
Limitations of Special-Purpose Instructions for Similarity
Measurements in Media SIMD Extensions

Asadollah Shahbahrami
shahbahrami@ce.et.tudelft.nl

Ben Juurlink
benj@ce.et.tudelft.nl

Stamatis Vassiliadis
stamatis@ce.et.tudelft.nl

Computer Engineering Laboratory
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology, The Netherlands
Phone: +31 15 2787362, Fax: +31 15 2784898.

ABSTRACT
Microprocessor vendors have provided special-purpose in-
structions such as psadbw and pdist to accelerate the sum-
of-absolute differences (SAD) similarity measurement. The
usefulness of these special-purpose instructions is limited ex-
cept for the motion estimation kernel. This has several draw-
backs. First, if the SAD becomes obsolete because a differ-
ent similarity metric is going to be employed, then those
special-purpose instructions are no longer useful. Second,
these special instructions process 8-bit subwords only. This
precision is not sufficient for some kernels such as motion
estimation in the transform domain. In addition, when em-
ploying other n-way parallel SIMD instructions to imple-
ment the SAD and sum-of-squared differences (SSD), the
obtained speedup is much less than n. This is because there
is a mismatch between the storage and the computational
format. In this paper, we design and evaluate a variety
of SIMD instructions for different data types. We synthe-
size special-purpose instructions using a few general-purpose
SIMD instructions. In addition, we employ the extended
subwords technique to avoid conversion overhead and to in-
crease parallelism. In this technique there are four extra
bits for every byte of register. The results show that using
different SIMD instructions and extended subwords achieve
a speedup ranging from 10.39 to 14.57 over C performance
for SAD, SSD with interpolation, and SSD functions in the
motion estimation kernel. While, MMX achieves a speedup
ranging from 4.61 to 7.42. Additionally, the proposed SIMD
instructions improve the performance of similarity measure-
ment for image histograms by a factor ranging from 8.69
(1-way) to 11.70 (4-way) over C. While for MMX speedup
is between 2.90 (1-way) and 4.33 (4-way).

Categories and Subject Descriptors: C.4 [ Performance
of Systems]: Measurement Techniques.

General Terms: Algorithms, Performance.

Keywords: Similarity Measurements, SIMD, Sub-word Par-
allelism.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’06, October 23–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-543-6/06/0010 ...$5.00.

1. INTRODUCTION
Similarity measurement is an important function in many

media applications such as standard video coders/decoders
(codecs) and image/video retrieval. The MPEG-1/2/4 and
H.263/4 standards are based on motion estimation and this
important kernel uses different similarity functions. Among
the different similarity measurements, the Euclidean dis-
tance or Sum-of-Squared Differences (SSD) and the Sum-
of-Absolute Differences (SAD) functions have been found to
be the most useful [23, 19, 29, 26]. For example, in [29]
eight similarity measurements for image retrieval have been
evaluated. Based on the results presented there, in terms of
retrieval effectiveness and retrieval efficiency, the SSD and
SAD functions are more desirable than other functions. Ad-
ditionally, the performance of four motion estimation algo-
rithms using different distortion measures has been evalu-
ated in [19]. The best results related to the quality of motion
predicted frame have been obtained using the SSD and SAD
functions. Furthermore, according to [26], among all the im-
age metrics, the Euclidean distance is the most commonly
used in image recognition and computer vision.

Similarity measurement, however, is very computation-
ally intensive. For instance, in [9, 15, 18] it has been indi-
cated that the motion estimation step in the video codecs
takes about from 60% to 80% of the encoding time. Con-
sequently, many processor vendors have designed different
Single-Instruction Multiple-Data (SIMD) instructions to im-
plement different similarity measurements. For instance,
some processor vendors have provided special-purpose in-
structions such as the SSE instruction psadbw [16] and the
VIS instruction pdist (pixel distance) [22] to accelerate mo-
tion estimation based on the SAD function. These instruc-
tions are very special-purpose instructions, however. Since
they have limited usefulness except for the motion estima-
tion kernel. This has several drawbacks.

First, if the sum-of-absolute differences becomes obsolete
because a different similarity metric is going to be employed,
then those special-purpose instructions are no longer use-
ful. For example, MIPS’ MDMX [6] does not provide a
SAD instruction but advocates using the SSD instead. Sec-
ond, as indicated in [10], the complex CISC-like semantics
of special-purpose instructions makes automatic code gen-
eration difficult. Third, these special instructions process
8-bit subwords only. This precision is not sufficient for mul-
timedia kernels such as motion estimation in the transform
domain or for cost functions used in image and video re-
trieval [12]. In addition, this 8-bit precision is not also suf-

293



ficient for using quarter-pixel resolution, which is used in
some standards such as H.264 [21]. Finally, since these in-
structions process eight 8-bit subwords, they are most useful
if the vector length is a multiple of 8. In the H.264 standard,
however, variable block sizes, for instance 8 × 4 and 4 × 4
are used [21].

In addition, when employing other n-way parallel SIMD
instructions to implement similarity measurements, the ob-
tained speedup is much less than n. This is because there
is a mismatch between the storage format and the compu-
tational format. Consequently, unpacking is required before
operations are performed and the results also have to be
packed before they can be stored back to memory. This
means loss of performance due to the execution of overhead
instructions and because fewer subwords can be processed
in parallel.

As a result, different applications need different data types
to implement different similarity measurements. For exam-
ple, image/video retrieval systems need data types larger
than 8- and 16-bit. So, there are no general and useful SIMD
instructions to implement different similarity measurements
for different data types on existing SIMD architectures.

In this paper, we design and evaluate new SIMD instruc-
tions to overcome these limitations. We use our new SIMD
instructions to implement different similarity measurements
focusing on the SAD and SSD for providing much higher
performance compared to other media extentions such as
MMX [14] and SSE [16]. This is because the increased mul-
timedia applications, especially in the video processing do-
main, has given rise to its own class of processors and In-
struction Set Architecture (ISA) such as embedded media
processors. The reasons for using SIMD processing on em-
bedded media processors are the following. First, ISA exten-
sions, with the capability of SIMD processing, provide flex-
ibility and easier upgrades from one generation to the next
compared to fixed-function Application-Specific Integrated
Circuits (ASICs). Second, SIMD instructions are particu-
larly suited for embedded processors because they offer high
performance at low energy consumption.

To avoid conversion overhead in the traditional SIMD pro-
cessing, we employ the extended subwords technique, which
are wider than the normal subwords that are 8-, 16-, and
32-bit. Our subwords are 12-, 24-, 48-bit. These subwords
allow many operations to be performed without overflow
and avoids packing/unpacking overhead instructions that
are necessary when implementing similarity measurements
using conventional media extensions such as MMX/SSE and
VIS.

We refer to MMX equipped with general and simple SIMD
instructions for different data types and the extended sub-
words as Modified MMX (MMMX). We have simulated SIMD
instructions of the MMX/SSE and our MMMX ISA by ex-
tending the SimpleScalar toolset [2]. Our experimental re-
sults show that:

• The speedup of the MMX implementation for SAD
kernel is more than MMMX implementation, because
of using special-purpose psadbw instruction.

• MMMX achieves a speedup ranging from 10.39 to 14.57
over C performance for SAD, SSD with interpolation,
and SSD functions in the motion estimation kernel.
While, MMX achieves a speedup ranging from 4.61 to
7.42.

• Speedup of MMMX to implement SAD function as a
similarity measurement of image histograms is between
8.69 (1-way) and 11.70 (4-way) over C. While for MMX
speedup is between 2.90 (1-way) and 4.33 (4-way).

• Providing SIMD instructions for different data types
is necessary to yield much more performance in new
media processors compared to existing SIMD proces-
sors. This is because employing existing n-way SIMD
instructions to implement multimedia kernels, the ob-
tained speedup is much less than n, because of using
overhead instructions.

The paper is structured as follows. Related work is dis-
cussed in Section 2. Section 3 describes the MMMX archi-
tecture. The different similarity measurements and their im-
plementations using MMX/SSE and MMMX are discussed
in Section 4. The experimental results are presented in Sec-
tion 5, and conclusions are drawn in Section 6.

2. RELATED WORK
Special purpose psadbw and pdist instructions have been

provided in the SSE [16] and in the VIS ISA [22], respec-
tively. These instructions compute the SAD function be-
tween the corresponding 8-bit components in a pair of 64-
bit registers and accumulates the error values. Intel has
provided wsad instruction to perform the sum-of-absolute
differences on 8- or 16-bit data types in the wireless MMX
technology [7, 13]. In addition, ARM also introduced two
special-purpose instructions, usad8 and usada8 to calculate
the sum-of-absolute differences between 8-bit values for 4-
way parallelism [4]. As already mentioned in Section 1, these
special-purpose instructions have some limitations.

Waerdt and Vassiliadis [25] have proposed new operations,
which are supported by the TM3270 media processor for
video processing. For example, collapsed load operations
with interpolation allow for a motion estimation function
that evaluates 17 macroblock candidates in the 3D recursive
search. They focused on MPEG-2 standard. In addition, a
data type of 8-bit has been considered for SAD function.

The reason behind the popularity of the SAD function is
its relative ease of implementation even though it does not
perform as good as the SSD function. For example, Vassil-
iadis et al. [24] have proposed a hardware unit for computing
the SAD function. Two example implementations, 16 × 1
and 16× 16 pixels have been considered. Pixels were repre-
sented in 8 bits. As another example, in [5, 28] two hard-
ware architectures for real-time implementation of a variable
block size motion estimation algorithm using SAD function
for H.264 standard have been proposed. In addition, Wei
and Grand [27] have proposed a hardware architecture for
the SAD function. Their proposed architecture has a block
of 16× 1 processing elements, a 4-stage adder tree, and two
flexible register arrays that supports most variable block size
motion estimation. These ASIC architectures are not flexi-
ble, however.

Our work differs from others in the following manner.
First, we design and evaluate many new general SIMD in-
structions to implement different similarity measurements.
This programmability feature from our ISA gives a flexibil-
ity advantage over a dedicated hardware approach. SIMD
instructions enables algorithmic changes after design, mul-
tiple applications can be mapped to the same platform, and
faster time-to-market. Second, we significantly extend to use

294



unsigned char blk1[16][16], blk2[16][16];
int sad = 0; short diff;
for (i=0; i<16; i++)

for (j=0; j<16; j++) {
diff = blk1[i][j] - blk2[i][j];
if (diff<0) diff = - diff;
sad += diff;

}

Figure 1: Sum-of-absolute differences.

the extended subwords technique by providing experimen-
tal results obtained by a detailed, cycle-accurate simulator.
Our work shows that the extended subwords can be used to
avoid conversion overhead such as packing and unpacking,
which are used in implementing of similarity measurements
in the traditional SIMD processing. This technique signif-
icantly reduces the number of instructions that need to be
fetched, decoded, and executed.

In [8] we have proposed using extended subwords to avoid
data conversion overhead in many multimedia kernels. In
addition, in our previous work [17], we used extended sub-
words and matrix register file techniques to implement many
2D media kernels such as (I)DCT, pixel padding, vector/matrix,
and matrix/matrix multiply. In our previous work [8, 17]
performance was evaluated by calculating the dynamic num-
ber of instructions, without using any simulators. We saw
the lack of SIMD instructions for different data types. This
observation motivated us for the current work.

3. MMMX ARCHITECTURE
In this section we briefly describe the MMMX architec-

ture, which features extended subwords. In addition, we
discuss the proposed instruction set.

3.1 Extended Subwords
Image and video pixels are typically stored in memory us-

ing a narrow data type, for example, 8-bit. This kind of
representation is often too small for intermediate computa-
tions to occur without overflow. Consider, for example, the
code that is depicted in Figure 1. This code computes the
sum-of-absolute differences between two 16 × 16 blocks.

Since blk1[i][j] - blk2[i][j] is a 9-bit value, eight of
these intermediate results do not fit in a single 64-bit reg-
ister. The data, therefore, needs to be converted (unpacked
or promoted) to the larger 16-bit format, causing conver-
sion overhead. Furthermore, the number of subwords that
are processed in parallel by a single SIMD instruction is re-
duced by a factor of 2. To avoid this conversion overhead
and to increase parallelism, we employ the extended sub-
words technique. This means that the registers are wider
than the data loaded into them. Specifically, for every byte
of data, there are four extra bits. This implies that MMMX
registers are 96 bits wide, while MMX has 64-bit registers.
These registers are treated either as a vector of eight 12-bit
subwords, four 24-bit subwords, or two 48-bit quantities, as
is depicted in Figure 2.

3.2 Instruction Set Architecture
Multimedia applications often use different data types. It

is necessary to provide SIMD instructions for different data
types to yield much more performance compared to non-
SIMD instructions. Since in the MMMX ISA, we try to pro-

8 elements of 12-bit.

4 elements of 24-bit.

2 elements of 48-bit.

95          84 83         72 71         60         59         48 47         36 35         24 23          12 11             0

Figure 2: Different subwords in the vector register
file of the MMMX architecture.

fld8s12   mm6, (0x1000)

Address: 0x1000 0xFF      0x13     0xAB    0x2A    0xA7      0x01     0x02     0x03 

mm6: F      FF       0      13       F      AB      0        2A     F      A7       0     01        0      02       0       03

Figure 3: Illustration of the fld8s12 instruction.

vide a wider set of SIMD operations for different data types
and also to reduce the operations complexity by providing
simple and general SIMD instructions. We do not want to
design special-purpose instructions with limited usefulness
except for one or two kernels.

When loading data into an MMMX register, the subwords
are automatically unpacked. For example, as illustrated in
Figure 3, the instruction fld8s12 loads eight signed bytes
and unpacks them to signed 12-bit quantities. Vice versa,
store instructions automatically saturate (clip) and pack the
subwords. For example, the instruction fst12s8u saturates
the 12-bit signed subwords to 8-bit unsigned subwords before
storing them to memory.

Figure 4 illustrates the fsum{12,24,48} instructions, which
add adjacent subwords in a media register. The instruc-
tions fmin{12,24,48} and fmax{12,24,48} return the min-
imum or maximum values of corresponding subwords in two
registers. The instructions fneg{12,24,48} mm,imm8 negate

each subword is 12-bit

 24-bit                 24-bit               24-bit                 24-bit

48-bit                                           48-bit

  96-bit

+ + + +

+ +

 +

fsum12

fsum24

fsum48

Figure 4: The structure of three fsum instructions
in the MMMX architecture.

295



the 12-, 24-, and 48-bit subwords of the source operand if
the corresponding bit in the 8-bit immediate imm8 is set.
If subwords are 24- or 48-bit, the four or six higher or-
der bits in the 8-bit immediate are ignored. The instruc-
tions fmadd{12,24,48} perform the multiply-add operation
on adjacent subwords. Specifically, the instruction fmadd12

multiplies the eight signed 12-bit subwords of the first operand
with the corresponding subwords of the second operand and
adds adjacent 24-bit products. The instruction fmadd24

performs the same operation but on 24-bit subwords and
produces two 48-bit results. In the MMX architecture, the
multiply-add operation is only supported for the packed
word (4 × 16-bit) data type (pmaddwd).

The main differences between the MMX/SSE and MMMX
architectures in integer part listed in Table 1. As this ta-
ble depicts there are SIMD instructions for different data
types in the MMMX ISA. For instance, there are full 12-
and 24-bit multiply instructions in the MMMX ISA, while
in the MMX/SSE ISA is not. In these instructions results
are stored in both operands. Special-purpose MMX/SSE
instructions such as psadbw, pavg {b,w} and rearrangement
instructions such as pshufw, packss {wb,dw,wb} are not sup-
ported in the MMMX architecture [17]. In the MMMX ISA
the special-purpose instructions can be synthesized using a
few general-purpose instructions.

4. SIMILARITY MEASUREMENTS
In this section we discuss the two most important simi-

larity measurements: SAD and SSD. In addition, their im-
plementations using MMX/SSE and MMMX for motion es-
timation and measuring similarity between histograms for
images are discussed.

4.1 SSD and SAD Functions
The cost functions of the SSD and SAD for motion estima-

tion kernel of two N ×N blocks are defined by Equation (1)
and Equation (2), respectively. In these equations x(m, n)
represents the current block of N2 (usually N = 16) pixels
and y(m+ i, n+j) represents the corresponding block in the
previous frame at new coordinates m + i, n + j and w is the
size of the search window.

SSD(i, j) =

NX

m=1

NX

n=1

(x(m,n)−y(m+i, n+j))2,−w ≤ i, j ≤ w

(1)

SAD(i, j) =
NX

m=1

NX

n=1

|x(m, n)−y(m+i, n+j)|,−w ≤ i, j ≤ w

(2)
The SSD is more accurate and more complex than the

SAD. The SAD criterion is considered a good candidate for
low bit rate video applications. This is mainly due to its
relatively easy hardware implementation.

These SSD and SAD functions are also used in Content-
Based Image and Video Retrieval (CBIVR) systems. In
CBIVR systems, images and videos are indexed into a database
using a vector of features extrated from the image or video.
In the retrieval stage the similarity between the features of
the query image and stored feature vectors is determined.
That means that computing the similarity between two im-
ages or videos can be transfered into the problem of comput-
ing the similarity between two feature vectors [11]. Hence,
the large computational cost associated with CBIVR sys-
tems is related to matching algorithms for feature vectors.

h’          g’          f’           e’          d’          c’          b’          a’ h          g            f           e          d           c           b           a

h-h’       g-g’        f-f’        e-e’      d-d’        c-c’       b-b’      a-a’

|h-h’|     |g-g’|     |f-f’|      |e-e’|     |d-d’|     |c-c’|     |b-b’|      |a-a’|

. . . . . .

1.

2.

3.
+ + + +

+ +

+

Figure 5: The structure of SAD instruction in mul-
timedia extension.

This is because there are many feature vectors from different
images and videos in the feature database.

Histogram Euclidean distance (Equation (3)) and bin-to-
bin difference (b2b) (Equation (4)) are common similarity
measurements, which are used in the CBIVR systems [3].
In these equations h1 and h2 represent two histograms, N
is the number of pixels in an image, and n is the number of
bits in each pixel.

d2(h1, h2) =
2n−1X

i=0

(h1[i] − h2[i])
2 (3)

fdb2b(h1, h2) =

P2n−1
i=0 |(h1[i] − h2[i]|)

N
(4)

The number of elements in a histogram depends on the
number of bits in each pixel in an image. For example,
if we suppose a pixel depth of n bit, the pixel values will
be between 0 and 2n − 1, and the histogram will have 2n

elements.
Components of the color histograms are usually unsigned

numbers and larger than 8- and 16-bit. For instance, if we
suppose a frame of size 512 × 512 is completely white or
black, the largest element will be 218.

In the following section we discuss the MMX and MMMX
implementations of these functions.

4.2 MMX/SSE and MMMX Implementations
of SAD

Sum-of-absolute differences is a similarity measurement,
which is usually used in the motion estimation kernel. The
SAD function typically processes 16 × 16 blocks, as is de-
picted in Figure 1.

As mentioned in Section 1, this SAD function was found to
be so important that many processor vendors have decided
to support a special-purpose instruction for it, for example
psadbw instruction [16]. A 64-bit psadbw instruction consists
of 3 steps: (1) calculate eight 8-bit differences between the
elements, (2) calculate the absolute value of the differences,
and (3) perform three cascaded summations. These steps
are illustrated in Figure 5. One reason why the psadbw

instruction provides such a significant performance benefit
is that the hardware internally keeps the carry bit.

The code in Figure 6, that has been written by MMX/SSE
instructions shows how the kernel listed in Figure 1 can be

296



MMX/SSE (integer part) MMMX

Datapath 64-bit 96-bit
Size of register file 8 x 64-bit 8 x 96-bit
Access to register file row-wise row-wise + column-wise
# of partitioned ALU 8 8
Size of the integer subwords 8-, 16-, and 32-bit 12-, 24-, and 48-bit
Full multiply instruction No 12-, 24-bit
High and low multiply inst. 16-bit 12-, 24-, and 48-bit
The size of MAC operation 16-bit 12-, 24-, and 48-bit
MAC instruction pmaddwd fmadd12, fmadd24, fmadd48
Special purpose instruction No/pavgb, pavgw, psadbw No
Saturate Add/Sub. Yes No
Overhead instructions packsswb, packssdw funpckl12, funpckl24

packuswb, punpckhbw funpckh12, funpckh24
punpckhwd, punpckhdq
punpcklbw, punpcklwd
punpckldq/pshufw

Maximum/Minimum inst. No/ pmaxub, pmaxsw fmax12, fmax24, fmax48
pminub, pminsw fmin12, fmin24, fmin48

Add/Sub of adjacent subwords No fsum12, fsum24, fsum48
fdiff12, fdiff24, fdiff48

Table 1: The main differences between MMX/SSE and MMMX architectures.

(1) mov eax , 16
(2) pxor mm5 , mm5
(3) loop:
(4) movq mm1 , [blk1]
(5) movq mm2 , [blk2]
(6) movq mm3 , [blk1+8]
(7) movq mm4 , [blk2+8]
(8)
(9) psadbw mm1 , mm2
(10) psadbw mm3 , mm4
(11)
(12) paddd mm1 , mm3
(13) paddd mm5 , mm1
(14) add blk1, 16
(15) add blk2, 16
(16) dec eax
(17) jnz .loop

Figure 6: MMX/SSE program of SAD listed in Fig-
ure 1.

implemented using the psadbw instruction.
As indicated, the difference between corresponding pix-

els is a 9-bit value. In the MMMX architecture, we have
implemented SIMD instructions to replace the psadbw in-
struction, which are more general purpose instructions and
can be used in many multimedia kernels and also in other
similarity measurements. This means that the SAD function
can be synthesized using a small number of general-purpose
SIMD instructions with only a small performance degrada-
tion, so the psadbw instruction essentially becomes obsolete.

Figure 7 shows how the SAD function can be implemented
using MMMX instructions. Instead of the two psadbw in-
structions in the MMX/SSE program, it can be synthe-
sized using the SIMD instructions fsub12, fneg12, fmax12,
fadd12, and fsum{12,24,48} of the MMMX architecture,
which are more general-purpose than the SAD. To provide
8-way parallelism using the extended subwords, we divided
a 16× 16 block into two 8× 16 blocks. In the first iteration
of the inner loop, the SAD function of the first 8× 16 block
is calculated and in the next iteration the SAD function
of the second 8 × 16 block is performed. Finally, the re-

(1) mov ecx , 2
(2) loop2:
(3) fxor mm5 , mm5
(4) mov eax , 8
(5) loop1:
(6) fld8u12s mm1 , [blk1]
(7) fld8u12s mm2 , [blk2]
(8) fld8u12s mm3 , [blk1+8]
(9) fld8u12s mm4 , [blk2+8]
(10)
(11) fsub12 mm1 , mm2
(12) fneg12 mm7 , mm1
(13) fmax12 mm1 , mm7
(14)
(15) fsub12 mm3 , mm4
(16) fneg12 mm7 , mm3
(17) fmax12 mm3 , mm7
(18)
(19) fadd12 mm1 , mm3
(20) fadd12 mm5 , mm1
(21) add blk1, 16
(22) add blk2, 16
(23) dec eax
(24) jnz .loop1
(25) fsum12 mm5
(26) fsum24 mm5
(27) fsum48 mm5
(28) fadd96 mm6 , mm5
(29) dec ecx
(30) jnz .loop2

Figure 7: MMMX implementation of the SAD func-
tion listed in Figure 1.

297



(1) loop_row:
(2) movq mm1, [His_Current]
(3) movq mm2, [His_Reference]
(4) movq mm3, mm1
(5) psubd mm1, mm2
(6) psubd mm2, mm3
(7) movq mm3, mm1
(8) movq mm4, mm2
(9) pcmpgtd mm1, mm2
(10) pcmpgtd mm2, mm3
(11) pand mm1, mm3
(12) pand mm2, mm4
(13) paddd mm1, mm2
(14) paddd mm5, mm1
.
.

Figure 8: Part of the MMX implementation of the
sum-of-absolute differences for similarity measure-
ment of histograms.

(1) loop_row:
(2) fld32s24u mm1, [His_Current]
(3) fld32s24u mm2, [His_Reference]
(4) fsub24 mm1, mm2
(5) fneg24 mm7, mm1
(6) fmax24 mm1, mm7
.
.

Figure 9: Part of the MMMX implementation of
the sum-of-absolute differences for similarity mea-
surement of histograms.

sults accumulate into one register using fsum{12, 24, 48}
instructions.

Figure 8 and Figure 9 depict part of the MMX and MMMX
implementations of the SAD function for similarity mea-
surement of two histograms, respectively. In the MMX
implementation 2-way parallelism is used. This is because
the elements of the color histograms for different image and
video frame sizes that are used in existing standards are
usually unsigned numbers and larger than 8- and 16-bit and
smaller than 24-bit. Elements of the histograms are stored
in memory as 32-bit data type. Additionally, there is no
special-purpose instruction for SAD function of 32-bit data
type in the MMX ISA. This means that we have to use about
10 other instructions to implement it. In the MMMX im-
plementation, on the other hand, 4-way parallelism is used
as shown in Figure 9. This is because 24-bit subwords are
sufficient for computational results of the histograms.

4.3 MMX/SSE and MMMX Implementations
of SSD

The SSD function for processing a block of size 16 × 16
is listed in Figure 10. It can be shown analytically based
on Equation (5) that 24 bits of precision is sufficient for
accumulation range of the SSD implementation.

15X

i=0

15X

j=0

(255)2 < (28)3 = 224 (5)

This means that an unsigned 24-bit data type is sufficient,
which does not map orderly to a general purpose data type.

Figure 11 and Figure 12 show how the SSD function de-

unsigned char blk1[16][16], blk2[16][16];
int ssd = 0;
for (i=0; i<16; i++)

for (j=0; j<16; j++)
ssd += (blk1[i][j] - blk2[i][j])

* (blk1[i][j] - blk2[i][j]);

Figure 10: Sum-of-squared differences.

(1) mov eax , 16
(2) pxor mm0 , mm0
(3) pxor mm7 , mm7
(4) loop:
(5) movq mm1 , [blk1]
(6) movq mm2 , [blk2]
(7) movq mm3 , mm1
(8) movq mm4 , mm2
(9) punpcklbw mm1 , mm0
(10) punpckhbw mm3 , mm0
(11) punpcklbw mm2 , mm0
(12) punpckhbw mm4 , mm0
(13) psubw mm1 , mm2
(14) psubw mm3 , mm4
(15) movq mm2 , mm1
(16) movq mm4 , mm3
(17) pmaddwd mm1 , mm2
(18) pmaddwd mm3 , mm4
(19) paddd mm1 , mm3
(20) paddd mm7 , mm1
(21) ; for other 8 pixels
(22) movq mm1 , [blk1+8]
(23) movq mm2 , [blk2+8]
(24) ; 13 instructions like above
(37) paddd mm7 , mm1
(38) add blk1, 16
(39) add blk2, 16
(40) dec eax
(41) jnz .loop
(42) movq mm6 , mm7
(43) psrlq mm7 , 32
(44) paddd mm7 , mm6

Figure 11: MMX/SSE program of the sum-of-
squared differences function.

picted in Figure 10 can be implemented using MMX/SSE
and MMMX instructions, respectively. In the MMX/SSE
code 16-bit subwords are used for computation and final re-
sults are stored in 32-bit subwords. Because of this, we have
to use many times punpck instructions for promotion of 8-
bit to 16-bit data type. This is the reason why the static
number of instructions in each iteration of the MMX/SSE
implementation is 36 compared to 15 in the MMMX code.
In the MMMX implementation 12-bit subwords are used for
processing and final computational results are stored in 24-
bit subwords.

Similarity measure for two histograms using SSD kernel
with MMX/SSE ISA is also not easy. In MMX/SSE there
is neither full 16-bit multiply instruction nor 32-bit multiply
instruction. It instead offers two 16-bit multiply operations,
pmulhw (packed multiply high) and pmullw (packed multi-
ply low) instructions. Dividing an operation into several in-
structions increases register pressure and creates additional
data dependencies. Additionally, most MMX/SSE SIMD
instructions process integers of only 8 or 16 bits. As a re-
sult, to provide variety of the SIMD instructions is necessary

298



(1) mov eax , 16
(2) fxor mm7 , mm7
(3) loop:
(4) fld8u12 mm1 , [blk1]
(5) fld8u12 mm2 , [blk2]
(6) fld8u12 mm3 , [blk1+8]
(7) fld8u12 mm4 , [blk2+8]
(8) fsub12 mm1 , mm2
(9) fsub12 mm3 , mm4
(10) fmov mm2 , mm1
(11) fmov mm4 , mm3
(12) fmadd24 mm1 , mm2
(13) fmadd24 mm3 , mm4
(14) fadd24 mm1 , mm3
(15) fadd24 mm7 , mm1
(16) add blk1, 16
(17) add blk2, 16
(18) dec eax
(19) jnz .loop
(20) fsum24 mm7
(21) fsum48 mm7

Figure 12: MMMX implementation of the SSD func-
tion.

(a)                                                                                      (b)                                                                                     (c)

Figure 13: Similar and dissimilar blocks.

for different data types, to yield much more performance in
implementation of the multimedia applications, as we have
provided in the MMMX ISA.

4.4 Interpolation
The SAD and SSD similarity measurements are only a

summation of the pixel-wise intensity differences and, con-
sequently, small changes may result in a large similarity dis-
tance. For example, the Euclidean distance of Figure 13(a)
and (b) is less than the Euclidean distance of (a) and (c),
even though Figure 13(a) in more similar to Figure 13(c)
than to (b).

For images, there are spatial relationships between pixels.
There are many ways to consider the relationships between
pixels, for example, averaging. Averaging neighboring pixels
can be done either on two adjacent pixels horizontally, two
adjacent pixels vertically, or four adjacent pixels in both
horizontal and vertical dimensions.

The SSE ISA provides a special averaging instruction pavgb

for 8-bit subwords. In addition, wavg2 instruction has also
been provided in the wireless MMX technology to perform
a 2-pixel average on unsigned vectors of 8- or 16-bit data [7,
13]. To consider relationships between pixels in this paper,
we implement averaging four neighboring pixels of the ref-
erence block.

The pavgb instruction averages two pixels, unsigned val-
ues are rounded up to the nearest integer. Averaging four
pixels may produce an error of 1 when performing 3 average
operations, pavgb(x, y, z, t) = pavgb[pavgb(x,y), pavgb(z, t)].

(1) loop:
(2) ; Pixels 0..7
(3) movq mm1, [blk1]
(4) movq mm3, [blk1+16]
(5) movq mm2, mm1
(6) movq mm4, mm3
(7) punpcklbw mm1, mm0
(8) punpcklbw mm3, mm0
(9) movd mm5, [blk1+1]
(10) movd mm6, [blk1+17]
(11) punpcklbw mm5, mm0
(12) punpcklbw mm6, mm0
.
.
(30) packuswb mm1, mm2
(31) psadbw mm1, [blk2]
.
.
(34) ; Pixels 8..F
(35) movq mm1, [blk1+8]
(36) movq mm3, [blk1+24]
(37) movq mm2, mm1
(38) movq mm4, mm3
(39) punpcklbw mm1, mm0
(40) punpcklbw mm3, mm0
(41) movd mm5, [blk1+9]
(42) movd mm6, [blk1+25]
(43) punpcklbw mm5, mm0
(44) punpcklbw mm6, mm0
.
.

Figure 14: MMX/SSE program of the sum-of-
absolute difference function using horizontal and
vertical interpolation.

To avoid this error in the MMX/SSE implementation we use
16-bit operations using pack/unpack instructions. Figure 14
and Figure 15 show the MMX/SSE and MMMX implemen-
tations for SAD function using horizontal and vertical inter-
polation, respectively.

The intermediate sum of four neighboring pixels is larger
than 8-bit. Hence, in the MMX/SSE implementation we
should unpack data type 8-bit to 16-bit. This means that 4-

(1) loop:
(2) fld8u12 mm1, [blk1]
(3) fld8u12 mm2, [blk1+8]
(4) fld8u12 mm3, [blk1+16]
(5) fld8u12 mm4, [blk1+24]
(6) fadd12 mm1, mm3
(7) fadd12 mm2, mm4
(8) fld8u12 mm3, [blk1+1]
(9) fld8u12 mm4, [blk1+9]
(10) fld8u12 mm5, [blk1+17]
(11) fld8u12 mm6, [blk1+25]
(12) fadd12 mm3, mm5
(13) fadd12 mm4, mm6
(14) fadd12 mm1, mm3
(15) fadd12 mm2, mm4
(16) fsra12 mm1, 2
(17) fsra12 mm2, 2
.
.

Figure 15: MMMX implementation of the sum-
of-absolute difference function using horizontal and
vertical interpolation.

299



(1) fxor mm7, mm7
(2) loop_row:
(3) fld32s24u mm1, [His_Current]
(4) fld32s24u mm2, [His_Reference]
(5) fmin24 mm1, mm2
(6) fsum24 mm1
(7) fadd48 mm7, mm1
.
.

Figure 16: Part of the MMMX code for implemen-
tation of the histogram intersection.

way parallelism is used in this code, as depicted in Figure 14.
In the MMMX implementation, on the other hand, employs
8-way parallelism because 12-bit is sufficient for addition of
four pixels.

4.5 Histogram Intersection Distance
In this section we want to show generality of our SIMD

instructions compared to the MMX/SSE ISA. For this, we
implement another distance measurement, histogram inter-
section.

The histogram intersection distance between the two his-
tograms h1 and h2, fdint(h1, h2) was proposed by Swain and
Ballard [20] and is used in image and video retrieval [29, 3].
It is defined as:

intersection(h1, h2) =

P2n−1
i=0 min(h1[i], h2[i])

N
(6)

fdint(h1, h2) = 1 − intersection(h1, h2)

The elements of the histograms are larger than 16-bit.
There are no suitable SIMD instructions for data types larger
than the short data type in the MMX/SSE ISA. As a result,
the implementation of this cost function using MMX/SSE
is difficult. The above equation shows that we need SIMD
instructions for finding the minimum values and addition
of adjacent elements. Such SIMD instructions are available
in the MMMX ISA. Figure 16 depicts part of the MMMX
implementation of the histogram intersection for distance
measurement of the two histograms.

5. EXPERIMENTAL SETUP

5.1 Simulation Environment
In order to evaluate MMMX, we have used the sim-outorder

simulator of the SimpleScalar toolset [1]. sim-outorder is
a detailed, execution-driven simulator that supports out-of-
order issue and execution.

We remark that we have not simulated MMX and MMMX
but rather RISC-like approximations. For example, one
operand of many MMX and MMMX instructions can be a
memory location, but we have simulated load/store architec-
tures. This was done because the SimpleScalar architecture
is RISC. This does not affect the validity of our simulations
because our main objective is to compare the performance
of an SIMD architecture without extended subwords to the
same architecture with this feature. Furthermore, in the
Pentium 4 MMX instructions involving memory operands
are translated to RISC-like micro-operations (µOPs). We
also remark that the correctness of the MMX and MMMX
codes has been validated by comparing their output to the
output of C programs.

The main parameters of the modeled processors are de-
picted in Table 2. We modeled processors by varying the
issue width from 1 to 4 instructions per cycle. So, when
four SIMD instructions are issued simultaneously, up to 32
data operations are executed in parallel. When the issue
width is doubled, the number of functional units is scaled
accordingly. For most parameters we used the default val-
ues, except for the size of the register update unit (RUU),
which is 16 by default. This, however, is insufficient to find
many independent instructions. We, therefore, used an RUU
size of 64 instead. The latency and throughput of SIMD in-
structions is set equal to the latency and throughput of the
corresponding scalar instructions. This is a very reasonable
assumption given that the SIMD instructions perform the
same operation but on narrower data types. More precisely,
the latency of the integer and SIMD ALUs is set to one cy-
cle and the latency of the integer and SIMD multiplications
set to three cycles. In addition, we set the latency of the
special-purpose psadbw instruction to five cycles, the same
as in the Pentium 3.

In the experiments, three programs have been implemented
and simulated using the Simplescalar simulator for each ker-
nel. These programs employ the same algorithm and data
types. Each program consists of three parts. One part is
for reading the image, the second part is for similarity mea-
surement, and the last part is for storing the results. One
program is completely written in C. It was compiled us-
ing Simplescalar compiler with optimization level -O2. The
reading and storing parts of the other two programs were
also written in C, but the similarity measurement part was
implemented using MMX and MMMX. These programs are
referred to as C, MMX, and MMMX for each kernel. To
obtain execution cycle count and ratio of dynamic number
of instruction count for similarity measurement part of each
case form the basis of the comparative study. Our mean
from ratio of dynamic number of instruction is the ratio of
the number of committed instructions for the C implemen-
tation of algorithm to the number of committed instructions
for either MMX or MMMX implementation.

To evaluate the effect of the similarity measurements on
the whole image, we used them for implementation of full
search algorithm, on an image size of Quarter Common In-
termediate Format (QCIF) size 144 × 176. The QCIF is a
standard video format, which is used in videoconferencing
and some video coding, for example, MPEG and H.26X. To
determine the motion vectors for the reference blocks in the
current frame, we used a macroblock of 8 × 8 pixel region
as the basic block and +/ − 16 for the search range in the
process of motion estimation.

5.2 Experimental Results
Figure 17 depicts the speedup of MMX and MMMX over

the C implementation for one execution of each kernel with
block size 16× 16 on the 1-way issue out-of-order processor.
It can be seen that the speedup of the MMX implementa-
tion (23.44) for the SAD kernel is higher than the speedup
obtained by MMMX (17.27). This is because of the special-
purpose psadbw instruction, which is used in the MMX code.
We replaced this instruction by other simple and more gen-
eral SIMD instructions. The speedup of MMMX for the
other kernels is much higher than the speedup of MMX.
MMMX achieves a speedup ranging from 10.39 to 14.57 over
C performance, while MMX achieves a speedup ranging from
4.61 to 7.42 over C. The reasons for this are following. First,

300



Parameter

Issue width 1 2 4
Integer ALU, SIMD ALU 1 2 4
Integer MULT, SIMD MULT 1 2 2
L1 Instruction cache 512-set, direct-mapped 64-byte line

LRU, 1-cycle hit, total of 32 KB
L1 Data cache 128-set, 4-way, 64-byte line, LRU, 1-cycle

hit time, total of 32 KB
L2 Unified cache 1024-set, 4-way, 64-byte line, LRU,

6-cycle hit, total of 256 KB
Main memory latency 18 cycles for the first chunk, 2 thereafter
Memory bus width 16 bytes
RUU (register update unit) entries 64
Load-store queue size 8
Execution out-of-order

Table 2: Processor configuration.

Figure 17: Speedup of MMX and MMMX over the
C implementation for different kernels with block
size 16 × 16 on 1-way issue out-of-order processor.

8-way parallelism is exploited in the MMMX code because
of using the extended subwords. In the MMX code, 4-way
parallelism is implemented because intermediate results are
larger than 8-bit data type. This means that SIMD instruc-
tions of the MMMX architecture can pack more scalar mem-
ory and arithmetic instructions into a single SIMD instruc-
tion compared to the MMX ISA. Second, there are SIMD
instrutions for different data types in the MMMX ISA.

As explained before, the results presented in Figure 17
are for one execution on a single block. The kernels are ex-
ecuted on all blocks of an image or frame. To investigate
if this changes the results fundamentally, Figure 18 depicts
the frame-level speedups (i.e., the speedups obtained when
the kernels are executed on all blocks). The behavior of
the results is almost similar to Figure 17. It can be seen
that the frame-level speedups are smaller than the block-
level speedups for both MMX and MMMX. For example,
the block-level speedup using MMMX is between 10.39 and
17.27 while the frame-level speedup is between 8.51 and
13.30. The block-level speedup using MMX is between 4.61
and 23.44 while the frame-level speedup is between 4.59 and
15.30. The most important reason for this is that there are
some parts of the full search algorithm that cannot be vec-
torized. Boundary checking and conditional operations are
examples.

MMMX performs better than MMX for all kernels except
for the SAD function. The main reason why MMMX im-
proves performance compared to MMX is that it needs to
execute fewer instrutions than MMX. While in the SAD ker-
nel MMMX needs to execute more instructions than MMX.

Figure 18: Speedup of MMX and MMMX over
the C implementation for full search algorithm for
frames size of 144 × 176 on 1-way issue out-of-order
processor.

Figure 19: Ratio of committed instructions (C
implementation to MMX and MMMX) versus
speedup.

For explanation, Figure 19 depicts the ratio of committed
instructions versus speedup. As this figure shows the ra-
tio of committed instructions for full search algorithm that
uses SAD kernel is 13.18 and 11.07 using MMX and MMMX
codes, respectively. It is remarkable that the speedup is
larger than the ratio of committed instructions, especially
for the SAD function. This is due to the following reasons.
First, in all kernels, 8-way parallelism is used in the MMMX
code using extended subwords. In the MMX code special-
purpose psadbw instruction is employed for SAD function
and 4-way parallelism is employed in others kernels. This
means that both codes perform more operations in a sin-
gle SIMD instruction. Second, reduction of loop overhead

301



Figure 21: Speedup of MMX and MMMX over the
C implementation for similarity measurement of his-
tograms of images of size 1024× 1024 using SAD ker-
nel for different issue widths using out-of-order ex-
ecution.

instructions. Both MMX and MMMX reduce a significant
number of loop overhead instructions, which increments or
decrements index and address values. Third, both MMX
and MMMX code use short vector load and store instruc-
tions (8 bytes) compared to the C implementation that load
one unsigned char in each load instruction.

Figure 20 depicts the effect of increasing the issue width.
As this figure illustrates the speedup on 4-way issue width
is higher than 1- and 2-way for both architectures. Addi-
tionally, more speedup is achieved on 4-way issue width for
SAD kernel compared to SSD kernel.

We use much more load instructions for pixel averaging in
the SAD and SSD functions with interpolation in both MMX
and MMMX implementations. In addition, in the MMX im-
plementation for all functions except SAD function we have
to use promotion instructions. Based on these reasons there
are much more data dependency in these codes than SAD
function. Consequently, with increasing issue width less per-
formance is yielded than SAD kernel. With increasing issue
width from 2 to 4 for SSD function with interpolation in the
MMMX implementation, performance is decreased. This is
because of data dependency that there is between instruc-
tions. The MMMX arithmetic and logical instructions allow
multiple arithmetic and logical instructions as well as mul-
tiple iterations with one MMMX instruction.

Figure 21 shows the obtained speedup and ratio of com-
mitted instructions of MMX and MMMX over the C imple-
mentation for similarity measurements of image histograms.
Speedup of the MMMX is between 8.69 (1-way) and 11.70
(4-way) while for MMX speedup is between 2.90 (1-way)
and 4.33 (4-way). In addition, the ratio of committed in-
structions is 2.11 and 7.07 using MMX and MMMX, respec-
tively. The reasons why much more performance is yielded
by MMMX especially for 4-way issue than to MMX are the
following. First, 4-way parallelism is used in the MMMX
implementation by using the extended subwords compared
to 2-way parallelism in MMX. Second, in the MMMX code
SAD function is synthesized using general and simple SIMD
instructions. While in the MMX we have to used many other
SIMD instructions to synthesize it that use same registers.
For example, the static number of instructions in the loop
body is 10 and 17 for the MMMX and MMX, respectively.
This means that there is much more data dependency in
the MMX code than MMMX. Third, MMMX implementa-
tion reduces loop overhead instructions two times more than
MMX by 4-way parallelism.

6. CONCLUSIONS
In this paper we have designed and evaluated different,

general, and simple SIMD instructions to implement some
of the similarity measurements using the extended subwords
technique. We have also synthesized special-purpose in-
structions, which are in the existing SIMD processors using
a few general-purpose SIMD instructions. Our SIMD in-
structions can be used to implement a variety of similarity
measurements. To avoid conversion overhead in the exist-
ing SIMD processing, we employed the extended subwords
technique. Our subwords are wider than conventional sub-
words. For every byte of a media register there are four
extra bits. These extra bits provide much more room for
many operations to be performed without overflow and avoid
packing/unpacking overhead instructions. In addition, this
technique allows to perform more operations in parallel in
the MMMX ISA by packing more data elements into a single
media register compared to the MMX ISA.

We have implemented sum-of-absolute differences and sum-
of-squared differences for motion estimation using the full
search algorithm. We have also implemented the SAD func-
tion for similarity measurement of the image histograms.
Our experimental results obtained by extending the Sim-
pleScalar toolset show that providing SIMD instructions for
different data types is necessary to yield much more per-
formance in the new processors compared to existing SIMD
instructions. For example, the results show that MMMX
achieves a speedup ranging from 10.39 to 14.57 over C per-
formance for SAD and SSD with interpolation and SSD
functions in the motion estimation kernel. While, MMX
achieves a speedup ranging from 4.61 to 7.42 over C. In ad-
dition, the speedup of MMMX to implement SAD function
as a similarity measurement of image histograms is between
8.69 (1-way) and 11.70 (4-way) over C. While for MMX, the
speedup is between 2.90 (1-way) and 4.33 (4-way).

7. REFERENCES
[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An

Infrastructure for Computer System Modeling. IEEE
Computer, 35(2):59–67, February 2002.

[2] D. Burger and T. M. Austin. The SimpleScalar Tool
Set, Version 2.0. www.simplescalar.com.

[3] S. Deb. ”Video Data Management and Information
Retrieval”. IRM Press, 2005.

[4] J. Goodacre and A. N. Sloss. Parallelism and the
ARM Instruction Set Architecture. IEEE Computer,
38(7):42–50, 2005.

[5] Y. W. Huang, T. C. Wang, B. Y. Hsieh, and L. G.
Chen. Hardware Achitecture Design for Variable
Block Size Motion Estimation in MPEG-4
AVC/JVT/ITU-T H.264. In Proc. IEEE Int. Symp.
on Circuits and Systems, pages 796–799, May 2003.

[6] MIPS Technologies Inc. MIPS Extension for Digital
Media with 3D. www.mips.com.

[7] Intel Corporation. Intel Wireless MMX Technology,
2002. Order Number: 251793-001.

[8] B. Juurlink, A. Shahbahrami, and A. Vassiliadis.
Avoiding Data Conversions in Embedded Media

302



Figure 20: Speedup of MMX and MMMX over the C implementation for an image size of 144 × 176 for
different issue widths out-of-order processors.

Processors. In Proc. 20th Annual ACM Symp. on
Applied Computing, pages 901–902, March 2005.

[9] P. Kuhn. ”Algorithms, Complexity Analysis and VLSI
Architectures for MPEG-4 Motion Estimation”.
Kluwer Academic Publishers, 1999.

[10] S. Larsen and S. Amarasinghe. Exploiting Superword
Level Parallelism With Multimedia Instruction Sets.
In Proc. ACM SIGPLAN 2000 Conf. on Programming
language design and implementation, pages 145–156,
2000.

[11] A. J. T. Lee, R. W. Hong, and M. F. Chang. An
Approach to Content-based Video Retrieval. In Proc.
IEEE Int. Conf. on Multimedia and Expo, volume 1,
pages 273–276, June 2004.

[12] J. Lee, N. Vijaykrishnan, M. J. Irwin, and W. Wolf.
An Architecture for Motion EStimation in the
Transform Domain. In Proc. 17th IEEE Int. Conf. on
VLSI Design, 2004.

[13] N. C. Paver, M. H. Khan, and B. C. Aldrich.
Accelerating Mobile Multimedia Using Intel Wireless
MMX Technology. In Proc. 6th IEEE Int. Symp. on
Multimedia Software Engineering, pages 491–498,
December 2004.

[14] A. Peleg, S. Wiljie, and U. Weiser. Intel MMX for
Multimedia PCs. Communications of the ACM, pages
25–38, January 1997.

[15] M. Rabbani and P. W. Jones. ”Digital Image
Compression Techniques”. Bellinghan, 1991.

[16] S. K. Raman, V. Pentkovski, and J. Keshava.
Implementing Streaming SIMD Extensions on the
Pentium 3 Processor. IEEE Micro, pages 47–57,
July-August 2000.

[17] A. Shahbahrami, B. Juurlink, and S. Vassiliadis.
Matrix Register File and Extended Subwords: Two
Techniques for Embedded Media Processors. In Proc.
2nd ACM Int. Conf. on Computing Frontiers, pages
171–180, May 2005.

[18] T. Shanableh and M. Ghanbari. Heterogeneous Video
Transcoding to Lower Spatio-Temporal Resolutions
and Different Encoding Formats. IEEE Trans. on
Multimedia, 2(2):101–110, June 2000.

[19] S. R. Subramanya, H. Patel, and I. Ersoy.
Performance Evaluation of Block-Based Motion
Estimation Algorithms and Distortion Measures. In
Proc. IEEE Int. Conf. on Information Technology:
Coding and Computing, pages 2–7, 2004.

[20] M. Swain and D. Ballard. Color Indexing.
International Journal of Computer Vision, 7(1):11–32,
1991.

[21] A. Tamhankar and K. R. Rao. An Overview of
H.264/MPEG-4 Part 10. In Proc. 4th Int. Conf. on
Video and Image Processing and Multimedia
Communications, pages 1–51, July 2003.

[22] M. Tremblay, J. Michael 0’Connor, V. Narayanan, and
L. He. VIS Speeds New Media Processing. IEEE
Micro, pages 10–20, August 1996.

[23] S. M. Vajdic and A. R. Downing. Similarity Measures
for Image Matching Architectures a Review with
Classification. In Proc. IEEE Symp. on Data Fusion,
pages 165–170, November 1996.

[24] S. Vassiliadis, E. A. Hakkennes, S. Wong, and G. G.
Pechanek. The Sum-Absolute-Difference Motion
Estimation Accelerator. In Proc. 24th IEEE
Euromicro Conf., pages 559–566, August 1998.

[25] J. W. Waerdt and S. Vassiliadis. Instruction Set
Architecture Enhancements for Video Processing. In
Proc. 16th IEEE Int. Conf. on Application Specific
Systems Architectures and Processors (ASAP), July
2005.

[26] L. Wang, Y. Zhang, and J. Feng. On the Euclidean
Distance of Images. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 27(8):1334–1339, August
2005.

[27] C. Wei and M. Z. Gang. A Novel SAD Computing
Hardware Architecture for Variable-Size Block Motion
Estimation and Its Implementation with FPGA. In
Proc. 5th IEEE Int. Conf. on ASIC, pages 950–953,
October 2003.

[28] S. Yalcin, H. F. Ates, and I. Hamzaoglu. A High
Performance Hardware Architecture for an SAD
Reuse Based Hierarchical Motion Estimation
Algorithm for H.264 Video Coding. In Proc. IEEE Int.
Conf. on Field Programmable Logic and Applications,
pages 509–514, August 2005.

[29] D. Zhang and G. Lu. Evaluation of Similarity
Measurement for Image Retrieval. In Proc. IEEE Int.
Conf. on Neural Networks and Signal Processing,
pages 928–931, December 2003.

303



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Academy
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Alba
    /AlbaMatter
    /AlbaSuper
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BabyKruffy
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chick
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Croobie
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Fat
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Freshbot
    /Frosty
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GlooGun
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jenkinsv20
    /Jenkinsv20Thik
    /Jokerman-Regular
    /Jokewood
    /JuiceITC-Regular
    /Karat
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Poornut
    /PoorRichard-Regular
    /Porkys
    /PorkysHeavy
    /Pristina-Regular
    /PussycatSassy
    /PussycatSnickers
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Square721BT-Roman
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /WeltronUrban
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


