Hardware Based Frequency/Voltage Control of Voltage
Frequency Island Systems’

Puru Choudhary
Dept. of Electrical and Computer Engineering
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA 15213

puru@cmu.edu

ABSTRACT

The ability to do fine grain power management via local volt-
age selection has shown much promise via the use of Voltage/
Frequency Islands (VFIs). VFI-based designs combine the
advantages of using fine-grain speed and voltage control for
reducing energy requirements, while allowing for maintain-
ing performance constraints. We propose a hardware based
technique to dynamically change the clock frequencies and
potentially voltages of a VFI system driven by the dynamic
workload. This technique tries to change the frequency of a
synchronous island such that it will have efficient power uti-
lization while satisfying performance constraints. We propose
a hardware design that can be used to change the frequen-
cies of various synchronous islands interconnected together
by mixed-clock/mixed-voltage FIFO interfaces. Results show
up to 65% power savings for the set of benchmarks considered
with no loss in throughput.

Categories and Subject Descriptors: B.7.m [Logic De-
sign]: Miscellaneous

General Terms: Performance, Design

Keywords: voltage-frequency islands, globally asynchronous
locally synchronous, dynamic frequency and voltage scaling,
mixed-clock fifos, throughput

1. INTRODUCTION

One of the main long-term system-level design challenges
(as mentioned in the 2005 ITRS [3]), is the prohibitively
costly global, on-chip synchronization due to process variabil-
ity, power dissipation, and multi-cycle cross-chip signaling.
Indeed, with increasing clock speeds and shrinking technolo-
gies, distributing a single global clock signal throughout a
chip is becoming a difficult and challenging proposition. A
Globally Asynchronous, Locally Synchronous design (GALS)
is considered a promising technique for achieving low power
consumption and modularity in design. As one other long-
term system-level design challenge is on-chip power manage-
ment, such an organization fits nicely with the concept of
voltage islands, which can be effectively used as a means for
achieving fine-grain system-level power management.

Voltage-Frequency Islands (VFIs) enable the design of sys-
tems that use a clock for local synchronization of data, but
communication between different blocks is handled asynchro-

*This research has been supported in part by Semiconductor Re-
search Corporation contracts 2004-HJ-1189 and 2005-HJ-1314.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CODES+I1SSS’06, October 22-25, 2006, Seoul, Korea.

Copyright 2006 ACM 1-59593-370-0/06/0010 ...$5.00.

Diana Marculescu
Dept. of Electrical and Computer Engineering
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA 15213

dianam@ece.cmu.edu

nously. This not only helps to reduce the power consumed by
the clock network due to reduced number of buffers that are
used to meet the skew, but also helps in reducing the overall
power significantly by using voltage scaling.

Most systems are overdesigned to meet the performance
requirement of the worst case scenario. Such systems con-
stantly operate at peak performance consuming peak power
all the time. However, cooling and battery technology are not
able to keep up and meet the power requirements of those de-
signs. It, therefore, becomes necessary to make these systems
more power and energy aware such that they use just enough
power to meet the performance requirements of the given
workload. Dynamic Voltage and Frequency Scaling (DVFS)
schemes have become a common-place solution for adapting
the power/energy consumption of a system based on a dynam-
ically changing workload. While DVFS schemes have been
applied mostly at application and system level by exploit-
ing available slack in task scheduling for minimizing dynamic
power with little or no performance hit, the case of hardware-
based DVFS for VFI systems has received less attention. The
goal of this paper is to provide a solution for dynamic voltage-
frequency selection by using a fully hardware-based control
scheme driven by the workload variations.

The rest of the paper is organized as follows: Related work
and contribution of this paper are presented in Section 2.
Section 3 discusses the problem formulation and assumptions
made in this paper. In Section 4, we present the theoretical
basis for our method and how it can be used to configure an
entire system for low power. Our proposed architecture to
enable DVFS in a system is discussed in Section 5. Section
6 discusses the Topology Generation Tool, while in Section
7, we provide the experimental results for software radio and
MPEG-2 encoder benchmarks. Final conclusion with direc-
tions for future research are provided in Section 8.

2. RELATED WORK AND PAPER
CONTRIBUTION

Previous approaches based on availability of channel in mul-
tiple clock systems (e.g., [4]), only gate the clock to the syn-
chronous module. While this approach can reduce total power
consumption, voltage scaling is not used as each synchronous
module still operates at a fixed frequency. Also, too many
pauses in the clock produce sharp variations in power con-
sumption, potentially degrading the battery performance [13].
Our approach changes the clock frequency to minimize the
idle time spent waiting for FIFOs.

There have been several proposals to implement VFIs in
modern systems such as a Multiple Clock Domain proces-
sors [14][15]. Such architectures allow a system designer to
implement local DVFS algorithms [16], but most of these ap-
proaches assume hardware control is done via FIFO occu-
pancy monitoring which can provide incorrect decisions, as it
will be seen in the sequel. Some of the on-line algorithms are

inherently non-linear [16] requiring detailed analysis of queue
behavior before an actual hardware could be implemented.
Our method provides a flexible hardware platform that can
be used to enable DVFS for VFI systems with simple data
patterns while also providing methods to support more com-
plicated workloads. The problem of voltage/speed selection
in VFI systems has been addressed before [12] via providing
an off-line algorithm and a dynamic on-line algorithm with
limited efficiency. In our approach, the benefits of DVFS are
exploited at finer granularity level, while maintaining the pos-
sibility of global configuration.
The main contributions of this paper are two-fold:

e First, it provides an online, hardware-based control mech-

anism for dynamically selecting the operating speed and
voltages for individual VFIs in a VFI-based system. As
opposed to existing schemes that monitor only FIFO oc-
cupancy to determine scaling factors [14][9][15], our ap-
proach takes into account the workload dynamics and
relies on a combination of producer/consumer stall and
FIFO occupancy monitoring. In addition, the approach
is cost minimal as it relies on counters associated with
stall events, as opposed to complex schemes relying on
control theoretic approaches (e.g., PID controllers [16]1).
Second, we provide a framework that enables any appli-
cation specified in TGFF format [1] to be automatically
converted into a Verilog description of the VFI system
including both computation and FIFO-based communi-
cation.

3. PRELIMINARIES AND ASSUMPTIONS

Without loss of generality, we consider the case of systems
comprised of a number of synchronous cores, IPs or processing
elements (PEs) (homogeneous or heterogeneous). In the case
of VFI-based systems, PEs can only be assigned to a single
VFI (in other words, cores cannot belong to more than one
VFI).

A VFI might consist of a single PE or may include a group
of PEs. We assume that power in the case of VFI systems is
supplied by an off- or on-chip source and can be controlled in-
dependently for a VFI. This may be achieved by using either
on-chip voltage regulators or multiple power grids [2]. Since
each VFI is locally synchronous, it is assumed to be clocked
using a ring oscillator controlled by the intra-island supply
voltage using a digital phased lock loop [11][10]. Communi-
cation is implemented via a modified version of mixed-clock
FIFOs [6] that also allows for voltage level conversion. We as-
sume that the allocation and mapping of various processes or
computational kernels of the application to PEs, as well as the
number and types of the communication links and PEs have
already been determined. We also assume that the processes
have already been scheduled on their respective processing
elements. For VFI systems, a bounded number of storage
cells is available in the mixed-clock FIFOs used between two
communicating PEs. To this end, the system comprised of
communication cores is modeled using a component graph. In
a component graph G(V, E), cores are modeled as communi-
cating processes (nodes) that have associated communication
channels between them (edges).

We will assume the following, without loss of generality:

e The component graph G(V, E) is characterized by the
set of nodes represented as V = {1, 2, ...,n} and edges
represented as F={(%,j) | © precedes j}.

Although the underlying component graph model may
include feedback paths, in the initial theoretical treat-
ment we restrict ourselves to directed acyclic graphs
(DAGs). General graphs have been shown to be re-
ducible to acyclic component graphs by lumping strongly

35

PE, (Vs, f5)

Figure 1: A VFI-based component graph as in [12] with
cores (PEs) characterized by local speeds/voltages

full empty
Producer write FIFO read Consumer
din doutE

Write Clock Domain Read Clock Domain

Figure 2: The Producer Consumer model

connected components (SCCs) including feedback loops
into supernodes [12],[7]. As shown in [7], the process-
ing rates of these supernodes (and thus, their latencies
in cycle counts) can be found by averaging across all
nodes in the SCC. However, the case of feedback loops

is addressed and discussed in Section 5.3.
The component graph includes a single source node (s)

and a single sink node (S). Graphs including multiple
sinks or source nodes can be reduced to this case by
adding dummy, zero-latency source (sink) nodes feeding
into (from) the actual source (sink) nodes.

4. THE COMMUNICATION ARCHITECTURE

In this section, we describe the use of mixed-clock FIFO as
a point-to-point communication architecture for connecting
synchronous islands in a GALS system.

4.1 The Producer-Consumer Model

In a VFI design, a mixed-clock/mixed-voltage FIFO pro-
vides a communication channel between two VFIs. One of
the VFIs (producer) writes data into the FIFO while the other
one (consumer) reads data from the FIFO [6]. For proper op-
eration of design, it is required that a producer does not write
data into the FIFO if it is full. Similarly, a consumer should
not read data from a FIFO if it is empty. The producer and
half of the mixed-clock FIFO share a clock (producer clock)
while the consumer and other half of the mixed-clock FIFO
share the other clock (consumer clock). Such a clock domain
partition is shown in Figure 2.

4.2 Rate Matching

Considering a simple producer-consumer model of a mixed-
clock FIFO, the behavior for ideal frequency of operation can
be derived based on the read and write data rates.

The time interval between any two write operations by the
producer can be written as, T, = ap/ fp, where a, is the num-
ber of clock cycles between any two write operations by the
producer and f, is the frequency of operation of the producer.
Similarly, the time interval between any two read operations
by the consumer can be written as, 7. = ac/f., where a. is
the number of clock cycles between any two read operations
by the consumer and f. is the frequency of operation of the
consumer.

If T}, is equal to T¢, then the FIFO utilization will be con-
stant most of the time. However, if T),<T, the FIFO will tend

to become full. Hence once the FIFO is full, the producer will
have to wait until the consumer has taken at least one data
item out of the FIFO. Therefore we can write,

T. =Ty + To (1)

where T, is the time spent by the producer waiting for an

empty slot in the FIFO. To operate the system near optimal

operating point, this time T, should be minimized and made

zero in an ideal case. For such a case, we can write,

fo= i = Zkfs (2)
429

ap

Qc

To=Tp = 2 =
c

where T}; is the ideal time interval between any two write
operations by the producer while fp; is the ideal clock fre-
quency of the producer. k is the ratio of consumer clock fre-
quency to producer clock frequency. Thus, we can also write
ideal clock frequency of the producer as follows: fpi = Sfp,
where S = (ap/ac)/k is the Frequency Step factor by which
the producer frequency should be scaled so that the wasted
power is minimized. The choice of the new clock freqeuncy
should be made conservatively, such that there is no drop
in overall throughput. For example, if a), = 2, a. = 6 and
fp = fe, the ideal speed of the producer should be fp; =
(1/3)fp. The optimal available frequency should be chosen
such that it is the closest, largest value available such that
no throughput loss is experienced. E.g., in this case, if a
value of fovair = fp/2 is available, the producer will still
be slow enough to reduce waiting time T, but fast enough
to not decrease the throughput. If, however, a, = 2 and
ac = 3, the ideal producer speed would be f,; = (2/3)f, and
a favait = fp/2 available frequency will not guarantee the
throughput constraint. Hence it is always necessary to have
fpi < favaiu- This analysis can be similarly applied to the
case of T,>T., where the FIFO will tend to become empty.
In this case, the frequency of the consumer should be kept
just enough to operate the FIFO near empty state, without
having to experience any throughput reduction.

4.3 Problem Formulation

The goal of the work presented in this paper is to reduce
the total energy consumption as well as power consumption of
a system represented by a component graph G(V, E) subject
to rate or throughput constraints.

The energy consumption per sample for every processing
element in the component graph G(V, E) is given by:

E;(V3) :Ci*Ni*ViQ—l—ci*ni*Vi*exp(—Vt/k:) (3)

where the first term corresponds to dynamic power and the
second term corresponds to static (leakage) power consumed
while core PE; is not actively executing a process. C; is
proportional to the switched capacitance of PE;, N; is the
number of active execution cycles for PFE;, ¢; is proportional
to the number of off-devices in PFE;, n; is the number of idle
cycles for processing a sample, k is a technology dependent
constant, while V; and V; are the voltage supply and threshold
voltage for PE;, respectively [5].

The cycle time for the PE; core in G(V, E) can be written
as:

Vi
_ 4
where K; and « are design and technology dependent pa-
rameters [8]. Thus from (4), we get the worst case execution

time of a process on PE; at voltage V; as (W, is the worst
case number of cycles for the process mapped on PE;):

WCETZ(V;) = WZ * Tz(‘/l) = (Wz * KZ * V;,)/(‘/z — ‘/t)&

7 (Vi) = K; *

()

36

For a system to operate as per the requirements of an ap-
plication workload, it is needed that,

WCET:(Vi) < T, (6)

where T; is the required time period of every VFI core. Most
of the modern systems are not only designed for worst case
workload conditions, but also operate at peak performance all
the time to be able to handle the worst case workload. As a
result, for an average workload we get WCET;(V;) << T;.
This results in smaller 7;(V;) and hence larger V; which leads
to higher energy consumption. To reduce the amount of the
wasted energy, WCET;(V;) should be as close as possible to
Ti, i.e.

Minimize(T; — WCET;(V;)) (7)

By taking WCET;(V;) closer to T;, the amount of time
wasted T\, (1) waiting for the communication channel is min-
imized. The reverse is also true ie. T, — 0 = (T; —
WCET;(V;)) — 0. Operating each PE at its ideal frequency/
voltage, the amount of time wasted T, is minimized resulting
in minimum energy and power consumption. However, based
on the available system configuration settings of a real sys-
tem (for example, number of available frequency and voltage
levels), the optimal achievable solution will be close, but not
identical to the ideal one. Our hardware based approach tries
to find this optimal solution based on dynamically changing
speeds/voltages driven by the workload.

5. THE FIFO LINK ARCHITECTURE

The derivations shown in Section 4 can be used to calculate
the ideal frequencies of the producer and the consumer un-
der dynamically changing workload. However, in a complex
system, the values of a, and a. are likely to change due to
varying workload conditions. Also, the overhead of computa-
tions to find the value of the Frequency Step factor (Section
4) is likely to be significant. We propose an architecture that
can predict the value of the Frequency Step factor (and hence
the ideal frequency) on the fly.

5.1 Proposed Architecture

To implement such a logic for estimating the optimal oper-
ating frequency, we take advantage of the fact that when the
producer/consumer is not operating at the ideal frequency,
the FIFO will always operate near full/empty state. We call
these mostly full and mostly empty conditions. A simple way
to monitor the FIFO utilization is to check the full and empty
signals and measure the amount of time they are asserted: the
larger the time of assertion of any one of these signals, the
greater the deviation of the frequencies of producer (or con-
sumer) from the ideal frequency. However, full/empty signals
do not accurately represent the need for scaling up or down
the speed/voltage of a VFI. It can happen that even though
the full signal is asserted, the producer/consumer does not
have any data to write/read into/from the FIFO. Thus, tak-
ing the decision to slow down a VFI only based on the FIFO
occupancy can prove to be incorrect.

Figure 3 shows an example of a producer writing data into
a FIFO. For the time interval between t1 and 5, the full sig-
nal is asserted for time period (t4 — ¢2). However, the time
period where producer is actually waiting for the FIFO to
have an empty slot is (¢4 — ¢3). If the Frequency Step fac-
tor is calculated based on the full signal alone, it is likely
to overestimate the frequency decrease and can potentially
reduce the throughput of the system. A similar argument ap-
plies to the empty signal. A more accurate estimation can be
achieved if a signal (called stall signal) generated by a pro-
ducer/consumer is used to estimate the ideal frequency. This

—l== —[]— Hg_.

i | I
L

3 4 I

Stall

il 2

Figure 3: Comparison between Full and Stall signal for
Frequency prediction

dvfs_en_cons dvfs_en_prod
| dvfs_en_prod dvfs_en_cons '
' i — '
| ,—)_— — |

S, Y i S Y Sf

I <l Sy ot

Glock Gontrol Al Stall Monitor Stall Monitor 7| clock Control B
< T ampld rsampl
Tsampls sample sample

clk A \ﬁ

Module A
P= =
| Consumer

L _ e _

?slall

Producer‘

?slall

H ck B

Module B

full empty

read \ ‘
| Consumer Producer‘

dout‘ \

> |

write Fl

din
>

o

Figure 4: Dynamic Frequency Scaling Architecture

signal is asserted whenever the producer/consumer has data
to write/read to/from the FIFO, but the FIFO is full/empty.
Figure 4 shows the architecture that can predict the ideal fre-
quency based on this method. The stall monitors count the
number of clock cycles (Sy-for the producer part or Se-for the
consumer part) the stall signal from producer/consumer is
asserted in a sampling window Tsampie. The Frequency Step
factor can then be calculated based on the non-zero values
of Sc and Sy. While in steady-state it is impossible to have
both S. and Sy non-zero (i.e., both consumer and producer of
a FIFO link stalling at the same time), when cumulative stalls
are accounted for, this could happen, e.g., for bursty traffic:
the producer might stall during the beginning of the sample
interval Tsampie, while the consumer might stall during the
last part of it. In such a case, if the amount of stalling is the
same on both ends, scaling the speeds of producer/consumer
will not remove this problem. On the other hand, usually, in
a sampling interval it is always the case that either the pro-
ducer stalls due to a full FIFO or a consumer stalls due to an
empty FIFO. To capture both of these cases, the Frequency
Step factor can be calculated as S = 1 — |Se — Sf|/Tsample-
If only one of producer or consumer stalls, then the scaling
factor is computed according to Sy or Se, respectively. If both
stall at different times during the sampling interval, then the
difference is used to smooth out any differences between the
two rates. For a producer, if Sy > Se > 0, then

fnew = fcur'r * S (8)

where frew is the new frequency while feyrr is the current
frequency. However, if Sec > Sy > 0, then

fnew = fc'u,'r'r/S (9)

as in this case, the consumer is experiencing stalls and pro-
ducer needs to increase the frequency. The reverse (i.e., chang-
ing division to multiplication and vice-versa) is true for con-
sumer. However, for each FIFO link, only one of the producer
or consumer modules will be scaled up or down to keep the
throughput constraint, while minimizing wasted power during
stalls. This approach is described next.

37

fixed
dvfs_en_prod

SOs

dvfs_en_prod

\ dvls_e?/_prcy e
T \—@— ’—-@-1 LT

T
= fi ed" £
L b dvfs_en_prod

dvfs_en_prod

Figure 5: A VFI-based component graph with FIFO con-
figuration

5.2 Throughput Constraint and Scaling State

In general, throughput constrained systems require an out-
put rate to be satisfied for correct operation. For exam-
ple, in the case of the system in Figure 1, the sink node S
needs to have a certain rate of generating data items. Ex-
amples of throughput constrained applications include most
media processing, data communication systems, digital-to-
analog converters, etc. However, many times, the constraint
is given at the input - that is, the incoming data items must
be processed at a certain rate to ensure correct operation.
Such an example is an analog-to-digital converter. Irrespec-
tive of where the rate constraint is specified (source s or sink
S in Figure 1), based on it, we can determine how each pro-
ducer/consumer port can be configured for possible scaling
up or down of the corresponding VFI, as described in Section
5.1. Let us consider the more common case of output rate
constrained systems depicted in Figure 5. For the producer
port of the sink node S, there is no FIFO link associated with
it, but a stall monitor can be used to determine if the data is
produced at the required rate. If not, a corresponding scaling
factor can be associated with the sink: Ss = Ts_observed/Ts
where T's_opserved iS the observed period between data items
being produced and Ts is the required value. For the rest
of the nodes we need to consider all incoming and outgoing
ports associated with each FIFO link. Intuitively, if through-
put constraints are propagated from the outputs to the inputs,
we need to maintain required throughput in the downstream
VF1Is while allowing only producers to be scaled (up or down),
while the consumer port is assumed to be fixed. We call this
state associated with the producer port dvfs_en_prod, and the
one associated with the consumer fized since it is not allowed
to change speeds/voltages based on stall information related
to that FIFO link.

In Figure 5, the assignment of port states for VFIs 4, 5, 6
and S is shown (similar for the other nodes 1, 2, 3, and s)
for an output rate constrained system. Similarly, for an input
rate constrained system, each consumer in a FIFO link would
be in a state of dufs_en_cons (consumer is allowed to scale)
and each producer would be in a fized state (no scaling).

5.3 Functionality of Clock Control Logic

We are now ready to determine what is the correct scaling
factor for each VFI, given the constraints on the output (or
input) rate and given that multiple scaling factors may be de-
termined from multiple incoming/outgoing FIFOs. We need
to keep in mind that the FIFO link architecture depicted in
Figure 4 might be replicated many times, for each producer-
consumer channel. More precisely, the Clock Control Logic
gets the prediction value from both stall monitors associated
with the FIFO. As described previously (Eqn. 8 and Eqn.
9), in the case of the producer, the stall information from the
consumer is used to increase the frequency of that domain

if the current frequency is not able to meet the throughput
requirements of the design (similar for the consumer).

For each VFI, there might be multiple producer and con-
sumer ports as data may be coming from multiple sources or
distributed to multiple sinks. In addition, for each VFI, there
are as many stall monitors, associated with producer ports,
as there are outgoing FIFOs, and as many stall monitors, as-
sociated with consumer ports, as there are incoming FIFOs.
Figure 4 shows a single one-to-one FIFO link, hence there is
only one stall monitor on each side of the FIFO. Since the
Clock Control Logic module controls the frequency and volt-
age of a single VFI, there are as many Clock Control Logic
blocks as VFIs in the system, but they will have to receive as
many Sy and S, signals as there are stall monitors for each
FIFO link interface of that VFI. The decision as to what
the prevailing scaling factor is for a given VFI when multiple
incoming/outgoing FIFO links dictate different scaling fac-
tors is taken conservatively. To ensure that the throughput
is not reduced, the highest frequency/voltage is considered.
Each VFI can have multiple producer or consumer ports, but
out of these, only a subset are configured in dvfs_en_prod (or
dufs_en_cons) state. Only these ports and the scaling factor
associated with their stall monitors are considered in deter-
mining the prevailing scaling factor by taking the maximum
resulting speed among these. For example, in the example de-
picted in Figure 5, the new speed/voltage for node 5 depends
on the resulting speeds/voltages determined by the FIFO links
(5, S) and (5, 6). Assuming that based on Eqn. 8 and Eqn.
9, frew,5(5,5) and frew,5(5,6) are the new potential clock
speeds, the final clock speed (and associated voltage) is taken
such that frew,s = Mmaz(frew,5(5,S), frnew,s5(5,6)). For all
the other nodes (VFIs), there is only one port configured as
dvfs_en_prod, and based on it and its associated new clock
speed, the final speed/voltage is assigned. Based on these
observations, the detailed algorithm for the speed/voltage se-
lection of an output (input) rate constrained VFI system is
described in Figure 6.

Figure 6: Algorithm for Dynamic Speed/Voltage Selection

Inputs: Component Graph G; Sink rate R = 1/Ts or source
rate r = 1/T%s; Discrete speed/voltage levels (f1, V1), ..., (fs, Vs);
Outputs: Speed/voltage assignment (f1,V1), ..., (fn, Va)

Vi € G at time ¢

1. Let (fi, Vi) = (f, V) Vi € G where f = maz;(f;),
V = max;(V;
2. For all FIFO links (3, 5)
If system is sink constrained then
state_prod(i,j) = dvfs_en_prod; state_cons(i,j) = fized;
else //source constrained
state_prod(i,j) = fized; state_cons(i,j) = dvfs_en_cons;
3. Repeat every Tsqmpie cycles
If system is sink constrained then
Ss = TS,observed/TS; fS = fS/SS§
set corresponding Vg;
else //source constrained
Ss = s,observed/Ts; fS = fS/SS§
set corresponding Vi;
For all FIFO links (4, 7)
Sij=1—Se.i,j — Sf.ijl/Tsample;
If Sei,j < Sy,j then S; ; = 1/5;:.5;
If system is sink constrained
For all nodes ¢ with successors j
and state_prod(i,j) = dvfs_en_prod
fi = max;(fi/Si,j); set corresponding V;
Else // system is source constrained
For all nodes 57 with predecessors
and state_cons(i,j) = dvfs_en_cons
fj = max;(fj * Si ;); set corresponding V;
4. until (source is idle)

38

6. TOPOLOGY GENERATION TOOL

Embedded applications can be very effectively partitioned
into tasks with various, but well defined functionalities. With
clearly defined computational boundaries, they are very good
candidates for being mapped onto a VFI system. Most of
these applications can be represented as task graphs. Em-
bedded Systems Synthesis Benchmarks Suite (E3S) based on
benchmarks from The Embedded Microprocessor Benchmark
Consortium contains a set of task graphs representing var-
ious applications including, but not limited to automotive,
consumer, networking, etc. The task graphs available in E3S
benchmark suite contain the information about the applica-
tions, constraints and various processors that can be used to
map the various tasks.

We created a tool (Topology Generation Tool), that can con-
vert task graphs into behavioral Verilog. This program takes
.tgff files [1] as inputs and converts all the tasks to behavioral
Verilog models of producer/consumer while all the edges are
converted to FIFO links. The tool uses the processor informa-
tion from the task graphs to assign the delays of each of the
producer/consumer. With the help of this tool, a designer
can test many types of applications just by specifying high
level description in the form of task graphs. The generated
Verilog can be simulated using any Verilog simulator.

7. EXPERIMENTAL RESULTS

To test our proposed DVFS architecture of a FIFO link,
we used Software Defined Radio and MPEG-2 Encoder as
driver applications. These applications were represented as
task graphs and implemented as behavioral Verilog models
which were used to determine the benefits of the online volt-
age/frequency scaling for each module. Tsumpie Was set to
5000 clock cycles for each of these benchmarks.

7.1 Software Radio

Software defined radio application can basically be parti-
tioned into five components - namely source, low pass fil-
ter (LPF), demodulator, equalizer (EQ) and sink (Figure 7).
Each of these nodes can be represented as a producer con-
sumer model. Samples are generated at a fixed rate by the
source which therefore defines the throughput constraint. The
samples pass through various blocks finally reaching the sink
node.

Table 1: Cycles/packet for Software Defined Radio
LPF | Demod | Equalizer(10) | Sink
61494 | 33086 463193 32736

A base configuration of Hitachi SH3 cores running at the
clock frequency of 60M Hz and supply voltage of 3.3V along
with an off-line algorithm [12] (with six levels of voltage and
frequency) was used for comparison purposes. The six voltage-
frequency pairs (in V, MHZ) chosen were (3.3,60), (2.9,52),
(2.5,45), (2.1,38), (1.7,31), and (1.3,23). The results were ob-
tained for a required sample rate of 1kHz. As it can be seen
from Figure 8, some of the modules like Demod, Equalizer
and Sink show significant savings in power, while the second
instance of the pipelined LPF modules, which is the bottle-
neck in the system, shows no improvement at all. However,
the overall improvement is still around 50% and compares
well with the off-line method. When there are infinite lev-
els of frequency and voltage levels available, the power saving
are greater than those with finite levels (six frequency-voltage
pairs) as expected (up to 55% power savings).

7.2 MPEG-2 Encoder

The MPEG-2 Encoder is broken down into six components
namely the motion estimator (ME), motion predictor (Pred),

Figure 7: Partitioned Software Radio

100

@ Off-line-6
80 1 | Infinite
2' 80 4 OFinite - 6
£ 70
£ 60
g
£ 504
@
E 40 A
g 30~
= 20
10 1
0 T T T T
LBE Demod Equalizzr Sink Overall

Figure 8: Power consumption in Software Radio

DCT and quantization block, IDCT and inverse quantization
block, the variable length encoding (VLC) block and the sink.
For MPEG-2 Encoder, a base configuration with ARM cores

Table 2: Cycles/macroblock for MPEG-2 Encoder
ME Pred DCT VLC | IDCT | Sink
101282 | 16722 | 370060 | 43222 | 351259 | 3188

running at a clock frequency of 133M Hz and supply volt-
age of 1.6V was chosen. The same off-line algorithm [12]
was used for comparison purposes (with six voltage-frequency
pairs). The six voltage-frequency pairs (in V, M HZ) chosen
were (1.6,133), (1.4,117), (1.2,100), (1.0,83), (0.85,70), and
(0.65,54). The results were obtained for frame processing rate
of 3.5f/s with 99 macroblocks per frame. Figure 10 shows
that all blocks, except DCT and IDCT, show a large improve-
ment in power consumption. DCT being the bottleneck of the
system, operates at highest available frequency and voltage.
For IDCT, our proposed method performs better than the
off-line method due to precise detection of workload behav-
ior, providing additional 30-40% power savings locally and
8% additional power savings globally. The overall savings in
power are close to 65% for all the three cases with infinite
frequency-voltage levels showing more improvement over the
finite case (six frequency-voltage pairs).

8. CONCLUSION

In this paper, we proposed a hardware based architecture
that can be used as a basic building block to build VFI sys-
tems and support Dynamic Voltage and Frequency Scaling
schemes. The logic to predict the optimal frequency of opera-
tion is also presented. A method to propagate the throughput
constraint through the entire system is also discussed. We in-
troduced a tool to automatically generate behavioral Verilog
from task graphs that can enable and automate analysis of
such VFI systems. Future work in this direction can include
modification of the FIFO link architecture to address latency
constraints, in addition to rate constraints.

9. REFERENCES

(1] Embedded systems synthesis benchmarks suite (e3s).
http://www.ece.northwestern.edu/~dickrp/e3s/.

[2] Ibm blue logic cu-08 voltage islands.
hitp: //www.ibm.com/chips/products/asics/products/
v_tsland.html.

= =H

39

Motion
Estimation

(=) (e J~{(=)

Figure 9: Partitioned MPEG-2 Encoder

100

= OfHine-5|
90 4 m Infinite
g_ 20 4 o Finite -6
& 70
o
£ 604
3
£ oy
: o
E B
= 20|
10 4
o e . .
ME Pred DCT VLC IDCT Sink Overall

Figure 10: Power consumption in MPEG-2 Encoder

[3] International technology roadmap for semiconductors.
hitp://public.itrs.net.
[4] A. Agiwal and M. Singh. An architecture and wrapper
synthesis for multi-clock latency-insensitive systems. Proc. of
IEEE/ACM Intl. Conf. on Computer-Aided Design
(ICCAD), page 1006, November 2005.
J. Butts and G. Sohi. A static power model for architects.
Proc. of International Symposium on Microarchitecture,
December 2000.
T. Chelcea and S. Nowick. A low latency fifo for mixed-clock
systems. Proc. of IEEE Computer Society Workshop on
VLSI, April 2000.
A. Dasdan. Rate analysis of embedded systems. Ph.D.
thesis, University of Illinois at Urbana Champagne, 1998.
C. Hu. Devices and Technology Impact on Low Power
Electronics, Low Power Design Methodolgies. Kluwer
Academic Publishers, 1996.
A. Iyer and D. Marculescu. Power efficiency of multiple
clock, multiple voltage cores. Proc. of IEEE/ACM Intl.
Conference on Computer-Aided Design (ICCAD) San Jose,
CA, Nov. 2002.
J. Muttersbach, T. Villiger, and W. Fichtner. Practical
design of globally asynchronous locally synchronous systems.
Proc. Intl Symposium on Advanced Research in
Asynchronous Clircuits and Systems (ASYNC), April 2000.
L. Nielson, C. Niessen, J. Sparso, , and K. Berkel. Low-power
operation using self timed circuits and adaptive scaling of
the supply voltage. IEEE Transactions on Very large Scale
Integration (VLSI) Systems, page 391397, Dec. 1994.
K. Niyogi and D. Marculescu. Speed and voltage selection
for gals systems based on voltage/frequency islands. Proc.
ACM/IEEE Astan-South Pacific Design Automation
Conference (ASPDAC), January 2005.
R. Rao, S. Vrudhula, and N. Chang. Battery optimization
vs. energy optimization: Which to choose and when. Proc. of
IEEE/ACM Intl. Conf. on Computer-Aided Design
(ICCAD), page 439, November 2005.
G. Semeraro, G. Magklis, R. Balasubramonian, D. Albonesi,
and M. L. Scott. Energy-efficient processor design using
multiple clock domains with dynamic voltage and frequency
scaling. Proc. of the International Symposium on High
Performance Computer Architecture (HPCA), Feb. 2002.
E. Talpes and D. Marculescu. A critical analysis of
application-adaptive multiple clock processors. Proc.
ACM/IEEE Intl. Symposium on Low Power FElectronics and
Design (ISLPED), Seoul, Korea, August 2003.
Q. Wu, P. Juang, M. Martonosi, and D. W. Clark. Formal
online methods for voltage/frequency control in multiple
clock domain microprocessors. Proc. of International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2004.

(5]

[6]

[7]
(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

