
Extensible Control Architectures

Greg Hoover
University of California, Santa

Barbara
Engineering I

Santa Barbara, California
93106

ghoover@ece.ucsb.edu

Forrest Brewer
University of California, Santa

Barbara
Engineering I

Santa Barbara, California
93106

forrest@ece.ucsb.edu

Timothy Sherwood
University of California, Santa

Barbara
Engineering I

Santa Barbara, California
93106

sherwood@cs.ucsb.edu

ABSTRACT
Architectural advances of modern systems has often been
at odds with control complexity, requiring significant ef-
fort in both design and verification. This is particularly
true for sequential controllers, where machine complexity
can quickly surpass designer ability. Traditional solutions
to this problem require elaborate specifications that are dif-
ficult to maintain and extend. Further, the logic generated
from these specifications bares no resemblance to the in-
tended behavior and often fails to meet design performance
constraints. In the process of designing a multi-threaded,
dynamically-pipelined microcontroller, we encountered a num-
ber of common difficulties that arise from the inadequacies
of traditional pipeline design methodologies. Through the
use of a novel nondeterministic finite automata (NFA) spec-
ification model, we were able to implement an extensible
control structure with minimal design effort. In this paper
we present a viable pipeline controller specification method-
ology using the pyPBS language, which enables minimal
effort control partitioning and compact behavioral repre-
sentation. The structure of the language encourages de-
sign decisions that promote efficient modular constructions
which can be easily integrated and extended. We present an
overview of the our methodology including background on
the pyPBS synthesis model, an architectural overview of our
multi-threaded microcontroller, and implementation details
for the control structure of the design including the com-
plete control specifications. In addition, we show that the
applicative nature of the pyPBS language allows for addition
of a multi-cycle multiplication unit with minimal effort.

Categories and Subject Descriptors
B.1.1 [Hardware]: Control Structures and Microprogram-
ming—hardwired control ; B.1.2 [Hardware]: Control Struc-
tures and Microprogramming—automatic synthesis; B.6.1
[Hardware]: Logic Design—sequential circuits; B.6.3
[Hardware]: Logic Design—automatic synthesis, hardware
description languages

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CA SE S’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-543-6/06/0010 . . .$5. 00.

General Terms
Design, Languages

Keywords
control architecture, specification methodology

1. INTRODUCTION
Many embedded systems require a single processor to serve

a broad array of functions such as operating interrupt driven
devices, managing wireless networks, processing software
updates, and performing distributed computations. As part
of our ongoing research we are examining the usefulness of
architectural techniques in simplifying the design of soft-
ware for such systems. In particular, hardware support for
multi-threading can reduce code footprint for save/restore
overhead, it can enable zero-cycle interrupt response from
service threads, and potentially even reduce software com-
plexity. Despite these advantages, embedded support for
multi-threading hardware will only ever become a reality
if it can be introduced without significantly increasing the
control complexity of the underlying hardware.

Embedded processors, unlike mainstream microprocessors,
are extremely sensitive to increased control complexity be-
cause the design and verification teams must be incredibly
small, and the designs need to be both flexible and extensi-
ble. For a small 2-stage pipeline, the control space for a sin-
gle threaded design can be fully enumerated. However, with
a 6-stage pipeline, multi-cycle stalls, interrupts, exceptions,
and any possible interleaving of up to 8 threads, the control
state space quickly becomes unmanageable. Even if a stan-
dard state chart based approach could be constructed, the
lack of control compartmentalization would force a reevalu-
ation of the entire control state space to make even a simple
modification.

Standard design methods, based on finite state machine
based control synthesis, have the very undesirable property
that combining n machines of size k will result in a machine
of size up to kn. This model assumes that all parts of the
machine state need to be uniformly accessibly. This ineffi-
ciency means that it falls upon the designers to manually
partition their control structures and to ensure that every
possible combination of states either leads to correct execu-
tion or is unreachable. Because of this, designing modern
control systems is typically an ad-hoc process specifically
suited to a particular application.

Consider the specification of a five stage interlocked pipeline
in a HDL. Such a design would typically begin with de-

323

terministic modeling of intended pipeline behavior. While
well-suited for machines with a single active point of con-
trol, deterministic models expand rapidly when multiple
active points of control can occur simultaneously, such as
in pipelines. Thus the deterministic state space for our
pipelined processor constitutes the language containment
(or closure) of a non-pipelined implementation. Although
specification of this model is not impractical, it is clear that
complexity grows quickly and the job is not made any easier
by the sequential logic constructs of a conventional HDL.
Because of the mixing of control sequences and functional
actions, specifications in a conventional HDL span multi-
ple pages of source code. This makes it very difficult to
recover the overall behavioral meaning of the specification
and requires modifications at various locales for even simple
control changes, such as adding a new stall condition.

Instead, our compartmentalized control method allows the
HDL specification to be dissected into a hierarchy of cleanly
interacting controllers, where each has the ability to stall or
flush the entire pipeline. Such partitioning naturally arises
from the methodology, where a common interlocked pipeline
controller is initially defined, creating a reliable control in-
frastructure from which additional behavior can be incre-
mentally extended. The use of the pyPBS language means
that such additions are additive, where the scope of design
changes are limited, as are the resulting circuit-level changes.
Drawing from nondeterministic finite automata (NFA) tech-
nology, pyPBS provides inherent support for systems hav-
ing multiple active points of control (they can be in multi-
ple “states” at once). Such behavior is naturally supported
by the parallel nature of hardware, making NFA-based syn-
thesis well suited for describing the behavior of concurrent
pipelines. Better still, the control is specified in a modular
and intuitive way, and the description of a pipeline controller
actually resembles a pipeline.

Specifically, we make the following contributions:

• We propose a novel method for creating extensible
and compartmentalized pipeline control architectures
based on the incremental addition of stall and flush
recognizers.

• We show that by embracing an NFA-based approach,
the complexity inherent in specifying pipelines can be
naturally expressed and synthesized even for complex
instruction sets.

• To demonstrate the usefulness of our methods, we have
designed and implemented an 8-bit 6-stage 8-way multi-
threaded microcontroller fully compatible with the At-
mel AVR instructions set. We show that the complex
control required for this design can be easily extended
from a basic interlocked pipeline specification.

• We further show such specifications to be easily ex-
tended through the addition of 3 different types of
multiply units.

To show that our design method is not simply a theoreti-
cal exercise, we have designed and implemented a family of
8-bit instruction-interleaved microcontrollers based on the
Atmel AVR instruction set. The remainder of this paper
describes our novel control specification solution, and its use
in the design and implementation of a synthesizable multi-
threaded microcontroller. An overview of pyPBS and its

synthesis method are discussed in Section 2. Section 3 de-
scribes the incremental design methodology and the funda-
mental pipeline construction that serves as the design start-
ing point. Section 4 presents an architectural overview of
the design, with control details including pyPBS specifica-
tion and the resulting gate-level logic given in Section 5. The
design is shown to be easily extended to include a multi-cycle
multiplier in Section 6. Related work pertaining to the state
of the art in high-level specification is presented in Section 7.
Finally, concluding remarks are given in Section 8.

2. PYPBS
The rationale behind pyPBS stems from the practical is-

sues of constrained hardware design where a designer com-
monly works with a rather restrictive set of sequential con-
straints – memory protocols, interfaces, and previously con-
structed designs. In such designs, it is desirable to have an
applicative design methodology that allows incremental in-
tegration of system components. pyPBS provides such a de-
sign framework through its simple context-based execution
model. The semantics of generated machines follow from a
non-deterministic finite automaton (NFA) model where ex-
ecution is assumed to be as general as possible. The notion
of context corresponds to an active point of control in the
automaton model. Rather than provide coherence by re-
stricting the legal execution paths of the specification, all
paths execute in a completely general fashion. Thus the
resulting machine can have many active points of control,
making it a natural fit for pipelining [9].

The generality of the context model naturally fits with
a one-hot encoding scheme, where the acceptance or state
of a control point can be represented by the value of a bit.
While such machine encodings are typically register-heavy,
they prove to be well suited for high performance designs
and not uncharacteristically large for designs generated from
high level languages. This observation is a consequence of
the sparsity of the machine encoding which typically results
in simple control logic and offers unique opportunities for
optimization. The locality of this encoding technique further
provides a system in which synthesis is applicative and the
scope of design circuit changes are limited for corresponding
changes in the control hierarchy.

Drawing from the expressiveness of extended regular ex-
pressions, the pyPBS language enables compact specifica-
tions that can be exponentially smaller than their conven-
tionally specified counterparts. Through the addition of a
powerful set of language constructs, these extended regu-
lar expressions can be used to define complex control se-
quences in a single line of code. Further, the behavior of
such sequences can be understood without reconstructing
state charts or scrolling through many lines of code, as is
necessary in conventional HDL. Despite their efficiency, reg-
ular expressions tend to be rather cryptic, resulting in poor
readability. For this reason, pyPBS organizes regular ex-
pression fragments inside of a production-based language.
This format allows for structured specifications that reuse
common control fragments.

Figure 1 depicts the desired behavior for a simple mem-
ory write controller. On each cycle, the controller should
be able to accept a request and subsequently generate out-
puts for latching operands, writing to the bus, and releasing
the bus. Such behavior requires minimally three states as
shown in the ‘memory’ production of Figure 2. Busses com-

324

Request

Bus_Free

Latch_Operands

Output_To_Bus

Release_Bus

Figure 1: Waveform illustrating the desired behav-
ior of a simple memory write controller.

monly share access between multiple components, and as
such, require some type of arbitration. This functionality is
provided in the pyPBS specification through insertion of a
wait state throttled by an input signal signifying bus avail-
ability. Figure 3 depicts the synthesis process beginning
with construction of abstract syntax trees (AST) for each
pyPBS production. The ASTs are subsequently combined to
form a single production directed acyclic graph (DAG) [13].
By using binary decision diagrams (BDD) to represent the
logic at each node, a circuit can be directly extracted from
the production DAG. The generated machine is output in
Verilog HDL and can be directly synthesized or integrated
into larger designs [9]. The absence of any functional com-
ponent specification in this example alludes to the separa-
tion of control and data path specifications. Intermixing
functional and control specifications reduces readability and
makes, even simple changes, difficult to perform – modifica-
tion to conventional specifications typically require changes
at multiple locales, even for basic changes.

3. INCREMENTAL DESIGN METHODOL-
OGY

In any design flow, it is critical to make use of existing
components to reduce development and verification time.
Our methodology does just this, using a proven interlocked
pipeline specification from which custom behavior can be
incrementally added. The pyPBS specification for a 6-stage
interlocked pipeline is presented in Figure 4. It should be
clear from the symmetry of the specification that the num-
ber of pipeline cycles can be changed very easily. While
this specification can appear cryptic to the uninitiated, its
behavior is quite simple. The control entry point is the be-
ginning of the ‘control’ production. In each cycle, control
is passed to the ‘cycle’ production which describes the se-
quential flow of the pipeline – the comma (‘,’) operator sig-
nifies sequential concatenation. Each of the pipeline stages
is subsequently described on an individual basis, allowing
for catering of stage behavior through addition of custom
recognizers.

In a tail-throttled pipeline, a stage stalls if it can exe-
cute (accept) in the current cycle and its successor stage
is stalled. This behavior is specified using a one-or-more
(‘+’) expression, effectively creating a control loop that ter-
minates only upon termination of stall conditions. In this
simple case, these stall conditions are generated solely by
successor stages and referred to by name – reference names
appear between carrots (’<>’). The top row of flip-flops in
Figure 5 depicts the resulting stall logic chain and support-
ing bits. The bottom row similarly represents supporting
logic for stage acceptance. This behavior is easily defined in
the specification as the sequential complement (‘~’) of the

respective stall condition. From Figure 5, it can be seen that
each stage accepts if its predecessor stage has completed and
its successor stage is not stalled. During a stall, an active
point of control is maintained in the respective stall bit for
use upon termination of any stall. In short, each stage moni-
tors two inputs from its respective predecessor and successor
stages, stalling if its predecessor did work in the previous cy-
cle and its successor stage is stalled. Subsequent termination
of the stall condition allows the stage to execute, handing
off control to its successor in the next cycle.

High-level specifications typically bare no resemblance to
the circuits which they generate, however, pyPBS reflects
specification simplicity in its output. This novel synthesis
language draws from a simple, yet flexible NFA execution
model which allows the designer to incrementally extend the
basic pipeline specification through addition of specialized
recognizers. Whereas such modifications would typically be
a major undertaking in a conventional HDL, they can be
done in pyPBS with little effort. This is in part due to
separation of control and data path specifications – pyPBS
targets control specification with separate data path specifi-
cation via any number of techniques. Further, synthesizable
Verilog HDL output provides a mechanism for simple inte-
gration in any design flow.

4. PROCESSOR ARCHITECTURE
To demonstrate our design methodology we have imple-

mented JackKnife, a multi-threaded, dynamic pipelined mi-
crocontroller family that models its architecture after that
of the popular Atmel AVR, providing advanced capabili-
ties while maintaining simplicity and software compatibility.
Drawing from the memory-mapped design of its progenitor,
JackKnife provides uniform interfaces to system peripherals
and memory, reducing design complexity. Often the environ-
ments in which microcontrollers of this scale are deployed
are event-driven in nature, where control flow changes of-
ten and unexpectedly. Successful systems in this domain
should minimize the overhead of these transitions. The orig-
inal AVR architecture utilizes a two stage dynamic pipeline
which executes instructions in anywhere from one to four
cycles, depending on instruction complexity. Single-cycle
operation greatly reduces design complexity but results in
implementations that top out at 20MHz. JackKnife inher-
its the same dynamic pipeline behavior, but extends the
pipeline to six stages and provides single-cycle support for
a much greater number of instructions than the AVR. Dy-
namic pipelining comes at the expense of added complexity
– most notably support for stalling and flushing of pipeline
stages.

Multi-threading provides a mechanism for hiding instruc-
tion latency in our elongated pipeline. It has the addi-
tional benefits of providing low-latency interrupts and zero-
cycle context switching, two features which are aptly suited
for embedded applications. The interleaved scheduler pro-
vides implicit data path sharing and removes data depen-
dencies between consecutive instructions, alleviating many
stall conditions and providing better utilization of proces-
sor resources. Dynamic interleaving allows the scheduler to
dynamically select threads for execution based on resource
availability. This provides better processor utilization and
system flexibility by bypassing inactive or stalled threads.
The JackKnife architecture focuses on flexibility of design
and system responsiveness, selecting active threads on a

325

machine memory wr i t e c on t ro l l e r {
input Request , Bus Free ;
output Latch Operands , Output To Bus , Release Bus ;

memory −> .∗ , wait , wr i te , c leanup ;
wait −> Request <Latch Operands>;
wr i te −> ˜Bus Free∗ , Bus Free <Output To Bus >;
c leanup −> . <Release Bus >;

}

Figure 2: pyPBS specification for a simple memory write controller supporting bus arbitration.

,

cleanup

*

True

,

wait ,

write

Request
<Latch_Operands>

True
<Release_Bus>

,

*

~Bus_Free

Bus_Free
<Output_To_Bus>

,

*

~Bus_Free

Bus_Free
<Output_To_Bus>

,

*

True

,

,Request
<Latch_Operands>

True
<Release_Bus>

1

3

2

Start

Request Bus_Free

4

Latch_Operands Output_To_Bus Release_Bus

Figure 3: Synthesis process for the simple memory write controller depicting the representative production
ASTs, merged production DAG, and resulting circuit.

round-robin basis and scheduling interrupt services threads
(IST) on the next cycle.

JackKnife supports concurrent execution of any number
of threads up to the current design limit of eight. Inter-
leaved processors often suffer from performance degradation
when the number of executing threads drops below some
threshold[15]. We have escaped this drawback through the
selective addition of operand forwarding. Forwarding logic
in the register file typically reduces the length of any data
dependency stall to a single cycle. The combination of in-
struction throughput, low-latency interrupts, and dynamic
thread scheduling allows JackKnife to respond to random-
ness exhibited in many embedded environments. For an
in-depth look at the processor architecture and impacts of
multi-threading on embedded systems is available in [10].

5. CONTROL ARCHITECTURE AND SPEC-
IFICATION

The addition of pipelining and multi-threading to a single-
cycle processor design would prove a non-trivial task if not
for the use of pyPBS control specification techniques. En-
abling multi-threading comes at only minor expense in terms
of modifications to the register file, status registers, and
stack pointer registers. However, more significant additions
in the way of a scheduler and modifications to the control
logic are necessary. Managing the control logic, and all of the
states needed to handle the interactions of data path stalls,
flushes, interrupts, and multiple threads, can get quickly out
of hand. One of the problems is that the semantics of an in-
struction stream should hold no matter how it is interleaved
with streams from other threads. A typical state machine
approach to building such a controller can quickly explode

into an unmanageable number of states. The other option is
to hand build a control structure that can effectively handle
a particular instance of the design. This, however, is against
our design goal of creating a configurable and extensible de-
sign. For instance, it would make changing the number of
hardware level threads handled by the architecture very dif-
ficult.

To cope with these issues, our methodology begins with
the basic pipeline described earlier, extending functional-
ity through simple addition of recognizers. pyPBS provides
simple methods for adding custom stall and flush condi-
tions, greatly simplifying the design process and giving way
to straightforward implementations for the remaining con-
trol units. The resulting controller is shared between all
hardware threads, providing a single interlocked structure
on which to build the intricacies of the system.

Maintaining machine semantics for simultaneous execu-
tion of multiple instruction streams in a common data path
requires the additional ability to match instructions with
their respective streams. This matching facilitates context
selection for retrieval and writeback of instruction operands,
identification of stall and flush conditions, control of for-
warding mechanisms, and thread scheduling. While per-
thread controllers could be used to disambiguate pipeline
execution within the pyPBS specification, JackKnife imple-
ments a simpler solution, tagging instructions at all stages
of the pipeline. This mechanism allows both global and lo-
cal tag comparisons for various control elements. While it
is possible to design a single monolithic controller for this
system, the specification and sustainability of such an ap-
proach is less than desirable. For this reason, the control
structure for JackKnife is partitioned into three controllers,
the hierarchy of which is discussed in Section 5.1.

326

machine p i p e l i n e c o n t r o l l e r {
input S t a l l ;

output Stage 1 , Stage 2 , Stage 3 , Stage 4 , Stage 5 , Stage 6 ;
output S t a l l S t a g e 1 , S t a l l S t a g e 2 , S t a l l S t a g e 3 ,

S t a l l S t a g e 4 , S t a l l S t a g e 5 , S t a l l S t a g e 6 ;

c on t ro l −> .∗ , c y c l e ;
c y c l e −> s t age 1 , s t age 2 , s t age 3 , s t age 4 , s t age 5 , s t age 6 ;

s t age 1 −> (˜ (S t a l l S t a g e 2 <S t a l l S t a g e 1 >+)) <Stage 1 >;
s t age 2 −> (˜ (S t a l l S t a g e 3 <S t a l l S t a g e 2 >+)) <Stage 2 >;
s t age 3 −> (˜ (S t a l l S t a g e 4 <S t a l l S t a g e 3 >+)) <Stage 3 >;
s t age 4 −> (˜ (S t a l l S t a g e 5 <S t a l l S t a g e 4 >+)) <Stage 4 >;
s t age 5 −> (˜ (S t a l l S t a g e 6 <S t a l l S t a g e 5 >+)) <Stage 5 >;
s t age 6 −> (˜ (S t a l l <S t a l l S t a g e 6 >+)) <Stage 6 >;

}

Figure 4: pyPBS specification for the basic 6-stage interlocked (tail-throttled) pipeline controller.

1

3

2

Stall_Stage_1

Stage_3Stage_2 Stage_4Stage_1

Start

Context Generator

5

4

Stall_Stage_2

7

6

Stall_Stage_3

9

8

Stall_Stage_4

11

10

Stall_Stage_5

Stage_5

Stall

Stage_6

Figure 5: Generated circuit for the basic 6-stage interlocked (tail-throttled) pipeline controller.

5.1 Control Hierarchy
Design partitioning is essential to any sustainable design.

While the JackKnife design is comprised of standard func-
tion components, the interconnection and control of these
components is anything but standard. Integrating the di-
versity of the instruction set into a single controller has
proven difficult in past implementations. Control partition-
ing allows the control for each functional unit to be specified
and verified individually. The simple context-based model
of pyPBS facilitates communication between controllers via
two simple signals: ‘request’ and ‘stall’.

The control hierarchy is depicted in Figure 6. At the top
of this hierarchy is the pipeline controller which provides
interlocking (tail-throttled) and support for per-stage stall
and flush. This controller operates a dynamic pipeline con-
sisting of six stages: schedule, fetch, decode, read, execute,
and commit. It uses abstracted signals to effect major con-
trol changes in the pipeline such as flushes and stalls. Con-
trol outputs are limited to a single, per-stage output which
controls stage acceptance. For most stages, acceptance is
defined as the latching of pipeline registers. The execution
stage, however, requires more elaborate control, as some in-
structions do not complete in a single cycle. In these cases,
each local controller can effect a pipeline stall via its inter-
face to the pipeline controller.

The source of such partitioning originates with the con-
struction of a basic pipeline controller. The elegance of a
pyPBS interlocked pipeline specification lends itself to sim-
ple methods of extension. Compartmentalization of the

pipeline controller provides a solid infrastructure from which
more specialized control code can be developed and tested.
This greatly eases development and debugging by limiting
the scope of design errors and modifications. This strategy
further allows localization of control with functional compo-
nents respectively. In a larger design, this ability can greatly
reduce wire delay cost associated with communication be-
tween control and data path units.

5.2 Pipeline Controller Specification
Figure 7 presents the pyPBS specification for the Jack-

Knife pipeline controller. This controller serves as the top-
level controller for the system, effecting pipeline stage ac-
ceptance, stall, and flush. The modifications necessary to
construct the actual top-level controller are shown to be
quite minimal in comparison with the basic pipeline pre-
sented earlier. Several additional pyPBS operators were re-
quired to specify the additional pipeline behavior. These
constructs will be presented in context. For simplicity, all
active low signals are shown with ‘ n’ suffixes.

Unlike the basic pipeline, the JackKnife design supports a
programming mode on reset to allow for uploading program
code prior to execution. This capability is implemented in
the control specification by a single wait state controlled by
a programming input signal. Subsequent behavior follows
from the basic pipeline, requiring only minor modification
to the respective pipeline stages for processing additional
stall and flush conditions. The addition of stall sources is
done in a very straightforward manner through the use of the
OR (‘|’) operator. The read stage, for instance, stalls on oc-

327

Pipeline Controller

Branch/Jump
Unit Controller

Load/Store
Unit Controller

request

request

stall

stall

Pipeline Registers

Pipeline Registers Pipeline Registers

Figure 6: JackKnife control hierarchy, illustrating the division of control units and interconnects.

currence of either of the two stall input signals generated by
the execute stage and data dependency logic, respectively. A
complete discussion of the brackets (‘[]’) operator is beyond
the scope of this paper and unnecessary for understanding
the specification.

Figure 8 illustrates the resulting pipeline controller logic
circuit. Each pipeline stage can be seen as a pair of regis-
ters: one signifying stage acceptance, the other stage stall.
Pipeline flushing is slightly more complicated as a flush
should not only clear the context from the stage’s active reg-
ister, but also its stall register. pyPBS provides the qualify
(‘:’) operator for such a purpose. Qualifying each pipeline
stage with its respective flush signal prevents the stage from
accepting or maintaining a stall context unless that signal
is asserted hi (flush signals are active-low). Assertion of a
flush signal prevents the read stage, for instance, from pre-
serving an active control point regardless of other inputs.
The result is that stalled or executing instructions are swept
from the pipeline stage. With even a basic understanding
of the pyPBS syntax, one can see that adding additional
stall and flush conditions is trivial, making the specification
quite extensible. Further, the synthesized pipeline controller
is shown to be well suited for high-performance design by its
1.8GHz+ cycle frequency, and meager 3,000µm2 in 0.15µm
TSMC.

5.3 Branch/Jump Unit Controller Specifica-
tion

The branch/jump unit is responsible for all PC-updating
instructions. These instructions complete in one or more
cycles depending on instruction complexity and memory la-
tency. Partitioning the control allows the specification for
this unit to be specifically targeted to its respective opera-
tions without concern for the rest of the system. This pro-
vides a compact specification that is easier to design and
verify. A pair of signals facilitates communication with the
pipeline controller for initiating requests and pipeline stalls.
The specification for the branch/jump unit is longer than
that of the pipeline controller due to the fact that it handles
a greater variety of operations.

Rather than operating in a pipelined fashion, the control
for the branch/jump unit allows at most one instruction to
be processed at a time. In Figure 9, the top production ‘bju’
enforces this behavior, idling until a request is made. After
servicing this request, control loops back to the idle state via
the one-or-more (‘+’) operation. The subsequent ‘cleanup’
stage is executed only when control will return to the idle
state – as seen by the condition for this stage. In such a case,
busses must be released and switching logic reset. However,
if two requests occur back-to-back, cleanup is unnecessary,
as the control for the subsequent instruction will perform
any such tasks.

Request handling varies based on the instruction type. In
the ‘op’ production, control is distributed to type-specific
control fragments. The conditions for each of the fragments
are mutually exclusive, resulting in only a single accept-
ing production. Each of these productions is aptly named
for its respective instruction type. Half of the instructions
(jump, branch immediate, skip) are trivial to specify, re-
quiring only a single stage to perform necessary updating
of the program counter. The remaining instructions, how-
ever, perform more complex services. The call and return
instructions, for instance, interface with the load/store unit
and therefore specify wait states which terminate upon suc-
cessful completion of any necessary memory operations. The
specification for these instructions is a simple string of events
throttled by the load/store unit ready signal. The remaining
delayed branch instruction, specified as two cycles, requires
the additional cycle for branch target calculation.

5.4 Load/Store Unit Controller Specification
The load/store unit is responsible for non-instruction-fetch

memory operations. This amounts to all memory instruc-
tions executed by program code. Interfaces to the proces-
sor data bus and branch/jump unit support standard load
and store operations, and call and return operations, respec-
tively. All memory interfaces use a synchronous protocol
where stores are single cycle and loads assume that data is
valid on the next cycle. The addition of a memory wait input
allows dynamic wait states, supporting a range of memories

328

machine p i p e l i n e c o n t r o l l e r {
input Programming n ,

Stal l Dependency ,
S ta l l L su ,
S ta l l B ju ,
F lush Schedu le n ,
Flush Fetch n ,
Flush Decode n ,
Flush Read n ;

output Schedule , Fetch , Decode , Read , Execute , Commit ;
output S ta l l S chedu l e , S t a l l Fe t ch , Sta l l Decode , Sta l l Read , S ta l l Exe cu t e ;

c on t ro l −> program , .∗ , c y c l e ;
c y c l e −> schedu le , f e t ch , decode , read , execute , commit ;

program −> (˜Programming n ∗) , Programming n ;
schedu le −> (˜ (S t a l l F e t c h <Sta l l S chedu l e >+)) <Schedule >;
f e t ch −> (F lush Schedu le n : (˜ (S ta l l De code <Sta l l Fe t ch >+))) <Fetch>;
decode −> (F lush Fetch n : (˜ (Sta l l Read <Sta l l Decode >+))) <Decode>;
read −> (Flush Decode n : (˜ ([S ta l l Exe cu t e | Sta l l Dependency]<Sta l l Read >+))) <Read>;
execute −> (Flush Read n : (˜ ([S t a l l L su | S t a l l B j u]< Sta l l Exe cu t e >+))) <Execute >;
commit −> . <Commit>;

}

Figure 7: pyPBS specification for JackKnife pipeline controller as created through simple extension of the
basic pipeline controller via the addition of specialized recognizers.

1

Programming_n

2

3

5

4

Stall_Fetch

7

6

Stall_Decode

Flush_Schedule_n
Stall_Ibus

9

8

Stall_Read

Flush_Fetch_n

11

10

Flush_Decode_n

Stall_Execute

Stall_Dependency

13

12

Flush_Read_n

Stall_Bju

Stall_Lsu

CommitDecode ExecuteFetch ReadSchedule

Start

Programming Wait Controller Context Generator

Pipeline Controller

Figure 8: Generated circuit for the JackKnife pipeline controller.

that may be connected to an external memory controller.
The AVR instruction set supports a range of pre-decrement,

post-increment, and displacement memory access instruc-
tions. These variations are supported in the processor pipeline,
where address calculations are performed by the processor
ALU. Access to instruction memory must be arbitrated to
avoid bus contention between the fetch and load/store units.
In this scenario, priority is given to the load/store unit to
allow completion of dispatched instructions.

The specification in Figure 10 behaves similarly to that
of the branch/jump unit presented above. Only a single
request can be serviced at a time as enforced by DFA-like
behavior in the the ‘lsu’ production. Unlike the pipeline
controller specification, which generates an active point of
control (context) on every cycle, this unit loops back to an
accepting state only after termination of any active oper-
ations. Requests are subsequently distributed among four
task-specific control fragments, whose mutually-exclusive con-
ditions ensure that only a single point of control will fol-
low. To avoid bus contention, all buses should be released
upon completion of memory operations. This task is han-
dled by ’cleanup’ when the unit does not have a pending re-
quest. This is of particular importance to instruction mem-
ory where instruction fetch would deadlock.

Load and store operations are shown to be trivially spec-

ified with stores executing in a single cycle and loads oper-
ating in two or more cycles depending on memory latency.
Requests from the branch/jump unit, however, require a
greater number of states due to the width mismatch of in-
structions and memory. A 16-bit branch-requested opera-
tion requires two 8-bit memory operations – each of these
operations providing support for dynamic wait states. While
the same behavior could be completed by signaling two con-
secutive push or pop operations, this method allows tighter
control handling and reduced complexity in the data path.
This is of particular interest for return operations, where
it is possible to pipeline pops to reduce total latency. The
branch/jump unit is subsequently notified upon completion
of requested loads and stores.

6. DESIGN EXTENSIBILITY
Our design methodology has shown to offer numerous ad-

vantages for the specification of control structures. We have
suggested that the separation of control and data path spec-
ifications, coupled with the compact nature of the pyPBS
language allows these designs to be easily extended. To
support this argument, we show how several different multi-
cycle multipliers can be swapped into the JackKnife design
with minimal effort. In a traditional specification, replacing
the single stage multiplier could prove a challenging task, as

329

machine b j u c on t r o l l e r {
input Request n , Lsu Ready n , Branch Wait On Status ,

Jump Op , Branch Op ,
Call Op , Return Op , Skip Op ;

output Id le , Jump Accept , Branch Accept1 , Branch Accept2 , Branch Latch ,
Cal l Accept1 , Cal l Accept2 , Call Wait ,
Return Accept1 , Return Accept2 , Return Wait ,
Skip Accept1 , Cleanup ,
S t a l l P i p e l i n e ;

bju −> (Request n<Id l e >∗ ,
op)+ ,
c leanup ;

op −> jump | brnch | c a l l | r e t | sk ip ;
jump −> [˜ Request n & Jump Op]<Jump Accept>;
brnch −> brnch de lay | brnch imm ;
brnch imm −> [˜ Request n & Branch Op & ˜Branch Wait On Status] <Branch Accept1 >;
b rnch de lay −> [˜ Request n & Branch Op & Branch Wait On Status] <Branch Latch> ,

. <Branch Accept2 | S t a l l P i p e l i n e >;
c a l l −> [˜ Request n & Call Op] <Call Accept1> ,

Lsu Ready n<Call Wait | S t a l l P i p e l i n e >∗ ,
˜Lsu Ready n<Cal l Accept2 | S t a l l P i p e l i n e >;

r e t −> [˜ Request n & Return Op] <Return Accept1> ,
Lsu Ready n<Return Wait | S t a l l P i p e l i n e >∗ ,
˜Lsu Ready n<Return Accept2 | S t a l l P i p e l i n e >;

sk ip −> [˜ Request n & Skip Op]<Skip Accept1 >;
c leanup −> Id l e <Cleanup >;

}

Figure 9: pyPBS specification for the JackKnife branch/jump unit.

11

10

13

12

Flush_Read_n

Stall_Bju

Stall_Lsu

CommitExecuteRead

Stall_Mu

Figure 12: Generated circuit of the JackKnife
pipeline controller highlighting the modifications re-
quired for supporting a multi-cycle multiplier.

it changes the timing of a number of components. In pyPBS,
however, modifications are limited to a simple change to
the pipeline controller and the addition of a multiplier con-
trol unit. Modifications to the pipeline controller consist
of the addition of a multiplier stall input source, as high-
lighted in Figure 11. As expected, the resulting circuit level
changes are minimal, as shown in Figure 12. The result-
ing pipeline controller is completely general, supporting a
variety of multi-cycle multipliers without additional modifi-
cation.

The multipliers, on the other hand, require specialized
control units. Figure 13 presents several control specifica-
tions for multi-cycle multipliers. All of the specifications use
the same request/stall control communication architecture

presented earlier to interface with the pipeline controller.
The first specification supports a simple 2-stage pipelined
multiplier. While this controller could be trivially specified
in any HDL, it is presented in pyPBS for completeness. The
controller can accept a request on every cycle, producing an
intermediate output signal in the same cycle and completion
output signals on the final cycle. While other functional
units protected against simultaneous execution of multiple
operations, this is unnecessary for a pipelined multiply al-
lowing simplification of the specification. Generation of the
pipeline stall signal is shown to be easily implemented within
the specification.

The second specification uses the pyPBS repetition (‘ ˆ ’)
operator to extend the multiplier pipeline to three execution
stages. The controller is additionally extended to provide a
fourth cycle for latching input operands. The third specifi-
cation describes the more complex behavior of a dynamic-
length multiplier. The number of stages in such a multi-
plication operation is dynamically determined by operand
values. The controller for this multiplier relies on a com-
pletion signal to be generated by the data path. Such a
signal may also serve the function of controlling pipeline in-
terlocking on adjacent stages or triggering other processor
events. Because dynamic-length operations cannot provide
static latency, this controller does not allow pipelining and
therefore limits execution to a single operation at a time.
A pipelined implementation could be realized by extending
the basic interlocked pipeline specification to accommodate
the maximum latency case.

While our presented architecture aims to avoid the com-
plexities of out-of-order execution by stalling the pipeline for
long latency instructions, the addition of multi-cycle func-
tional units suggests that a more opportunistic approach be
taken. The added complexity in specifying this type of ar-
chitecture comes in the form of a more complicated commit
unit, potentially requiring a reorder buffer and supporting

330

machine l s u c o n t r o l l e r {
input Request n , Memory Wait n ,

Load Op , Store Op ,
Bju Request n , Push2 Op n , Pop2 Op n ;

output Id le , Load Output Address , Ld Input Data , Store Output Address Data ,
Push2 Accept1 , Push2 Accept2 ,
Pop2 Accept1 , Pop2 Accept2 , Pop2 Accept3 ,
Memory Wait1 , Memory Wait2 , Memory Wait3 , Cleanup ,
S t a l l P i p e l i n e ;

l su −> (Request n<Id l e >∗ ,
(ld | s t | bju))+ ,
c leanup ;

ld −> [˜ Request n & Load Op]<Load Output Address> ,
(˜Memory Wait n)<Memory Wait1 | S t a l l P i p e l i n e >∗ ,
Memory Wait n<Ld Input Data | S t a l l P i p e l i n e >;

s t −> [˜ Request n & Store Op]<Store Output Address Data >;
bju −> bju push | bju pop ;
bju push −> [˜ Bju Request n & ˜Push2 Op n]<Push2 Accept1> ,

. <Push2 Accept2 | S t a l l P i p e l i n e >;
b ju pop −> [˜ Bju Request n & ˜Pop2 Op n]<Pop2 Accept1> ,

(˜Memory Wait n)<Memory Wait2 | S t a l l P i p e l i n e >∗ ,
Memory Wait n<Pop2 Accept2 | S t a l l P i p e l i n e > ,
(˜Memory Wait n)<Memory Wait3 | S t a l l P i p e l i n e >∗ ,
Memory Wait n<Pop2 Accept3 | S t a l l P i p e l i n e >;

c leanup −> Id l e <Cleanup >;
}

Figure 10: pyPBS specification for the JackKnife load/store unit.

logic.
Any of these multipliers can be swapped into the Jack-

Knife design with minimal effort. In a conventional HDL,
such modifications would be much more difficult, requiring
significant modifications to a number of design components.
Specification of even simple control in pyPBS is beneficial
as it provides a compact form where behavior is well under-
stood, extension of which is straightforward. The expres-
siveness of the language clearly allows control structures to
take shape quickly. Further, the sparse encoding of gener-
ated machines is well suited for high performance designs.
Our JackKnife design synthesizes at over 400MHz in 0.15µm
TSMC standard cells – more than 20 times the maximum
clock rate of commercially available AVRs.

7. RELATED WORK
pyPBS[9] belongs to a set of languages which impose syn-

chronous timing behavior on their programs. There are sev-
eral such languages, each with differing capabilities: State
Charts [6] provides an efficient mechanism for state machine
hierarchy specification, Esterel [2] allows for finite state ma-
chine composition in imperative language form while the
data-flow oriented languages Signal [1] and Lustre [4] allow
declarative specification of sequencing, and BlueSpec [7] al-
lows specification in terms of atomic actions. The general
notion of a clock enabled variable in Signal and Lustre is sim-
ilar to the notion of context in pyPBS, with the exception
that there is no notion of variable assignment or of variable
dependence in pyPBS. Thus, the substantive complexity of
dependence following and related correctness procedures are
missing. pyPBS attempts to mirror the minimal complex-
ity construction of a set of timing signals which are used to
control data-flow activity. It is thus similar to pure Esterel
and State-Charts in that functional activity is not modeled.
In practice, correctness modeling can be prohibitively ex-
pensive for complex machines. Instead of making such be-
havior the default, pyPBS supports construction of static

constraints or dynamic monitors [12] as required for valida-
tion and design debugging.

Previous work by Seawright [13] described a high-level
synthesis system based on the hierarchical Production-Based
Specification (PBS). The underlying abstraction model was
extended regular automata directly translated to circuit form.
It avoided representation explosion through direct construc-
tion from an abstract syntax tree (AST), avoiding the RE to
NFA conversion. This approach was shown to produce fa-
vorable machine encoding when compared to existing graph-
based techniques in terms of logic complexity and depth.
Crews [5] showed that PBS could be used to perform se-
quential optimization and construct machines that exhibit
synthesis complexity scaling in terms of the number of state
bits rather than the number of states. His optimizations in-
cluded simple heuristics on the synthesized circuit and rel-
atively powerful RE-based simplification on the AST. Fi-
nally, Seawright [14] described a system for partitioning the
AST to provide a bridge to conventional sequential synthe-
sis techniques that was particularly useful for counter and
timer applications. These techniques resulted in hardware
machine implementations that were comparable or superior
to those synthesized using conventional methods and which
could be scaled to very large (thousands of bits) FSMs. This
work was the progenitor of the Synopsys Protocol Com-
piler [11] and pyPBS [9]. Drawing from a general construc-
tion method, pyPBS added several powerful language con-
structs necessary for specifying complex control operations
such as tail-recursion and non-local observation. This work
greatly expands upon earlier pipeline methodologies [9] with
a new interlocked design and a general methodology for im-
plementing complex processor control.

Berry and Gonthier [2] proposed Esterel, a synchronous
language for reactive programming. This language provides
a means for non-deterministic machine description based on
“reactive” recognition of inputs. From these independent
reactions, a non-deterministic finite automata (NFA) model

331

machine p i p e l i n e c o n t r o l l e r {
input Programming n ,

Stal l Dependency ,
S ta l l L su ,
S ta l l B ju ,
Stall Mu ,
F lush Schedu le n ,
Flush Fetch n ,
Flush Decode n ,
Flush Read n ;

output Schedule , Fetch , Decode , Read , Execute , Commit ;
output S ta l l S chedu l e , S t a l l Fe t ch , Sta l l Decode , Sta l l Read , S ta l l Exe cu t e ;

c on t ro l −> program , .∗ , c y c l e ;
c y c l e −> schedu le , f e t ch , decode , read , execute , commit ;

program −> (˜Programming n ∗) , Programming n ;
schedu le −> (˜ (S t a l l F e t c h <Sta l l S chedu l e >+)) <Schedule >;
f e t ch −> (F lush Schedu le n : (˜ (S ta l l De code <Sta l l Fe t ch >+))) <Fetch>;
decode −> (F lush Fetch n : (˜ (Sta l l Read <Sta l l Decode >+))) <Decode>;
read −> (Flush Decode n : (˜ ([S ta l l Exe cu t e | Sta l l Dependency]<Sta l l Read >+))) <Read>;
execute −> (Flush Read n : (˜ ([S t a l l L su | S t a l l B j u | Stal l Mu]< Sta l l Exe cu t e >+))) <Execute >;
commit −> . <Commit>;

}

Figure 11: pyPBS specification for the JackKnife pipeline controller including modifications required for
supporting a variety of multi-cycle multipliers.

can be recognized and translated into a deterministic state
graph. Modern Esterel compilers avoid the potential explo-
sion of the translation process and can produce high quality
sequential hardware designs. In general, however, the bulk
of Esterel application has been in reactive software systems.

Both PBS and Esterel provide a means for “safe” ma-
chine composition, which is required to create large designs.
The notion of “safe” describes the property that a target
automaton’s protocol is not changed by inclusion in a larger
construction. In Esterel, this is managed by enforcing a sin-
gle point of control model within a control structure. This is
familiar to software designers and makes for efficient trans-
lation of Esterel code to machine instructions. In contrast,
PBS use of regular automata is “safe” in the opposite sense:
each submachine is assumed to be as general as any possible
invocation sequence can make it. In other words, any PBS
production is designed under the assumption that a new
invocation may occur each cycle. No attempt is made to
preserve the potentially lost points of control. This second
view is a close match to the actual behavior of logic circuits.
Thus, while Esterel can be compiled into efficient hardware,
many varieties of pipeline behavior are difficult to specify
and synthesize efficiently. Esterel, on the other hand excels
in error handling and modal changes, which need relatively
complex primitives in pyPBS.

Hoe and Arvind [7] proposed an operation-centric hard-
ware abstraction model useful for describing systems that
exhibit a high degree of concurrency. In this model, oper-
ations are specified as atomic actions, permitting each op-
eration to be formulated as if the rest of the system were
frozen. A recent extension of BlueSpec [8] proposes a forcing
operator enabling sequential constraint of the output design.
Despite similarity of application, pyPBS and Bluespec serve
substantially different needs. pyPBS provides a practical
specification and synthesis strategy for extremely complex
sequential protocols and related systems. Much of the power
of BlueSpec is lost in such a scenario. On the other hand,

Bluespec allows practical reasoning about complex opera-
tion dependency which is not supported in pyPBS. In the
middle ground, both languages have been used to describe
microcontrollers, with Bluespec providing succinct emula-
tion of Itanium scale designs. In contrast, pyPBS is used in
this paper to concisely design a multi-stream processor with
precisely defined interfaces, both to external devices and to
internal sequential peripherals.

The IBM/Accellera Formal Specification language PSL/-
SUGAR [3] has become the basis for formal property speci-
fication in System Verilog. This language contains extended
regular expression assertions as well as CTL and LTL model
checking capabilities. Although PSL is not intended for de-
sign implementation, the similarities show that formal prop-
erty checking can be done in this format. There was a prop-
erty checking extension of PBS in its Protocol Compiler in-
stantiation as well.

8. CONCLUSIONS
Our design methodology aims to ease the burden of design

and development of pipelined or highly sequential systems
by allowing construction of complex control through incre-
mental extensions to a proven interlocked pipeline specifica-
tion. Support for a number of stall and flush behaviors can
be added through addition of specialized recognizers with
minimal effort. By encouraging specification of simple, com-
partmentalized control, pyPBS provides insight into viable
partitioning strategies and allows simple integration of dis-
tributed control. Implementation of a fully synthesizable,
multi-threaded AVR has shown real specifications to be com-
pact, expressive, and extensible. Further, we have shown
that traditionally difficult modifications, such as swapping
multipliers, can be easily accomplished. We believe that our
methodology provides a framework for reduced cost imple-
mentations allowing for application of more aggressive ar-
chitectural techniques.

332

machine mu cont ro l l e r p i p ed two cyc l e {
input Request n ;

output S ta l l , Latch Inte rmed iate , Latch Resu l t ;

mu −> . ∗ , ˜Request n <Latch Inte rmed iate> , . <S t a l l | Latch Resu l t >;
}

machine mu co n t r o l l e r p i p ed t h r e e c yc l e {
input Request n ;

output S ta l l , Latch Operands , Latch Inte rmed iate , Latch Resu l t ;

mu −> . ∗ , ˜Request n <Latch Operands> ,
. ˆ 2 <S t a l l | Latch Inte rmed iate> ,
. <S t a l l | Latch Resu l t >;

}

machine mu c on t r o l l e r v a r i a b l e l e n g t h {
input Request n , Mult Complete ;

output S ta l l , Latch Operands , Latch Inte rmed iate , Latch Resu l t ;

mu −> (Request n <Id l e > + , ˜Request n <Latch Operands > ,
(˜ Mult Complete) <S t a l l | Latch Inte rmed iate> + ,
Mult Complete <S t a l l | Latch Result >)+;

}

Figure 13: pyPBS specifications for a 2-cycle pipelined multiplier, a 4-cycle pipelined multiplier, and a
variable length multiplier.

9. REFERENCES
[1] A. Benveniste, P. L. Guernic, and C. Jacquemot.

Synchronous programming with events and relations:
the signal language and its semantics. Sci. Comput.
Program., 16(2):103–149, 1991.

[2] G. Berry and G. Gonthier. The esterel synchronous
programming language: design, semantics,
implementation. Sci. Comput. Program., 19(2):87–152,
1992.

[3] D. F. C. Eisner. Sugar 2.0 proposal presented to the
accellera formal verificaition technical committee.

[4] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice.
Lustre: A declarative language for programming
synchronous systems. In 14th ACM Symposium on
Principles of Programming Languages, Jan. 1987.

[5] A. Crews and F. Brewer. Controller optimization for
protocol intensive applications. In EURO-DAC
’96/EURO-VHDL ’96: Proceedings of the conference
on European design automation, pages 140–145, Los
Alamitos, CA, USA, 1996. IEEE Computer Society
Press.

[6] D. Harel. Statecharts: A visual formalism for complex
systems. Sci. Comput. Program., 8(3):231–274, 1987.

[7] J. C. Hoe and Arvind. Synthesis of operation-centric
hardware descriptions. In ICCAD ’00: Proceedings of
the 2000 IEEE/ACM international conference on
Computer-aided design, pages 511–519, Piscataway,
NJ, USA, 2000. IEEE Press.

[8] J. C. Hoe and G. Nordin. Synchronous extensions to
operation-centric hardware description languages. In
MemoCODE 04, June 2004.

[9] G. Hoover and F. Brewer. Pypbs design and
methodologies. In Third International Conference on
Formal Methods and Models for Codesign, pages
55–64, 2005.

[10] G. Hoover and F. Brewer and T. Sherwood. A Case
Study of Multi-Threading in the Embedded Space. In
International Conference on Compilers, Architectures,
and Synthesis for Embedded Systems, 2006.

[11] W. Meyer, A. Seawright, and F. Tada. Design and
synthesis of array structured telecommunication
processing applications. In DAC ’97: Proceedings of
the 34th annual conference on Design automation,
pages 486–491, New York, NY, USA, 1997. ACM
Press.

[12] M. T. Oliveira and A. J. Hu. High-level specification
and automatic generation of ip interface monitors. In
DAC ’02: Proceedings of the 39th conference on
Design automation, pages 129–134, New York, NY,
USA, 2002. ACM Press.

[13] A. Seawright and F. Brewer. Clairvoyant: A system
for production-based specifications. In IEEE
Transactions on VLSI Systems, volume 2, pages
172–185, June 1994.

[14] A. Seawright, J. Buck, U. Holtmann, W. Meyer,
B. Pangrle, and R. Verbrugghe. A system for
compiling and debugging structured data processing
controllers. In EURO-DAC ’96/EURO-VHDL ’96:
Proceedings of the conference on European design
automation, pages 86–91, Los Alamitos, CA, USA,
1996. IEEE Computer Society Press.

[15] A. Snavely, L. Carter, J. Boisseau, A. Majumdar,
K. S. Gatlin, N. Mitchell, J. Feo, and B. Koblenz.
Multi-processor performance on the tera mta. In 1998
ACM/IEEE Conference on Supercomputing
(CDROM), pages 1–8, 1998.

333

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

