Sec-
tion 4.2.1 defines an equivalence relationship between these clus-
terable nodes, and Section 4.2.2 introduces an efficient algorithm
to determine this relationship.

4.2.1 Equivalence Relationship between Clusterable
Nodes

We define a relation ∼ between two nodes u and v, such that
u ∼ v is true if u and v are clusterable, and false otherwise. This
relation is formalised as follows:
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Figure 6: Two nodes are related if any convex subgraph con-
taining one of them can be extended to a convex subgraph con-
taining both of them.

DEFINITION 2. For two nodes u and v in G, u ∼ v if and only
if any valid subgraph containing u or v, but not both, can always
be extended to a valid subgraph containing both u and v. Fig. 6
illustrates the preceding concept.

It is trivial to see that the relationship is reflexive (u ∼ u) and
symmetric (u ∼ v ⇒ v ∼ u). To prove that ∼ is an equivalence
relation, we must also prove that it is transitive.

THEOREM 2. The relation ∼ is a transitive relation.

PROOF. Let u, v, and w be nodes in G, and assume that u ∼ v
and v ∼ w. To establish transitivity, we must prove that u ∼ w.
Assume that there is a valid subgraph S that contains u, but not w.
If v ∈ S, then S can be extended to a valid subgraph S′ such that
w ∈ S′, since v ∼ w. If v /∈ S, then S can be extended to a new
subgraph S′ such that v ∈ S′ since u ∼ v. Since v ∈ S′, then
S′ can be extended to a new subgraph S′′ such that w ∈ S′′ since
v ∼ w. The same argument can be used to show that any subgraph
S containing w can be extended to contain both u and w.

Theorem 2 shows that we can partition the nodes of a DAG into
equivalence classes, defined by the relation ∼, which is true for
every pair of nodes belonging to the same equivalence class, and
false for every pair of nodes belonging to distinct classes. If C is an
equivalence class, any maximal valid subgraph must contain either
all nodes in C, or none. This immediately implies that the nodes
of an equivalence class can be clustered into a single node, thereby
reducing the number of nodes and edges in the DAG. The clus-
tering transformation is analogous to the edge contraction method
described by Kastner et al. [10].

4.2.2 Determining the Equivalence Relation
Here, we describe an efficient algorithm to evaluate u ∼ v for

two nodes u and v. One possibility is to enumerate all maximal
valid subgraphs containing u, and then check whether v belongs to
each of these subgraphs; however, this is highly inefficient. For-
tunately, there is a much more efficient way to accomplish this,
described here.

DEFINITION 3. Given node u, the Consistent Set P (u) is the
set of all nodes x, such that there exists at least one valid subgraph
containing both u and x. If v /∈ P (u), then no valid subgraph can
contain both u and v.

First and foremost, if f is a forbidden node, then P (f) is empty.
If u and v are not forbidden, and there is no path from u to v as well
as from v to u, then S = {u, v} is a valid subgraph, i.e., v ∈ P (u)
and vice versa.

Now, suppose that there is at least one path from u to v. Clearly,
if there is a forbidden node along at least one path, then v /∈ P (u).

checkMembership (node u, node v, set F) {
// The function takes two nodes u, v and the set of
// forbidden nodes F and decides whether v ∈ P (u).

(Predu, Predv) = (predecessors(u), predecessors(v));
(Succu, Succv) = (successors(u), successors(v));

if (({u, v} ∩ F �= ∅) or (Predu ∩ Succv ∩ F �= ∅) or
(Succu ∩ Predv ∩ F �= ∅))

return false;
return true; }

Figure 7: Algorithm to decide the membership of v in P (u).

u

v

S

x

y

z

Since S is convex, all paths between 
x and y must be inside S

Figure 8: All paths from a node to a convex subgraph must be
monodirectional.

On the other hand, if there are no forbidden nodes, then the sub-
graph corresponding to the union of all of these paths will be a valid
subgraph containing both u and v, hence v ∈ P (u) and vice versa.
Based on these observations, an algorithm to determine member-
ship of v in P (u) is given in Fig. 7. Theorem 3, which follows,
provides the foundation to determine the relationship ∼ efficiently.

THEOREM 3. For any two nodes u and v, u ∼ v ⇔ P (u) =
P (v).

PROOF. First, assume that P (u) �= P (v). Then there is a node
x such that x ∈ P (u) and x /∈ P (v), or vice versa. If x ∈ P (u),
then there will exist a valid subgraph S containing both u and x.
Since x /∈ P (v), v cannot be included in S. Therefore, u �∼ v.

Now, let us assume that P (u) = P (v). Let us consider a valid
subgraph S, such that u ∈ S and v /∈ S. For each node s ∈
S, s ∈ P (u) by definition. Since P (u) = P (v), S ⊆ P (v).
Now, consider all paths between v and the nodes in S. Since S is
convex, these paths must be mono-directional, meaning that all of
them will be from v to S, or from S to v; this is illustrated in Fig. 8.
Moreover, none of these paths can contain a forbidden node, since
S ⊆ P (v). If we include all of the nodes of these paths in S, we
have a convex graph with no forbidden nodes that contains both u
and v. In other words, any valid subgraph containing u or v, but not
both, can be extended to a valid subgraph containing both u and v.
Therefore, u ∼ v.

Theorem 3 shows that one can easily find the clusters in an orig-
inal DAG. First, the consistent set P (u) is found for every node u.
Then all of the nodes having the same consistent set are put into
the same cluster. Since all forbidden nodes have null consistent
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set, they will be placed in a single cluster, which henceforth will be
called a Forbidden Cluster.

Any maximal subgraph can be found by taking the union of some
subset of clusters. One possibility would be to enumerate all sub-
sets of clusters, check the convexity of the corresponding subgraph,
pipeline each convex subgraph, and pick the one that yields the best
speedup. To make this approach more efficient, we formulate the
problem in a different fashion, as described in the next section.

4.3 Cluster Graph and its Maximal Cliques
This section introduces the Cluster Graph of a DAG G, and

shows that the problem of enumerating the maximal valid sub-
graphs of G is equivalent to enumerating the maximal cliques of
the cluster graph. Since the number of maximal cliques in an undi-
rected graph is significantly smaller than the subgraphs of a DAG,
the clique enumeration approach is preferable. Prior work (e.g.,
[12]) has established relatively efficient methods for enumerating
the maximal cliques of a graph.

DEFINITION 4. The cluster graph C(G) of a DAG G is an undi-
rected graph whose nodes correspond to the nonforbidden clusters
of G, and an edge is placed between nodes corresponding to clus-
ters C1 and C2 if and only if there exist two nodes u and v in G
such that u ∈ C1, v ∈ C2 and v ∈ P (u)

Since all nodes in a cluster have the same consistent sets, all
nodes in that cluster will be consistent with all of the nodes in a
neighbouring clusters. Likewise, if two clusters are not neighbours
in the cluster graph, then there cannot be any valid subgraph con-
taining nodes from both clusters. Next, we show that the maximal
valid subgraphs of the DAG, G, correspond to maximal cliques of
cluster graph C(G).

THEOREM 4. Each maximal valid subgraph of G correspond
to a maximal clique in the cluster graph and vice versa.

PROOF. Applying Theorem 3, suppose that a valid subgraph S
corresponds to the union of clusters C1, . . . , Cm. Since all nodes
in a valid subgraph are consistent with one another, for any two
nodes u and v in the subgraph: v ∈ P (u) and u ∈ P (v). If
u ∈ Ci and v ∈ Cj then there is an edge between Ci and Cj in
the cluster graph. Therefore, C1, . . . , Cm is a clique in the cluster
graph. This shows that each maximal valid subgraph corresponds
to a clique in the cluster graph.

To establish the converse, assume that C1, . . . , Cm is a maximal
clique in the cluster graph, and that the corresponding subgraph in
G is nonconvex. Then there must be two nodes u ∈ C1 and v ∈ C2

in the subgraph such that there is a path from u to v that includes
nodes lying outside of the subgraph. Let w ∈ Cm+1 be a node on
this path that lies in a cluster outside of the maximal clique.

Since C1 and C2 are connected by an edge in the cluster graph,
u and v must be consistent, i.e., all paths between u and v contain
no forbidden nodes; thus, all paths from u to w and from w to v
contain no forbidden nodes as well. In other words, u ∈ P (w)
and v ∈ P (w), indicating the presence of edges (C1, Cm+1) and
(C2, Cm+1) in the cluster graph. Now, suppose that there is a clus-
ter Ci in the clique that is not adjacent to Cm+1. This can only be
possible if w /∈ P (u′) for any node u′ ∈ Ci. In other words, there
must be a path from w to u (or u to w) that contains a forbidden
node. This means that a forbidden node exists on one of the two
paths u → w → u′ or u′ → w → v. This leads to a contradiction,
because u ∈ P (u′) and v ∈ P (u′). Therefore Cm+1 is connected
to all clusters in the clique C1, . . . , Cm, and, thus, C1, . . . , Cm+1

is a clique, contradicting the assumption that the former clique is

P(a) = {a, g}
P(b) = {b, c, d, e, f, g}
P(c) = {b, c, d, e, f, g}
P(d) = {b, c, d, e, f, g}
P(e) = {b, c, d, e, f, g}
P(f) = {b, c, d, e, f, g, h}
P(g) = {a, b, c, d, e, f, g, h}
P(h) = {f, g, h}

b
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d

f

ge
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h
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g
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bcde Maximal cliques:
{ag, bcdefg, fgh}

(a) Original DAG and the consistent set of its nodes

(b) Cluster graph and its maximal cliques

Number of subgraphs in the original DAG: 256
Number of convex subgraphs                   : 57
Number of potential AFUs                         : 3

Figure 9: An example of forming cluster graph from the orig-
inal graph and enumerating its maximal cliques. The black
nodes in the graph indicate forbidden nodes.

maximal. This proves that any maximal clique in the cluster graph
corresponds to a valid subgraph of G.

Fig. 9 shows an example illustrating the execution of this method.
This approach generates only the maximal valid subgraphs of the
input DAG. Without any additional information about the speedup
model, we cannot prune this initial set of potentially optimal ISEs
any further; however, with more information, such as the hardware
and software latencies of individual nodes, we can reduce the size
of the cluster graph, and hence that of the search space, even fur-
ther. For the sake of brevity, we will not discuss all possible ap-
proaches to reduce the size of the cluster graph; however, we will
discuss two very simple methods. In the examples that follow, sup-
pose that we know some lower bound α on the number of cycles
saved by the AFU that implements the optimal ISE. A lower bound
on the optimal number of cycles saved by the optimal AFU can be
found by computing the number of cycles saved by any valid sub-
graph corresponding to any maximal clique in the cluster graph.

For the first example, let N [C1] be a set constaining cluster C1

and all its neighbouring clusters. Let T1 be the subgraph of the
original DAG induced by all of the nodes in subgraphs correspond-
ing to clusters in N [C1]. Then, if SW (T1) ≤ α, then we can
trivially remove C1 from the cluster graph. The reason is that any
clique that contains C1 corresponds to an AFU whose cycle savings
is provably less than α, and the speedup attributable to this AFU is
clearly suboptimal.

For the second example, suppose that there exist adjacent cluster
nodes C1 and C2 in the cluster graphs, let N [C1 ∪C2] = N [C1]∩
N [C2], and let T12 be the subgraph of the original DAG induced by
all of the nodes in subgraphs corresponding to clusters in N [C1 ∪
C2]. If SW (T12) ≤ α, then the edge (C1, C2) can be removed
from the cluster graph using similar reasoning as above.

4.4 Pruning the Set of ISE Candidates
without Pipelining

By applying the procedures described in the previous sections,
we can find a potential set of optimal ISEs by enumerating the
maximal cliques in the cluster graph. Nonetheless, we must still
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determine the best ISE in terms of speedup achievable by its AFU.
In order to compute this speedup, we must pipeline it, which in-
volves solving another optimisation problem. Solving this problem
for a large set of AFUs, however, is still quite expensive. To reduce
the number of AFUs to pipeline, we first calculate some upper and
lower bounds on the speedup of each AFU without pipelining. We
use these results to eliminate some candidate AFUs from consid-
eration prior to pipelining. Specifically, if the upper bound on the
speedup of some AFU is less than the lower bound of another, then
there is no need to consider the first and it can be discarded from
the set of potentially optimal AFUs. We exploit the RISC speedup
model to compute the upper and lower bounds, as described in the
next two theorems.

THEOREM 5. The sppedup of an AFU after pipelining can be
bounded as follows:

• M(S) ≤∑u∈S SWu - max
(

IN(S)
m

, OUT (S)
n

)
.

• M(S) ≥∑u∈S SWu -
⌈

IN(S)
m

⌉
-
⌈

OUT (S)
n

⌉
-

2
⌈

HWcrit(P )
λ

⌉
.

We omit the proofs of the two theorems due to lack of space.

4.5 Formulation of AFU Pipelining as a
Matrix Problem

Finally, we are left with a set of potentially optimal AFUs that
must be pipelined by solving the optimisation problem introduced
in Section 3. One possibility could be to consider all possible as-
signments of registers on incoming edges of input nodes and then
allocate register on the edges according to the ASAP scheduling
heuristic, as described by Pozzi and Ienne [6]; afterwards, the best
assignment among all of those considered is chosen. The problem
with this algorithm is that it has an exponential worst-case time
complexity, which makes it impractical for AFU candidates with a
large number of input nodes.

Our approach, in contrast, is to solve the problem with a heuris-
tic that runs significantly faster than Pozzi and Ienne′s algorithm.
In our experimental evaluation, our heuristic solved all problem
instances optimally; however, we do not have a formal proof of op-
timality. To describe our method, we begin by introducing some
terminology.

DEFINITION 5. The Integral Path Delay of a path is the mini-
mum number of registers that need to be inserted in the path such
that the sum of hardware latencies of all nodes between two con-
secutive registers does not exceed λ.

DEFINITION 6. The Integral Critical Path Delay from node u to
v in a DAG, ICD(u, v), is defined to be the maximal integral path
delay along all paths from u to v. If there is no path from u to v,
then ICD(u, v) = −∞.

DEFINITION 7. The Residual Hardware Latency from u to v,
RHL(u, v), is the maximal sum of hardware latencies of all nodes
after the ICD(u, v)-th register among all paths between u and v.

Both ICD(u, v) and RHL(u, v) can be computed efficiently
by traversing the nodes of the DAG in topological order.

There is an advantage to computing the ICDs and RHLs in ad-
vance. Once we have a configuration of the number of registers
on incoming edges of the inputs of the AFU, there is no need to
schedule the DAG in order to compute the optimal number of reg-
isters between vsrc and vsink . Theorem 6, which follows from

Lemma 1, shows that HW (S) can be computed using ICD values
alone, without actually scheduling it.

LEMMA 1. For any node v, there exists a path p (defined as
Dominant Path for v) from vsrc to v, such that if we remove all
nodes from the DAG except those in p, then the number of registers
from vsrc to v, as well as the RHL, will remain the same.

PROOF. The proof itself uses induction on the height of node v
in the DAG, meaning the maximum path length (in terms of nodes)
from vsrc to v. The base case corresponds to the case when v is an
input node, which is trivial, since there is one dominant path p of
length 0.

For the induction step, assume that the lemma holds for all nodes
of height less than r. Now, consider node v at height r: Since all
predecessors of v have height less than r, there exist dominant paths
from vsrc to each predecessor. Now, for node v, let us remove all
nodes from the DAG except for v and these paths. This will not
affect v, since there will be no difference in the number of regis-
ters placed on the dominant paths from vsrc to each predecessor
of v; likewise the RHL remains the same as well. Let uj be the
input node that has the maximal number of registers from vsrc; if
there is more than one such node uj , then ties can be broken using
the RHL. Thus, uj will determine the number of registers prior to
v, along with RHL(uj , v). Hence, the dominant path for the cor-
responding predecessor of v will also be the dominant path for v.
This completes the induction step.

THEOREM 6. Let S be an AFU with input nodes u1, . . . , uk

and x1, . . . , xk registers on each incoming edge. Let R(v) denote
the maximum number of registers placed on a path from vsrc to v.
Then,

R(v) = max1≤i≤k(xi + ICD(ui, v)).

PROOF. Follows directly from the proof of Lemma 1. Without
loss of generality, if the dominant path for v passes through input
u1, then R(v) = x1 + ICD(u1, v).

Note that for each input node ui, ICD(ui, v) can be computed
without knowing the specific value of xi; moreover, the ICDs can
be used to determine the proper value of xi. Now, if the AFU has
l outputs, v1, . . . , vl with y1, . . . , yl registers on their outgoing
edges, then the total number of registers from vsrc to vsink will be
given by:

R(vsink) = max(1,1)≤(i,j)≤(k,l)(xi + ICD(ui, vj) + yj).

We know that exactly m input nodes will have zero registers
on their incoming edges, m inputs will have one register on their
incoming edges, etc. The same holds for the number of registers
on the outgoing edges of output nodes. Consequently, the only
task that we have to do is to find the best mapping between the
number of registers and inputs of the AFU, as well as the number
of registers and outputs on the AFU. In other words, the pipelining
problem translates into the following matrix problem.

PROBLEM 2. Given an m × n integer matrix A, an m dimen-
sional integer array R, and an n dimensional integer array C,
find permutations π : {1, 2, . . . , m} → {1, 2, . . . , m} and σ :
{1, 2, . . . , n} → {1, 2, . . . , n}, such that the following expression
is minimised:

F (A,R, C, π, σ) = maxi,j(R[π(i)] + aij + C[σ(j)]).

Column vectors R and C correspond to the number of registers
placed on each input and output node respectively, and A is the set
of ICD values for every pair of nodes in the graph.
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Figure 10: Execution of ping-pong algorithm on a simple exam-
ple. Note that in this case ping-pong finds the optimal solution
only in two iterations.

4.6 Heuristic to Solve the Matrix Problem
First, note that if all entries of vector C were zero, then the per-

mutation σ would be meaningless. The resulting problem would
be to find a permutation π : {1, 2, . . . , m} → {1, 2, . . . , m} such
that the following simpler equation was minimised:

F (A,R, π) = max1≤i≤m(R[π(i)] + aij).

This problem can be solved very easily by assigning the smallest
value in R[.] to the largest value of maxj(aij), the second smallest
value of R[.] to the second largest value of maxj(aij), etc. In other
words, the permutation π corresponds to a reverse sorting order of
maxj(aij) values.

Similarly, if permutation σ is fixed, we can find the optimal per-
mutation π by sorting maxj(aij+C[σ(j)]); an analogous situation
occurs when π is fixed and we want to find an optimal permutation
σ. The heuristic that we use to compute π and σ is based on these
observations. We start with randomly generated permutations for
π and σ. First, we find the optimal π, given σ. Next, we find
the optimal σ, given π. Then, once again, the optimal π, given
σ. The process continues as long as at least one of the permuta-
tions changes. This heuristic will henceforth be referred to as the
Ping-Pong Algorithm. Fig. 10 shows an example illustrating the
execution of the Ping-Pong Algorithm. It can be proved that if all
entries in the input matrix A and arrays R, C are bounded, then the
ping-pong algorithm is guaranteed to converge.

5. EXPERIMENTS
The algorithms described in Section 4 were implemented in C++.

The input to the program is a DAG, representing a basic block of
the application. The program identifies the optimal ISE and outputs
the AFU generated for the ISE after pipelining. The RISC speedup
model is used to measure the relative performance of AFUs. The
software latency of an instruction is estimated to be the latency of
the execution stage of the RISC pipeline. The hardware latency of
an instruction is estimated by synthesising the corresponding op-
erator on a UMC 0.18μm CMOS technology standard cell library;

this latency is then normalized to the delay of a 32-bit multiply
accumulate (MAC) operation.

The algorithm was run on four benchmarks: Adpcm coder, Ad-
pcm decoder, Viterbi, and AES. For each benchmark, we com-
pute the speedup under I/O constraints (2, 1), (4, 2), (10, 5), and
(∞,∞), the last of which indicates no constraints on the I/O. The
results are compared with the subgraph enumeration method of
Atasu et al. [4] both without pipelining, and with pipelining as de-
scribed by Pozzi and Ienne [6]. The results are shown in Fig. 11.

Fig. 11 shows that pipelining increases the speedup for all bench-
marks because of its ability to identify larger subgraphs as AFUs.
In all four benchmarks, our algorithm provides speedups equal to
or exceeding that of the previous pipelining method, depending on
the I/O constraints. In some cases, the previous method, although a
heuristic, managed to find optimal solutions which the new method
could not improve upon.

In the case of AES for an I/O constraint of (10, 5), the new algo-
rithm selects an AFU that results in a speedup of 5.05, compared
to a speedup of 4.3 generated by the algorithm of Pozzi and Ienne.
The reason is that the proposed algorithm found a subgraph having
22 inputs and 22 outputs. Pozzi and Ienne′s algorithm, in contrast,
only considers subgraphs having I/O constraints up to a fixed value,
which was limited to (10, 5). If the fixed value was relaxed to
(22, 22), their approach could have found the same solution; how-
ever, they do not advise relaxing the I/O constraints beyond (10, 5)
due to runtime considerations. For other benchmarks, the algorithm
presented yields marginal improvements in AFU quality. In these
cases, the optimal AFUs have relatively low I/O constraints, and
thus they can be found by existing algorithms.

The runtime of the algorithms in this paper are significantly faster
than the runtimes reported by Atasu et al. [4, 5] and by Pozzi and
Ienne [6]. For a constraint of (10, 5) on AES, the previous meth-
ods required several hours to perform subgraph enumeration and
pipelining; the algorithms described in this paper, in contrast, con-
verged in approximately 30 seconds.

6. CONCLUSIONS
A new approach for ISE generation for extensible processors has

been presented. The new approach exploits the fact that the use of
pipelined AFUs to implement ISEs eliminates the I/O constraints
imposed by previous formulations of the ISE generation problem.
Without I/O constraints, prior techniques for ISE generation suffer
from runtimes that are exponential in the number of nodes in their
graphs. The approach presented in this paper, in contrast, exploits
the monotonicity of the speedup function to reduce the number of
nodes in the graph via clustering. A cluster graph has been intro-
duced to model the compatibility between clusters and permit the
construction of large ISEs by combining clusters. Clique enumera-
tion in the cluster graph has been empirically observed to be much
faster than subgraph enumeration in the original DAG. We have
also introduced a faster algorithm for pipelining than the current
state-of-the-art algorithm developed by Pozzi and Ienne [6].

Most importantly, we have shown that for a base processor that
is a RISC, the speedup model used to evaluate the benefit of a cus-
tom instruction is independent of the specific details of the RISC
pipeline. The benefit from this result is significant because it en-
sures that engineers do not need to study the architectural details of
the pipeline in order to identify good ISEs as future generations of
extensible RISC processors are developed.

Altogether, our approach to ISE generation runs significantly
faster than the prior approach of Atasu et al. [5]. Pozzi and Ienne [6]
use an I/O constraint of (10, 5) to limit the size of the ISEs iden-
tified; we have found that for AES, the optimal ISE has an I/O
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Figure 11: Comparison of the speedup values of AFUs generated by our algorithm with the state of art techniques.

constraint of (22, 22); standard subgraph enumeration methods re-
quire several hours to identify a suboptimal (10, 5) ISE, while the
new approach found the optimal ISE in approximately 30 seconds,
testifying to both the efficacy and efficiency of the proposed tech-
nique.
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