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Abstract

Heteregenous multiprocessor SoCs are becoming a reality, largely
due to the abundance of transistors, intellectual property cores and
powerful design tools. In this project, we explore the use of multiple
cores to speed up the JPEG compression algorithm. We show two
methods to parallelize this algorithm: one, a master-slave model;
and two, a pipeline model. The systems were implemented using
Tensilica’s Xtensa LX processors with queues. We show that even
with this relatively simple application, parallelization can be carried
out with up to nine processors with utilization of between 50% to
80%. We obtained speed ups of up to 4.6X with a seven core system
with an area increase of 3.1X.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Design studies; C.1.3 [Other Ar-
chitecture Styles]: Heterogeneous (hybrid) systems

General Terms

Design, Experimentation, Performance

1. Introduction
As multi-billion transistor system-on-chip era approaches, de-

signers constantly ponder upon effective methods of utilizing these
resources. Tighter time to market deadlines, reduced availability of
workforce per transistor, increased possibility of design errors, and
phenomenal mask costs have all contributed towards making de-
sign somewhat modular, with well tested components. One method
to simplify the design process, is to use processor cores as main
components. Recent advances in processors as intellectual property
cores, customization options within such processors (such as cache
sizes, additional instructions etc), and superior design tools have all
enabled numerous such processors to be used within a single SoC.

In a typical multi-processor SoC, designers often partition an ap-
plication into separate tasks at a fairly high level of granularity, and
implement each task in a separate processor. For example, in a game
console, the audio would be implemented in one processor while the
video might be implemented in another, and the physics in yet an-
other and so on. Such processing is comparatively easy to achieve
and allows a fair amount of parallelism, reducing the workload of
the operating system.

In this paper we try to explore the possibility of further paral-
lelization at a lower granularity than at the level explored in the
previous paragraph. We want to further explore the possibility of
speeding up the application with heterogeneous components such
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that the speedup increases at a faster rate than at which the area
increases (i.e. have more performance per gate than in a single pro-
cessor). To perform this parallelization, we take a single application
(in this case a JPEG application) and try to parallelize it with a num-
ber of processors. We try two separate methods, one a master-slave
model and the other a pipeline model. We start with identical pro-
cessors (i.e. the most powerful standard processor available within
the suite of tools we use), and then either enhance it with additional
instructions (if a particular processor is the bottleneck), or if the
workload is little, diminish it by the use of a lesser processor with
reduced cache.

The paper is organized as follows: Section 2 gives a broad overview
of the multiprocessor research thus far and Section 3 specifies the
benchmark application and platform which this case study is based
on. Section 4 specifies the different configurations and methodolo-
gies used to partition and organize the multiprocessor configura-
tions, and Section 5 reports the experimental methodology used in
this case study. Section 6 analyzes the performance improvements
for each system and presents a walk through on selective optimiza-
tion on a particular configuration. Finally, in Section 7 the conclu-
sions are summarized.

2. Related Work
Multicore architectures are becoming prevalent in SoC designs.

For example, the design in [16], is common in DSP systems where
multiple processing entities perform computation on different parts
of the system concurrently.

A general purpose multiprocessor system (single ISA) enables
programmability and speeds up design-to-market time. Multi-ISA
multi-core architectures have been proposed in [17], which requires
different processors in the system to execute different instruction
sets. Such cores typically address vector/data-level parallelism and
instruction-level parallelism simultaneously. However, a single-ISA
heterogenenous [8] system provides the advantage of easily map-
ping any application stage to any of the cores in the multi-core sys-
tem.

Various heterogeneous multiprocessor systems have been imple-
mented, primarily in the automotive real-time systems [4] and video
/ image encoding domain. The authors in [18] explored the use of
a heterogeneous system in a real-time video and graphics streams
management system, while in [22], the authors applied an adap-
tive job assignment scheme to perform data partitioning for a multi-
processor implementation of MPEG2 video encoding. A heteroge-
neous multiprocessor (five cores) for HDTV systems was developed
in [7].

Gopalakrishnan et. al [10] used heterogeneous systems in a dif-
ferent manner. The work generalizes the approach started by Baruah
[6] which replicates recurring tasks on multiple processing units to
ensure a degree of fault tolerance. Maintaining replicas of a task
at different processors ensures that single processor failures will be
tolerated well.

A multicore system would have various communication schemes
to provide the neccesary link between each core in the system. Kim
et. al. [14] developed a new CDMA-based on-chip interconnection
network using a Star NoC topology. To enable quick design of a
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multi-core processor system and the evaluation of its interconnect
system, Wieferink et. al [21] developed a methodology for retar-
getable MP-SoC integration at the system level based on LISA [20]
processor models and the SystemC [1] framework.

Single core application utilizes instruction level parallelism which
is enabled by pipeline processors. Multiprocessors are able to ex-
ploit task level parallelism by executing different task on separate
cores simultaneously. Different schemes have been developed, such
as the reuse of the pipeline [9] scheme.

Several pipelining methods have been explored. Jeon et. al [13]
partitioned loops into several pipeline stages. The iterative algo-
rithm proposed increased parallelism and reduced the hardware cost
of the designed system. Kodaka et. al. [15] combined the both
course grain and fine grain parallelism (which includes loop pipelin-
ing) using a single OSCAR chip multiprocessor. The work exploits
course grain task, loop parallelism and instruction level parallelism
using the OSCAR compiler. The OSCAR chip comprises of sev-
eral processor-element (PE) connected to local memory and shared
memory, facilitating data transfer among processors.

Banarjee et. al. [5] incorporated heterogeneous digital signal
processors with macro pipelining based scheduling. The technique
utilized a signal flow graph (SFG) as a basis for partitioning. The
work shows that heterogeneous multi-cores are able to improve the
throughput rate several times that of the conventional homogeneous
multiprocessor scheduling algorithms.

Our work differs from all of the above by the informal exploration
of the design space of two differing multi-processor core architec-
tures: one, a master-slave model and another a pipelined model. The
exploration of the pipeline model not only explores differing cores,
but also enhances the core with instructions and diminishes them by
reducing cache sizes, until the pipeline stages are roughly balanced.
By careful design we show that our pipeline system improves per-
formance by approximately five times while consuming three times
the area.

3. Background
This case study is based on mapping different parts of the bench-

mark program and employing a set of industrial tools to rapidly opti-
mize and simulate the entire system in a multiple processor configu-
ration. The partitioning of the program (initially based on functions
in the source program) is performed by analyzing the benchmark re-
sults of the simulation. The set of the industrial design tools enable
us to quickly explore the extent of improvements and area usage of
a heterogeneous multiprocessor system.

3.1 Case Study Application
A freeware JPEG compression algorithm implementation is used

in this case study. The simplistic nature of the program benefits this
case study as various sections of the code can be distinguished, par-
titioned and separated into a multiple processor configuration. Fig-
ure 1 shows the various partitions or stages of the program which
have the possibility to be allocated to different processors. The ar-
rows indicate the flow of RAW bitstreams through the various stages
of the encoding process before being written out to file.

The JPEG encoder program initially accepts a configuration file
which specifies the name of the RAW file to read, the quality fac-
tor and the format of the RAW image. These tasks are performed in
Stage 1. The program then proceeds to initialize the quantization ta-
bles and write the appropriate JFIF header information to the output
file, which includes Quantization and Huffman tables (stages 9 and
10). The program allocates two main buffers; one for the complete
RAW image which is read from file and the other for the resulting
JPEG file.

The JPEG program then starts reading RGB values from the buffer
and converts them to YCbCr values (stage 2). These values are
then value shifted (stage 3) (based on JPEG specifications). A mac-
roblock is then selected one at a time in sequence of Y, Cb and Cr
to be DCT transformed and quantized with the values ordered in a
zigzag manner (stages 4, 5 and 6). The pixel streams are fed into the
Huffman encoder (stage 7) which processes these streams serially.
The generated code is finally output to a file (stage 8).
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DCT vertical

Quant / Zigzag

Huffman

Write to file

Initialize QT

Close bitstream
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Figure 1: The main stages in a JPEG encoder.

3.2 Baseline Processor Description
This case study utilizes Tensilica’s Xtensa LX processor [2]. The

Xtensa LX is part of the line of Tensilica’s microprocessor core fam-
ily which is configurable, extensible and supported by automatic
hardware and software generation tools. The synthesizable core is
configurable to allow designers to precisely tailor each processor
implementation to match the target application requirements. The
Xtensa core ISA has a 24-bit instruction set base and allows 16-bit
instructions for higher code density. All instructions can operate on
32-bit data.

The Xtensa LX, like previous Xtensa processors, is able to sup-
port extended instructions, which are written in Tensilica Instruc-
tion Extension (TIE) language. Such instructions are able to do the
work of multiple instructions of a general-purpose processor. Ex-
tended instructions include fusion instructions [19], SIMD/vector
instructions and FLIX [3] instructions. Flexible Length Instruction
Xtensions (FLIX) are VLIW-like instructions whereby multiple op-
erations can be performed in a single instruction.

TIE queues and ports have been introduced in Tensilica’s Xtensa
LX processors. These features are used to communicate to the world
outside of the processor and can communicate at a much wider
bandwidth than existing interconnects. Queue interfaces are used
to pop an entry from an input queue for incoming data or push data
to an outgoing queue. The logic to stall the processor when it wants
to read an empty input queue or write to a full output queue is auto-
matically generated by the Xtensa Toolset. Ports are wires that the
processor uses to directly sample the value of an external signal or
drive the value of any TIE state on external signals.

Functions are created to push and pop from the queues. The
functions are blocking functions; as a push into a full queue or a
pop from an empty queue results in a stall of the particular pipeline
stage. These functions are TIE instructions and form part of the ex-
tended instructions of the Xtensa LX processor architecture (refer
to Figure 2).

The configuration of the base processor used in the case study
has been optimized to provide satisfactory results when executing
the benchmark application under a single processor system and is
shown in Table 1 as LX1. Also shown is a highly stripped down ver-
sion of the Xtensa LX processor LX2 which will be used to replace
under-utilized cores to save area and power (see Section 4.2).

Parameter LX1 LX2
Speed 533 MHz

Process 90nm GT
Pipeline length 5

Size 63,843 gates 39,789 gates

Core Size 0.32 mm
2 0.18 mm

2

Core Power 74.35 mW 41.3 mW

Memory Area (mm
2) 1.76 mm

2 0.15 mm
2

Instruction Cache 32KB 1KB
Data Cache 32KB 1KB

MUL32, MUL16,
density instructions, density instructions,

ISA boolean registers, boolean registers,
Instruction Options zero overhead loops, zero overhead loops,

TIE wide stores, TIE wide stores,
32 bits sign extend,
TIE arbitrary bytes

Max instruction width 8 bytes 3 bytes
PIF interface width 128 bits 32 bits

Table 1: Processor Configuration
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4. Methodology
We explore the various ways a multiprocessor system can be con-

figured to speed up a simple application. In this section, we outline
the multiprocessor architecture as we increase the number of cores
in the system. We show two methods to exploit the parallelism
within the code structure of the program. Our methodology uti-
lizes the queue interfaces which are available on Tensilica’s Xtensa
LX [2] processors. A simplified JPEG encoder is modified and par-
titioned to execute on such a system.

4.1 Method I
A master-slave model of a multi-core system was implemented

with a differing number (from three to seven) of Xtensa LX proces-
sor cores, which were instantiated using the Xtensa LX XTMP/ISS
environment. In each model, there was only one main core, with (N
- 1) slave cores, where N is the total number of cores in the system.

XTMP was used to link the main core with the slave cores using
TIE queue interfaces, with two interfaces per core, a TIE queue in
and a TIE queue out. These TIE queues were implemented using a
custom-designed TIE file for each core in the system. TIE instruc-
tions were written to retrieve the data from memory on one core and
send it via a queue to the receiving core, which then stored the data
into memory by means of another TIE instruction . This reduces the
overhead of having to store the data in registers before sending it.
The MemDataIn<x> and MemDataOut<x> TIE instructions were
used to implement this feature, where x is the size of the data in bits.

queue FIFO OUT1 32 out /* this is an output queue from main to slave1 */
queue FIFO IN2 32 in /* this is an input queue from main to slave1 */

/* writing to slave1 from main straight from memory */
operation WriteFifoMemMain1
{in AR *addr} {out FIFO OUT1, out VAddr, in MemDataIn16} {

/* addr is the pointer to the data to be sent */
assign VAddr = addr;
/* here the data to be sent is of size 16 bits */
assign FIFO OUT1 = MemDataIn16; }

/* reading from main to slave1 straight to memory */
operation ReadFifoMemSlave1
{in AR *addr} {in FIFO IN2, out VAddr, out MemDataOut16} {

/* addr is the pointer to where the received data is to be stored */
assign VAddr = addr;
assign MemDataOut16 = FIFO IN2; }

Figure 2: Sample TIE code implementing a TIE queue interface
between two cores

Communication between the cores is achieved via these TIE queues.
Only the main core communicates with each slave core. The slave
cores are not able to communicate between themselves. In each
model, a send/receive protocol is implemented to check if a core
is ready to receive data before sending the data. Special send and
receive messages are sent from either the main core to a particular
slave core, or vice versa, and the initiator of this exchange then stalls
while it waits for a reply. When the non-initiator of this exchange
is ready to receive the data (after having received the message from
the initiator), it sends an acknowledgement to the initiator which
then sends the data.

A JPEG encoder can be separated into different stages that can be
run on individual cores. An independent program is compiled for
each core, depending on which functions that particular core imple-
ments. The simulator loads these individually compiled programs
onto each core. When encoding a JPEG image file, (as referred to
by the control flow diagram in Figure 1), the processors in each sys-
tem implement each stage according to Table 2. The JPEG encoder
allows for parallelization since data is processed at a macroblock
(i.e. 8x8 pixels) level. This means that several cores can be process-
ing different macroblocks of data at the same time. Only Huffman
encoding (stage 7) must be done serially, due to the nature of the
Huffman encoding algorithm.

Once the input RAW image file is read (stage 1) by the main
core, the quality factor of the RAW image file is sent out to all slave
cores, which then begin initializing the quantization tables for the

file (stage 9). Within the JPEG application, the RGB to YCbCr con-
version (stage 2) is done in parallel by roughly dividing the RAW
image file into (N - 1) parts, where N is the total number of cores
in the system. These different parts are then sent to the slave cores,
which then complete the RGB to YCbCr conversion. The converted
data is then sent back to the main core from the slave cores and
written to memory in the order that it was sent out.

The main core then begins initializing the quantization tables
(stage 9), and writes the JFIF [11] headers to the output file (stage
10). When the main core has reached the encoding stage, it or-
ganizes the division of data to be encoded by sending out the first
macroblock of 64 Y’s, 64 Cb’s and 64 Cr’s to the first slave, the
second macroblock to the second slave, and so on. Once each slave
has received its macroblock of data, it begins encoding it by per-
forming the LevelShift, DCT and Quantization/Zigzag (stages 3 to
6) functions on the data sequentially, then sends back the encoded
data to the main core. Once the main core has sent data to core (N
- 1) in the sequence, it then receives the encoded data from each
slave core in the same order that it was sent out. The main core then
performs Huffman encoding (stage 7) on the received data. The cy-
cle continues, until all macroblocks are processed. If the number of
macroblocks is not a multiple of (N - 1), the final macroblocks are
divided up unevenly between the number of slave cores.

Each system detailed below follows the basic three-core model,
with extra slave cores only allowing the data to be divided up further.
Each slave core performs the same functions on the data that it is
given.

Three Cores

Cores
Stages

3 cores 4 cores 5 cores 6 cores 7 cores

Main 1, 7-11 1, 7-11 1, 7-11 1, 7-11 1, 7-11
Slave1 2-6, 9 2-6, 9 2-6, 9 2-6, 9 2-6, 9
Slave2 2-6, 9 2-6, 9 2-6, 9 2-6, 9 2-6, 9
Slave3 - 2-6, 9 2-6, 9 2-6, 9 2-6, 9
Slave4 - - 2-6, 9 2-6, 9 2-6, 9
Slave5 - - - 2-6, 9 2-6, 9
Slave6 - - - - 2-6, 9

Table 2: Master / slave processor configuration

For a three-core system, one main (producer) core organizes the
distribution of data between the two slave cores, and also completes
the input and output file manipulations, as well as the Huffman en-
coding. Two slave cores communicate with the main core via TIE
queues, and only complete that part of the encoding process that can
be parallelized. In particular, as shown in Table 2, these functions
are the RGB to YCbCr conversion function, the LevelShift func-
tion, the DCT function and the Quantization/Zigzag function. Four
TIE queue interfaces are used to communicate between the main
core and Slave1, and the main core and Slave2. After the RGB to
YCbCr conversion, the main core sends the first macroblock of data
to Slave1, and the second macroblock to Slave2. The slave cores
then process their share of the data before sending the processed
data back to the main core. After Huffman encoding the data, the
main core then sends the next two macroblocks to the slave cores
and the cycle continues.

Four Cores

main

slave 3slave 2slave 1

Figure 3: A four core master / slave system

Similarly to the three core system, one main (producer) core or-
ganizes the distribution of data between three cores. This main core
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communicates with each slave core via TIE queues as shown in Fig-
ure 3. Six such TIE queues are used, with three input and three out-
put queue interfaces on the main core, and one input and one output
queue interface on each slave core.

Every three macroblocks of the input image file are divided up
and sent to the three slave cores in order. This is visualised in Fig-
ure 3. Macroblocks 1,4,7,etc are processed by Slave1, macroblocks
2,5,8,etc are processed by Slave3, and macroblocks 3,6,9,etc are
processed by Slave4. Note that for higher numbers of cores in
the system, the ordered blocks to be processed is (N - 1)k + x for
Slave<x>, where N is the total number of cores, k is an integer
value, and x is the particular slave core number. The rest proceeds
as per the three processor system.

As shown in Table 2, each slave core implements the same func-
tions (those which could be parallelized) whereas the main core im-
plements the input and output file operations as well as other initial-
izations, writing markers, and the Huffman encoding.

Five, Six and Seven Cores

Extending the four core system, five, six and seven cores are now
used, where macroblocks are grouped into four, five and six mac-
roblocks respectively and then sent to the designated slave cores.

See Table 2 for details of functions processed on each core. Each
extra slave core implements the same functions as all other slave
cores, but with less data. The only differences are that the RAW
image file is divided into more parts to be distributed to more cores
during the RGB to YCbCr conversion stage, and each slave core
processes fewer macroblocks of data during the LevelShift, DCT
and Quantization stages.

4.2 Method II
We next investigate a different multiprocessor architecture in a

pipeline configuration. The system comprises of different proces-
sors, each running a portion of a pipeline stage of a program. Each
processor has a possibility of being configured optimally, instanti-
ating only those resources which are appropriate for the particular
stage of the pipeline. A heterogeneous processor system minimizes
the redundancy of resources, as processors with complex computa-
tions may be parameterized with more resources. Communication
among processors is facilitated using ports and queues which are
provided by the Xtensa LX [2] processor architecture.

The multiprocessor pipeline architecture design requires programs
which can be broken up into computationally independent blocks.
This resembles computational blocks in a pipeline processor archi-
tecture [12]. Transfer of data from one processor to another is facil-
itated by a queue.

In the case of the JPEG encoder, the pipeline architecture is ideal
as the JPEG encoder displays characteristics of a pipeline nature.
The encoding process is divided into stages which are independent
of each other. The proposed architecture consists of standalone pro-
cessors which runs a sections of the JPEG encoder program which
have been recompiled as an individual programs. These subpro-
grams which reside in these processors accept data via the queues
of the Xtensa processor, perform the neccessary computation, and
finally push it to the output queue into the next stage of the pipeline.
The computed data traverses the pipeline stages until it is finally
written out to file by the last processor in the pipeline. It should be
noted that while one processor is computing a workload, the rest of
the system is still busy processing workloads for other stages.

The scalability of a multiprocessor pipeline architecture depends
entirely in the suitability of the targeted program data structure and
the control flow of the program. A particular configuration is con-
sidered efficient when all processors have equal computational work-
load (i.e. no processors in the pipeline should be waiting for the next
stage to complete).

Five Cores

The JPEG encoding process (Figure 1) exhibits sequential routines
which can be broken up into stages, thus allowing the possibility
of pipelining the encoding process. These stages represents func-
tions within the original program and is extracted and compiled as
a single program which is executed in a single core.

A B C D E

RAW JPEG

Figure 4: A five core system being interconnected by queues.
Each processor is assigned a stage of the JPEG pipeline.

The main program of the encoder sends the required information
to the appropriate stages of the pipeline in order to initialize the
quantization tables and JFIF [11] headers which are written out to
file. As each pipeline stage only has to wait for the data from the
previous stage, the partition program is constructed such that one
core reads the RAW image while another writes the encoded JPEG
into a new file. Each stage processes data at a macroblock level (i.e.
8x8 pixels).

We started with a five core multiprocessor configuration (Fig-
ure 4), pipelined into five major stages. The quantization table ini-
tialization code shares the same core as that which implemnt the
quantization stage of the pipeline. This stage receives initial values
from the main program (core A) which reads in encoding parame-
ters which defines the quality of the resulting image. Core D has the
necessary code to initiate the writing of JFIF markers and closing
the JPEG bit stream. The last core (Core E) is initialized by the first
core with the name of the output file and writes any receiving bytes
from the previous stage (Core D) to file. Table 4 summarizes the
allocated stages to the respective cores.

Six Cores

We next introduce a new core into the system and allocate the Lev-
elShift stage to the new processor (refer to Table 4). The LevelShift
stage accepts YCbCr values from the previous stage, level shifts the
values and then pushes it out to the queue in macroblocks of 64
Y’s, 64 Cb’s and 64 Cr’s. As will be shown in Section 6, the intro-
duction of this stage into the pipeline does not increase the overall
performance of the encoding process.

Seven Cores

DCT transformations are known to be very computation intensive
and there are special circuits which performs just such a function. In
our next approach, the two-dimensional DCT function can be split
up into two stages; a one-dimensional DCT vertically and a one di-
mensional DCT horizontally. A seven core processor configuration
benefits from such an approach (refer to Table 4).

4.2.1 Multiple pipelines
The rational of having pipeline implementations is to increase

throughput during execution. Similar to a pipeline microprocessor,
a pipeline implementation of a JPEG encoder would be able to en-
code images at a faster rate.

Combining both approaches of method I (parallel computations
of macroblocks) and method II (pipelining), we are able to exploit
further parallelism within the JPEG compression algorithm. The
pipelining nature of the previous core systems are maintained. How-
ever, from stage four onwards (DCT), macroblocks for luminance
(Y), chrominance red (Cr) and chrominance blue (Cb) are processed
in separate parallel pipelines. This reduces the processing bottle-
neck in the DCT and quantization/zigzag stages.

These parallel pipelines include DCT and Quantization (with zigzag)
(QZ) stages. The outputs of these parallel pipelines then converge
into a single pipe where Huffman encoding is performed. Huffman
encoding depends on serial inputs and thus, cannot process multiple
JPEG streams at any one time.

Nine Cores

Following the five pipeline stage multiprocessor approach in Method
II, we try to increase the throughput of the middle stages of the
JPEG compression pipeline by replicating the Quantization stage of
the pipeline due to heavy utilization rates in the cores stages of DCT
and Quantization (refer to Table 4). Pipeline flow diverges only at
stages four and five (refer to Figure 1) into three separate pipeline
flows, before being fed into a single processor during the Quantiza-
tion stage. E, F and G cores are the Quantization stages and process
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Figure 5: A nine core system with three internal pipeline flows

the Y, Cr and Cb macroblocks separately. These cores intialize their
respective quantization tables (Y, Cr, Cb). This results in a nine core
processor system.

The utilizations of each core in the system is shown in Table 3.

Cores
A B C D E F G H I

Utilization (%) 76 51 51 51 28 28 28 95 99

Table 3: Utilizations in a nine core multipipeline system

Seven Cores

Table 3 shows that the utilization rates of the Quantization cores
(E, F and G) in the nine core system are very low, prompting us to
replace all three cores with just one. This is due to the bottleneck
in the second last stage of the pipeline (H), whereby the Huffman
encoding has already reached its maximum throughput. Note that
Stage I is not considered since it is constantly looping. Outputs
from the three separate DCT cores are now channeled into a single
core which will perform quantization and zigzag transformations.

With the seven core multiprocessor system, we have methodolog-
ically reduced the area consumption of the system. Based on the
utilization rates of each core in the pipeline, we were able to se-
lectively optimize the required cores using Tensilica’s XPRES com-
piler, which automatically generates TIE instructions (SIMD, FLIX,
vector, fusion).

When the runtime of the selectively optimized system closely
matches the fully XPRES compiled version, we replace the cores
which have very low utilization rates with simpler ones. These in-
clude replacing LX1 cores with LX2 cores (refer to Section 3.2) and
progessively reducing the instruction and data caches (until they
reached the same performance of the fully XPRES compiled ver-
sion, or reached minimal configurations which was 1KB). This method-
ology results in a heterogeneous multiprocessor system which pro-
vides high performance improvement to area increase ratio.

Cores
Stages (single pipeline) Stages (multiple pipelines)

5 cores 6 cores 7 cores 7 cores 9 cores
A 1, 2, 3 1, 2 1, 2 1, 2, 3 1, 2, 3
B 4, 5 3 3 4, 5 4, 5
C 6, 9 4, 5 4 4, 5 4, 5
D 7, 10, 11 6, 9 5 4, 5 4, 5
E 8 7, 10, 11 6, 9 6, 9 6, 9
F - 8 7, 10, 11 7, 10, 11 6, 9
G - - 8 8 6, 9
H - - - - 7, 10, 11
I - - - - 8

Table 4: Processor configuration with multiple pipeline flows

5. Experiment methodology
We used Tensilica’s Xtensa RA2006.4 Toolset for the Xtensa LX

family of processors. The toolset also provides a set of compilation
tools to compile C/C++ code, targeted to our specially configured
Xtensa LX cores (refer to Section 3.2). The Tensilica Instruction
Set Simulator (ISS) and Xtensa Modeling Protocol (XTMP) envi-
ronment were used to run the multi-core systems. For each system,
multiple Xtensa cores were instantiated and XTMP was used to con-
nect them to peripherals and interconnects. The ISS directly models
the Xtensa pipeline and operated as a system-simulation component

using the XTMP environment. With XTMP, different multiproces-
sor configuration could be set up and simulated in a short amount of
time.

The simulator allows for communication between the cores and
peripherals using a cycle-accurate, split-transaction simulation model
without using a clock. The ISS was used to generate profiling data
for all cores in the system, which were then profiled using Tensil-
ica’s gprof profiler. The profiles can include the cycle counts for all
functions executed by the cores. The ISS can also print a summary
of the total cycle count and global stalls of each core.

Each individual core is connected via the queue interface pro-
vided by the Xtensa LX core using the XTMP environment. We
create C-code functions and data structures to model the queues
within the XTMP environment. The queues are simple FIFO (first-
in, first-out) components that mainly operate via the functions push
and pop called by each of the connected cores in the simulation
environment. Queues transmitting RAW bit streams between pro-
cessors are modeled to have 64 entries. A full queue or an empty
queue would effectively stall the section of the pipeline.

We created our multicore processor systems by identifying hotspots
within the single processor benchmark application. The hotspots
were mainly functions identified in Section 3.1. We partition and
allocate these functions based on the methodology defined in Sec-
tion 4. An XTMP simulation program, specially customized to gen-
erate profiling and other relevant benchmark information is created
for each of these multiprocessor systems. These generated systems
include similar configured cores, not including parameterized com-
ponents such as the number of outgoing and incoming queues.

The toolset also includes the XPRES (Xtensa PRocessor Exten-
sion Synthesis) compiler which creates tailored processor descrip-
tions for the Xtensa processors from native C/C++ code. The XPRES
Compiler was used to create custom RTLs for each core in the sys-
tem. Using the designer-defined input of C programs to be ana-
lyzed, XPRES extends the base processor with new instructions,
operations and register files using TIE extensions. It does so by au-
tomatically generating a new TIE file which can be included when
recompiling the source code. XPRES was used to create a distinct
TIE file for each core in each system, to optimize each individual
core using only the C files that are used on a particular core. Each
individual core in the multiprocessor system is compiled through
XPRES to explore the extent of improvements that can be obtained
via extended instructions.

Area counts include the base processor, instruction & data caches
and the TIE instructions. Each multiprocessor system generated in
the case study reads a RAW file and saves it as a JPEG format file.
The file generated is viewable under any standard image viewing
application.

6. Results & Analysis
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Figure 6: Performance of multiprocessor systems without opti-
mizations

Figure 6 shows the runtime improvements and area increase with
respect to the original core, LX1 (refer to Section 3.2). The graph
shows the three main architectures used in this case study; mas-
ter/slave architecture (3, 4, 5, 6 & 7 cores), pipeline architecture (5,
6 & 7 cores) and the multipipeline architecture (7 & 9 cores). It can
be observed that the area increase to runtime improvement ratios
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Figure 7: Selective optimization on a seven core multipipeline multiprocessor system

for each of the multiprocessor systems have values more than one
and actually increases as more processors are added to the system.
With the pipeline multiprocessor systems, the improvements seem
to level off at the seven and nine core systems. This is due the fully
saturated Huffman encoding stage. Unless the Huffman stage could
be further partitioned and parallelized, this would remain the critical
stage in the pipeline.

As a form of measurement, the systems have been compiled with
XPRES to obtain the maximum improvement if all cores were opt-
mized. The maximum performance improvement is obtained from
the nine processor system, with a performance increase of 3.8X;
and 4.7X when run through the XPRES compiler for each of the
nine processors (refer to Figure 6).

It is not viable to continue this approach of adding processors
to improve performance, as the area increases faster than the im-
provement in performance. However, by reducing the resources
on non-critical processors, we can reduce area, yet keep the same
amount of performance. We selectively optmized critical stages of
the pipeline.

We selected the seven core multipipeline system for further opti-
mizations as it performs almost as good as the nine core architecture
while using much less area. Figure 7 shows the utilization of each
of the seven cores in the multipipeline architecture (refer to Sec-
tion 4.2.1). The first two graphs in Figure 7(b) on the left shows
the utilization rates of the system without optimizations and with
XPRES optimizations respectively. The area increase is at 7X and
7.7X respectively with performance improvement of 3.8X and 4.7X
(represented by the decreasing and steady lines in the graph).

It should be noted that the last pipeline stage is always at 100%
utilization due to it’s software implementation which repeatedly checks
for incoming data on every simulation cycle. In Partial XPRES 1,
we replaced the original core of the Huffman encoding pipeline
stage with an XPRES version. This basically removes the bottle-
neck in this stage. In Partial XPRES 1, the critical path has moved
on to the Quantization stage. We replace the Quantization pipeline
stage with an XPRES version in Partial XPRES 2, once again, mak-
ing Huffman encoding the critical stage. In this implementation, it
can be seen that the parallel pipelines of DCT stages are not fully
utilized. We replaced these cores with LX2 cores, resulting in a
utilization jump from 62.3% to 88.3% while area utilization is re-
duced from 7.1X to 3.8X. At this point, we already achieve an area
increase to performance improvement ratio of 0.82. Further opti-
mizations were achieved when reducing the cache sizes of the first
core in the pipeline from 32KB to 1KB. This does not significantly
affect performance as the core mainly reads the RAW files and out-
puts it to the pipeline. The ratio is further reduced to 0.68 while still
maintaining a performance improvement of 4.62X.

7. Conclusion
We have performed an interesting case study by exploring the use

of multiple cores in master/slave and pipeline configurations. Com-

munications among these cores are facilitated using queues which
are introduced in Tensilica’s Xtensa LX [2] configurable cores. We
have also analyzed the effect of increasing the number of cores into
the system and to what extent performance improvement can be
achieved. The XPRES tool has been used to selectively optimize
cores and with under-utilized cores being replaced by cores with a
different configurations. We have shown that a heterogeneous mul-
tiprocessor system is able to provide the neccesary speedup while
minimizing gate count; providing a very low area increase to per-
formance improvement ratio.
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