
Reaching Fast Code Faster:
Using Modeling for Efficient Software Thread Integration

on a VLIW DSP ∗

Won So and Alexander G. Dean
Center for Embedded Systems Research

Department of Electrical and Computer Engineering
North Carolina State University

Raleigh, NC 27695-7256

{wso, alex dean}@ncsu.edu

ABSTRACT
When integrating software threads together to boost performance
on a processor with instruction-level parallel processing support,
it is rarely clear which code regions should be aligned and inte-
grated, and which regions should be left alone. This problem grows
even worse on a modern VLIW DSP due to complicating factors in
both the hardware and compiler: software pipelining, predication,
branch delay slots, load delay slots and limited resources. As a
result, finding an effective integration strategy requires extensive
iteration through the integrate/compile/analyze sequence.

In this paper we introduce methods to quantitatively estimate
the performance benefit from the integration of multiple software
threads. We use resource modeling, consider register pressure and
compensate for compiler optimizations. This enables different sce-
narios to be compared and ranked. We then use these estimates
to guide integration by concentrating on the most beneficial sce-
nario. Information from each iteration of compilation is used to
update the rankings of scenarios. We find that our modeling meth-
ods combined with limited compilation quickly find the best inte-
gration scenario without requiring exhaustive integration.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—code generation,
compilers, optimization

General Terms
Algorithms, Experimentation, Design, Performance

Keywords
Software thread integration, static profitability estimation, iterative
compilation, software pipelining, VLIW, DSP, TI C6000

∗This material is based upon work supported by NSF CAREER
award CCR-0133690.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’06, October 23–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-543-6/06/0010 ...$5.00.

1. INTRODUCTION
Many modern microprocessors and digital signal processors (D-

SPs) are capable of issuing multiple instructions per cycle. How-
ever, they typically fall short of full utilization due to a lack of in-
dependent instructions. Software pipelining (SWP) is a critical op-
timization which improves loop performance on such processors.
Hence any further optimizations must coexist with SWP.

Existing methods for software thread integration (STI) for very
long instruction word (VLIW) processors [28] address how to com-
plement and reinforce software pipelining by selectively applying
STI based upon characteristics of two loops. Each loop’s assem-
bly code is examined to characterize the loop based upon speedup
from SWP and whether dependence bounds and complex control
flow limited SWP’s effectiveness. A transformation rule matrix is
examined based upon characteristics of the two loops to determine
whether to integrate, and if so, how. These existing methods use a
general test which provides a yes/no answer to whether to integrate,
and high-level information on which methods to use. However, no
attempt is made to quantify the performance of the integrated code,
limiting the ability to objectively rank potential combinations of
loops.

The first contribution of this paper is methods to quantitatively
estimate the performance impact of integration, allowing various
integration scenarios to be compared and ranked, leading to more
efficient integration. This is a difficult problem because of com-
plexity in both the hardware and the compiler for modern proces-
sors (the Texas Instruments TMS320C64x DSP in this case). Soft-
ware pipelining, predication, branch and load delay slots and lim-
ited resources all complicate the prediction of the impact of inte-
gration and software pipelining. We rely on resource modeling,
emulating list scheduling (via pseudo-scheduling) and take into ac-
count register pressure and machine features such as predication,
and compensate for compiler optimizations as needed.

The second contribution of this paper is methods which use these
quantitative estimates to guide the alignment of regions in two pro-
cedures to yield the fastest code with a small number of iterative
compilation cycles. This iterative approach allows inaccuracies
in the static performance estimation to be corrected quickly. We
demonstrate the methods using code examples from the Texas In-
struments DSP and image processing libraries and MiBench. We
find that our approach effectively identifies good integration strate-
gies.

This paper is organized as follows. Section 2 describes the meth-
ods for analysis, estimation, code transformation and iterative com-
pilation. Section 3 presents the hardware and software characteris-

13

tics of the experiments run, which are analyzed in Section 4. Sec-
tion 5 summarizes the related work.

2. METHODS
Software thread integration (STI) is essentially procedure jam-

ming (or fusion) with intraprocedural code motion transformations
which allow arbitrary alignment of instructions or code regions.
This alignment allows code to be moved to use available execution
resources better and improve the execution schedule. In our pre-
vious work [27], we investigated how to select and integrate pro-
cedures to enable conversion of coarse-grain parallelism (between
procedures) to a fine-grain level (within a single procedure) using
procedure cloning and integration.

For this paper, we focus on an efficient method for finding the
best integrated procedure from two independent procedures when
there are multiple possible scenarios. The proposed method ad-
dresses the problem of integrating two procedures with arbitrary
control flow and utilization. Though dealing with 3 or more proce-
dures including multiple call hierarchies is beyond this work, this
is a key step for extending STI to more complicated cases.

Integration begins with an appropriate representation of original
procedures. Analysis of the compiled code provides useful infor-
mation to identify potentially profitable code combinations. After
defining the design space for possible integration scenarios, we de-
velop an efficient searching technique to find the best scenario by
incorporating static estimation with iterative compilation.

2.1 Program Representation
STI uses the control dependence graph (CDG, a subset of the

program dependence graph) to represent the structure of the pro-
gram: its hierarchical form simplifies analysis and transformation.
CDGs are constructed for both host and guest (or secondary and
primary) threads to move code from the guest thread to host thread.
Since the STI code transformations have been traditionally done at
the assembly language level, the CDGs have been constructed from
(compiler-generated) assembly code.

For this work, we use transformations at the C source level to
avoid duplicating the complexity of a VLIW compiler [27, 28]. For
transformation consistency, the CDG is constructed from the source
code. In order to do this, we modify some definitions in the orig-
inal CDG and redefine the graph as the Simplified CDG (SCDG).
We limit our scope to structured source code because most C code
is structured and most non-structured code can be converted into
structured code. The rules to construct the SCDG follow:

1. A list of C statements without control flow change forms a
code node. A subroutine call is not considered to be control
flow change.

2. A loop statement (for, while, do-while) forms a loop node
and a child node containing statements inside a loop body.
The loop type, loop-entry condition and loop incremental ex-
pression are stored as attributes of a loop node, if any exist.

3. A conditional statement (if, if-else, switch-case) forms a pred-
icate node and child nodes, each of which contains condi-
tionally executed statements. The conditional type and con-
dition expressions are stored as attributes of a predicate node.

4. The graph is constructed hierarchically by applying these
rules repeatedly.

Figure 1 shows the example C source code and the correspond-
ing SCDG. The S1,S2,...,S6 labels can represent a list of multi-
ple statements as well as a single statement. The leaf code nodes

procA {
S1;
if (P1) S2;
else S3;
for (L1) {

S4;
if (P2) {
for (L2) S5;

} /* endif */
S6;

} /* endfor */
}

Code

Predicate

Loop

Key

S1

S4 S6

L1

procA

P1

S2 S3 P2

S5

L2

Figure 1: Example C source code and corresponding SCDG

which contain statements identify the code regions which can be
integrated. Though predicate and loop nodes have corresponding C
source expressions (P1, P2, L1 and L2), the impact of this code is
mostly negligible because it includes considerably less source code
than code nodes do, and we therefore do not expand these expres-
sions.

2.2 Schedule Analysis
By analyzing the assembly code obtained after compilation, we

extract useful information for efficient integration. This informa-
tion is annotated into the SCDG and guides the following steps.

2.2.1 Schedule and profile information
After the original procedures are compiled separately, the assem-

bly code for both procedures is obtained. For analysis, the instruc-
tions are divided into basic blocks (BB). We do not treat a subrou-
tine call as a branch instruction for consistency with the previous
step. By analyzing assembly code for each basic block, the follow-
ing information is obtained:

1. Basic schedule information per basic block: number of sched-
uled cycles (i.e. schedule cycle count) and number of instruc-
tions

2. Software pipelining (SWP) information for every inner-most
loop: Resource Minimum Initiation Interval (ResMII) and
Recurrence Minimum Initiation Interval (RecMII), reason of
SWP failure if SWP fails

3. Resource usage per cycle: instruction and its resource usage

4. Register usage per basic block: registers accessed regardless
of use and definition

It is possible to construct a control flow graph (CFG) from the
assembly code. Based on the CFG and the schedule cycle count
of each BB, the static execution time (SET) of each procedure is
computed. The SET of sequence of BBs is sum of their schedule
cycle counts. If a BB is inside a loop, the SET is the product of
its schedule cycle count and loop count. If a BB is conditionally
executed, the SET is the product of the schedule cycle count and
branch fraction. If it contains a subroutine call, we ignore cycles
spent on the callee. Therefore, the SET of the whole procedure is
summarized by the following equation:

SETprocA =
X

bbi∈BB

sbbifbbinbbi (1)

where BB is a set containing all basic blocks of the procedure, bbi

is an element in the set BB and sbbi , fbbi , nbbi represent the sched-

14

ule cycle count, the execution fraction and the execution count of
the bbi respectively.

Since the execution count (n) and the execution fraction (f) are
determined at run time in most cases, the execution profile is nec-
essary to compute the SET. If the given profile is completely con-
sistent with the actual run, the SET represents the actual run time.
A discrepancy between the profile and the actual run may cause
the SET and actual run time to differ. Besides the SET, the follow-
ing steps are affected because they also use the profile to compute
profitability. However, it is a common weakness of profile guided
optimizations rather than one specific to this method.

If the execution profile is not provided, we can generate it based
on static prediction or estimation schemes. For example, we can
treat every if-else conditional body equally by setting f to 0.5.
Looping code can have higher impact than the other code by fix-
ing n to a certain number, which is considered as priority of loops
over acyclic code. The following steps guided by this profile lead
to the improvement of the average case instead of the specific case
of the provided execution profile.

2.2.2 Modification and annotation of SCDG
In order to use the information from schedule analysis and pro-

filing to guide integration, the information must be annotated to the
SCDGs of both procedures. Since the SCDG is constructed from
the C source code while the information for each basic block is ex-
tracted from the compiled assembly code, the SCDG must be mod-
ified to reflect possible control flow changes caused by compiler
optimizations.

The first source of this change is the compiler’s front-end opti-
mizations. The compiler may unroll loops with a fixed number of
iterations and a small loop body. If loop unrolling is applied, the
SCDG is modified to match with the compiled code. If any other
front-end optimizations are performed, the appropriate transforma-
tion is followed. The second source is predication. The compiler
tries predication for conditionals if there is architectural support.
If conditionals are predicated, they no longer cause a control flow
change, hence they are treated as one statement during code trans-
formation. This causes the predicate node and its child nodes to be
merged into the parent code node or constructed as a separate code
node.

Once the control flow of the SCDG and the assembly code are
consistent, we annotate each code node in the SCDG with the sched-
ule and profile information given by the previous step. Matching a
code node in the SCDG with a BB in the compiled assembly code is
often nontrivial because the assembly code has undergone numer-
ous optimization phases. The compiler optimizations can change
control flow as a byproduct of optimization. Instruction scheduling
techniques can move instructions beyond basic block boundaries so
that the boundaries between statements in the source code become
ambiguous after the code is scheduled. Hence, there is no ‘perfect’
one-to-one mapping between code nodes in the SCDG and BBs in
the assembly code.

The ‘best’ mapping is pursued by choosing the BB which has
the most influence in terms of performance. For a code node under
a loop node, only the loop body is considered. When a loop is
software pipelined, the SWP kernel is used while the prolog and
epilog are ignored. For a code node under a predicate node, the BB
with the most instructions which correspond to the code node is
selected. Remaining code nodes are matched with the rest of BBs
in the assembly code by choosing in-between BBs.

2.3 Definition of Alignment Set
There are numerous possible integration scenarios depending on

number of code nodes and their control and data dependencies. For
efficient exploration, we first define the design space for this prob-
lem. Each integration scenario corresponds to a certain alignment
of code nodes from two procedures, which determines which nodes
are integrated with each other and which nodes are left unchanged.
A combination indicates a pair of code nodes integrated with each
other. Therefore, an alignment includes at least a single combina-
tion of code nodes. Let RA and RB denote the code node sets for
procedure A and B respectively.

RA = {a1, a2, ..., am}, RB = {b1, b2, ..., bn}
where a1, ..., am and b1, ..., bn represent the code nodes in proce-
dure A and B respectively by the order in each SCDG. Let CAB

denote the set including all combinations, and LAB denote the set
including all alignments for procedure A and B.

CAB = {(a1, b1), (a1, b2), ..., (am, bn)} = RA ×RB

LAB = {{(a1, b1)}, {(a1, b1), (a2, b2)}, ..., {(am, bn)}}
= {x|x ⊂ CAB and x �= ∅ and x is legal.}

The combination set CAB is the product set of RA and RB .
Each element in the alignment set LAB is a subset of CAB which
is legal. Being legal means that two distinct combinations in one
alignment do not violate data dependencies of the original code. If
we conservatively assume that succeeding statements in the orig-
inal code are always data-dependent on preceding statements, it
can be rephrased into these two conditions: two distinct combi-
nations in one alignment (1) neither include the same code node
(2) nor change the original order of the code nodes. For example,
{(a1, b1), (a1, b2)} is not legal because two combinations include
the same code a1. The code a1 can not be divided into b1 and b2

arbitrarily due to possible data dependency and control flow dif-
ference between them. The subset {(a1, b2), (a2, b1)} is also not
legal because the order of a1 and a2 forces b1 and b2 to be reversed.
If a control dependency exists between code nodes from the same
procedure, the conditions become more restrictive. In any case, le-
gality is determined by checking if an alignment reverses the order
of original code nodes. These conservative assumptions could be
relaxed using data flow analysis but we leave this for future work.

Though STI code transformation enables arbitrary combinations
of code nodes, allowing all possible combinations results in explo-
sion of the alignment set size. The number of combinations in-
creases quadratically (i.e. n(CAB) = n(RA) × n(RB) = mn)
and the upper bound of the number of alignments increases expo-
nentially (i.e. mn ≤ n(LAB) < 2mn) with the number of code
nodes.

In order to reduce the number of alignments, we include only
combinations of code nodes under loop nodes (i.e. cyclic code)
in the alignment set, as this code dominates performance. The
combinations of other code nodes which are not under loop nodes
(i.e. acyclic code) are examined after finding the best alignment
of cyclic code. Second, we exclude combinations which have an
extremely low probability of speedup such as SWP and Non-SWP
loop combinations.

2.4 Static Profitability Estimation
The alignment set given by the previous step defines the design

space for integration. If the size of the alignment set is small, it
is not hard to examine all possible scenarios by compiling all inte-
grated procedures. However, it is quite ineffective if there are nu-

15

merous possible alignments. Therefore, it is necessary to prioritize
alignments based on an integration profitability measure.

Static profitability estimation is a modeling method for estimat-
ing profitability of a certain alignment. Since we are interested
in improving run-time performance by integration, the appropri-
ate measure of profitability is execution cycle count reduction. For
modeling, we assume the following: (1) Only the parts of code
which have changed after integration (i.e. integrated code nodes)
influence the execution cycle count. (2) Overall profitability of a
certain alignment is sum of profitability of code combinations in-
cluded in the alignment. If the alignment li ∈ LAB includes mul-
tiple combinations c1, ..., cn (i.e. li = {c1, ..., cn}), the estimated
profitability (EP) for this alignment is given by sum of the prof-
itability of each combination:

EPi =
X

ck∈li

pck (2)

The profitability of a certain code combination (pck) depends
on two factors: (1) The schedule cycle count reduction by inte-
gration of code nodes (Δsck) and (2) the impact of the integrated
code on execution cycle count. The first is determined by how the
compiler schedules the integrated code and the second is the prod-
uct of the execution fraction(fck) and the execution count (nck).
If ai ∈ RA, bj ∈ RB denote code nodes to be integrated and
ck = (ai, bj) ∈ CAB denote the combination of those, the esti-
mated profitability of the combination ck (pck) is computed by the
following equations:

fck = faifbj (3)

nck = min(nai , nbj) (4)

Δsck = sai + sbj − sck (5)

pck = Δsckfcknck (6)

where fai , fbj , fck are the execution fractions, nai , nbj , nck

are the execution counts, and sai , sbj , sck are the schedule cycle
counts of ai, bj , ck respectively.

Since the schedule (sai , sbj) and profile (fai , fbj , nai , nbj) in-
formation are already provided, the only unknown variable is the
schedule cycle count of the combination (sck). The schedule of in-
tegrated code depends on various characteristics of two code nodes
such as utilization, used registers and their usage patterns, data de-
pendencies between instructions and so on. Since it is almost im-
possible to predict the accurate schedule without performing schedul-
ing, we propose a method called pseudo-scheduling to estimate the
schedule cycle count of the integrated code.

2.4.1 Pseudo-scheduling
Since VLIW machines use static instruction scheduling, the sched-

ule is embedded in the compiled code. We convert the instruction
schedule of each BB into the resource map (RM), a table where
number of rows is the schedule cycle count and number of columns
is the number of functional units (FU). For each instruction in a BB,
there is a mapping between the issued cycle and the issued FU. Ac-
cording to this mapping, each instruction is assigned to a certain
entry of the table. Therefore, free spaces in the RM represents idle
issue slots in the resulting schedule.

Given resource maps from two code nodes, pseudo-scheduling
constructs the schedule of integrated code by moving instructions
in one resource map to the idle slots in the other one. Two re-
strictions are applied during this process. The first one is resource
compatibility. In most architectures, instruction and FU types are
tied. Depending on its type, an instruction can be issued only to
a certain FU or subset of FUs. The second restriction is the data

dependencies between instructions. We force instructions to main-
tain the same cycle distance between them after they are moved to
the other resource map. We conservatively apply this restriction
even though some instructions are independent. Dataflow analysis
would loosen this constraint.

For software pipelined (SWP) loops, the method above does not
make sense because instructions from different iterations are over-
lapped in the SWP kernel. Therefore, we use a specialized pseudo-
scheduling method for SWP loops based on modulo scheduling al-
gorithm. In modulo scheduling, the schedule cycle count of a SWP
loop kernel (Initiation Interval (II)) is constrained by the Minimum
II (MII). The MII is the maximum of Resource MII (ResMII) and
Recurrence MII (RecMII), where the RecMII is determined by the
length of recurring dependency and the ResMII is a function of
the number of instructions which uses each resource. For ResMII,
we use a Resource Vector (RV), where each element is the num-
ber of instructions which uses a specific resource. The number of
elements in a RV and the function for computing ResMII (Comput-
eResMII) are architecture dependent. For a TI C64x DSP, there are
20 types of resources involved in ResMII.

Besides ResMII and RecMII, the final II depends on the com-
plexity of instruction sequence because the II is determined after
the compiler finds a valid schedule. While II is equal to MII when
the compiler find a schedule on the first try, II becomes larger than
MII as it experiences more trouble to find one. The difference be-
tween II and MII (i.e. II - MII) grows with the complexity of the
instruction sequence, which generally rises with more instructions,
more dependencies between instructions, and more register pres-
sure.

The following equations summarize the pseudo-scheduling meth-
od for software pipelined loops to estimate the schedule cycle count
of the integrated code (sck).

ResMIIck = ComputeResMII(RVck)

where RVck = RVai + RVbj

RecMIIck = Max(RecMIIai, RecMIIbj)

MIIck = Max(ResMIIck , RecMIIck)

sck = IIck

= MIIck + (IIai −MIIai) + (IIbj −MIIbj)

2.4.2 Register pressure estimation
Since pseudo-scheduling moves instructions from one resource

map to the other without considering additional register pressure
caused by integration, it ignores the possibility that the compiler
may generate different or more instructions to resolve the regis-
ter conflict. Hence the schedule obtained by pseudo-scheduling is
usually better than the real schedule. If many additional spills oc-
cur due to heavy register pressure, the schedule of integrated code
is much worse than that of original code. Therefore, it is desirable
to avoid code combinations which cause spills. We use a model
called register pressure estimation. We compute number of regis-
ters accessed by code nodes and estimate the register pressure of
integrated code by adding them. If the sum is larger than the num-
ber of total physical registers, we discard it from the combination
set. If there are predicated instructions, the predicate register pres-
sure is estimated in the same way.

There are still some cases where differences between the esti-
mated schedule and the real schedule are large. If the compiler
generates different sequences of instructions for the original and
integrated code, pseudo-scheduling can not be accurate because it
assumes that the same sequence of instructions are generated for
the same code after integration. For example, if the compiler suc-

16

ceeds in SIMD optimization for the integrated code though it fails
for original code, the generated instructions show a big difference.
However, it is extremely hard to predict how every optimization
impacts code generation. In reality, instruction scheduling and reg-
ister allocation are closely coupled, though we use separate models
for those. These facts force estimation inaccuracy.

Though there are numerous options to improve the accuracy of
estimation, we maintain this level of complexity and depend on the
target compiler’s result to determine the actual profitability. There
is a design trade-off between estimation and compilation. If esti-
mation is as accurate as compilation, the best alignment is chosen
based on this estimation without iterative compilation. However,
the high computation complexity raises time spent on estimation
significantly. For this work, the balance between moderate estima-
tion complexity and target compiler’s feedback is pursued because
we try to define a more general method than one tightly coupled
with a certain architecture and compiler.

2.5 Code Transformation
Code transformation is the step where an alignment is converted

to the corresponding integrated procedure. Since the alignment de-
termines which parts of the code are integrated, different transfor-
mation techniques are applied depending on their control depen-
dencies. Figure 2 illustrates basic code transformation techniques
and corresponding estimated profitability (EP) for STI depending
on the parent node types.

In addition to these methods, there are some pretransformation
techniques which can be applied before integration. Those include
loop unrolling and loop peeling as shown in Figure 3. Loop un-
rolling can be used to provide additional instructions combined
with loop jamming. It is powerful in cases where two loop bodies
are asymmetric in terms of size, utilization and loop counts [28].
Loop peeling can be used to lower a loop nesting level. If loops
with different nesting levels need to be integrated, it is required to
make both nesting levels identical by lowering the nesting level of
one loop. Since only inner-most loops are software pipelined, it is
often required to integrate SWP loops with different nesting levels.
By combining and hierarchically applying both sets of techniques,
any alignments can be successfully realized.

The transformation techniques presented above are targeted for
the general case. Depending on the situation, some code can be
removed if unnecessary. For example, if both loop counts are fixed
and the same, copies of the original loops in Figure 2(a) are not nec-
essary. Transformation leaves opportunities for further optimiza-
tions such as induction variable elimination. The jammed loops
may have two induction variables unnecessarily after integration,
which can be reduced into one.

2.6 Iterative Compilation
We depend on the final step of iterative compilation to determine

which alignment is best. The method for iterative compilation pre-
sented here is a heuristic approach to find the best alignment with
the least compilations (i.e. cost). We define the following distinct
measures for an alignment:

1. Estimated profitability of the alignment li (EPi) is obtained
by the equation (2) and (6). Initial sck is computed by pseudo-
scheduling but is updated by the real schedule cycle count
obtained after each compilation. Therefore EPi converges
to XPi.

2. Expected profitability of the alignment li (XPi) is computed
by the same way as EPi but uses sck given by the real sched-
ule of the integrated code after compilation.

1: Choose li ∈ LAB where EPi = Max(EP1, ..., EPn);
2: loop
3: Perform code transformation for li;
4: Compile integrated procedure;
5: Compute XPi and APi;
6: Update EPk for all lk ∈ LAB where li ∩ lk �= ∅;
7: Remove all lk where EPk < 0 for all lk ∈ LAB ;
8: Choose lj ∈ LAB where EPj = Max(EP1, ..., EPn′);
9: if j = i then

10: break;
11: end if
12: i← j;
13: end loop
14: Choose li ∈ LAB where APi = Max(AP1, ..., APn′);

Figure 4: Algorithm for iterative compilation

3. Actual profitability of the alignment li (APi) is the static ex-
ecution time (SET) difference between original procedures
and the integrated procedure. The SETs are obtained by an-
alyzing its assembly code as described in Section 2.2.

The EPi is the only measure which can be computed initially
before any compilation. The XPi reflects the schedule of the in-
tegrated code but still implies some inaccuracy from side effects
of code transformation. The APi reflects the real schedule of the
whole integrated procedure. The inequality EPi ≥ XPi ≥ APi

therefore holds for most cases because the schedule from pseudo-
scheduling is more optimistic than the real schedule and side effects
of code transformation usually have a negative impact. The actual
profitability of the integrated procedure is determined by APi while
we use EPi for prioritizing alignments and XPi for determining
when the iterative compilation cycle stops.

Figure 4 shows the algorithm for iterative compilation. First,
the alignment (li) with the largest EP is chosen and an integrated
procedure is generated (Line 1-4). After compilation, the sched-
ule of integrated code is determined from the assembly code and
the XP and AP are computed (Line 5). Since the real schedules of
the code combinations (i.e. integrated code) included in the align-
ment are obtained, the EPs of li and other alignments which share
the same combinations are updated (Line 6). After this update, the
alignments with a negative EP are removed from the alignment set
because compilation may have identified unprofitable code combi-
nations (Line 7). Then we choose the alignment with the maxi-
mum of updated EPs again (Line 8). If the alignment is the same as
the one just compiled, the iterative cycle stops (Line 9-10). Other-
wise, another compilation cycle is performed with the newly cho-
sen alignment (Line 12). Once the cycle stops, we choose the best
integrated procedure from compiled ones based on the AP (Line
14).

This algorithm has two important implications. The first is a
feedback mechanism implemented by an EP update. Since this
feedback reprioritizes alignments based on updated EPs, it mini-
mizes the impact of pseudo-scheduling inaccuracy on future align-
ments by considering previous compilation results. The second is a
decision mechanism implemented by a comparison of EP and XP.
After an EP update, EP is the same as XP for alignments which
have been compiled. By comparing the EP(=XP) of compiled align-
ments with the EP of yet-to-be-compiled alignments, the algorithm
effectively filters out the alignments which are not worthwhile be-
cause the EP generally determines the upper bound of the XP.

17

Code 1:
for(i=0;i<n1;i++) S1;

Code 2:
for(j=0;j<n2;j++) S2;

Integrated code:
for(i=0,j=0;i<n1&&j<n2;

i++,j++)
{S1; S2;}

for(;i<n1;i++) S1;
for(;j<n2;j++) S2;

EP = Δs(S1,S2) × min(n1, n2)

S1

L1

n1

S2

L2

n2

S1

L1

S2

L2

S1

S2

L1&

L2

(a) loop + loop

Code 1:
if (p1) S1;
else S2;

Code 2:
S3;

Integrated code:
if (p1) {S1; S3;}
else {S2; S3;}

EP = Δs(S1,S3) × f1 + Δs(S2,S3) × (1-f1)

S1

f1

S3

S1

S3

P1 P1

S2

1-f1

S2

S3

(b) predicate + code

Code 1:
if (p1) S1;
else S2;

Code 2:
if (p2) S3;
else S4;

Integrated code:
switch (((p1!=0)<<1) | (p2!=0)) {

case 3: S1; S3; break;
case 2: S1; S4; break;
case 1: S2; S3; break;
default: S2; S4;

}

EP = Δs(S1,S3) × f1 × f2 + Δs(S1,S4) × f1 × (1-f2)

+Δs(S2,S3) × (1-f1) × f2 + Δs(S2,S4) × (1-f1) × (1-f2)

S1

f1

S3 S1

S3

P1
P1 X

P2

S2

1-f1

S1

S4

P2

S4

f2 1-f2

S2

S3

S2

S4

(c) predicate + predicate

Figure 2: Code transformation techniques for STI

Before:
for(i=0;i<n1;i++) S1;

After:
for(i=0;i<n%2;i++) S1;
for(;i<n;i+=2) {S1;S1’;}

S1

L1

n1

S1

L1

S1

S1'

L1

(a) loop unrolling

Before:
for(i=0;i<n1;i++) S1;

After:
if(n1>=1) S1;
for(i=1;i<n1;i++) S1;

S1

L1

n1

S1 S1

L1P1

(b) loop peeling

Figure 3: Pretransformation techniques for STI

3. EXPERIMENTS

3.1 Target Architecture
Our target architecture is the Texas Instruments TMS320C64x.

From TI’s high-performance C6000 VLIW DSP family, the C64x
is a fixed-point DSP architecture with extremely high performance.
The processor core is divided into two clusters with 4 functional
units and 32 registers each. A maximum of 8 instructions can be
issued per cycle. Memory, address, and register file cross paths
are used for communication between clusters. Most instructions
introduce no delay slots, but multiply, load, and branch instructions
introduce 1, 4 and 5 delay slots respectively. 6 general registers can
be used as predication registers.

3.2 Compiler and Evaluation Methods
We use the TI C6x C compiler to compile the source code. Orig-

inal procedures and integrated ones are compiled together with C6x
compiler option ‘-o2 -mt’. The option ‘-o2’ enables all optimiza-
tions except interprocedural ones. The option ‘-mt’ helps software
pipelining by performing aggressive memory anti-aliasing. It min-
imizes dependence bounds (i.e. RecMII), maximizing utilization
for software pipelined loops. The C6x compiler has various fea-
tures and is usually quite successful at producing efficient software
pipelined code. For performance evaluation, we use the stand-alone
simulator in Texas Instruments’ Code Composer Studio (CCS) ver-
sion 2.20. By enabling profiling, the execution cycles of original
and integrated procedures are measured.

3.3 Procedure Selection and Integration
Four pairs of procedures are chosen from TI DSP/Image library

[29] and MiBench benchmark suite [16] for integration. Among
procedures which are relevant to main program workloads, various
procedures with multiple loops (SWP or Non-SWP), conditionals
or calls are selected to show the effectiveness of our methods. Ta-
ble 1 summarizes selected procedures for experiments. For these
four pairs of procedures, the iterative compilation method is applied
and examined by generating all possible integrated procedures. Al-
though analysis and estimation are automated, code transformation
is performed manually for this work. The whole process can be au-
tomated by combining the compiler front- and back-ends with our
analysis tools.

For the alignment set, we include only looping code as discussed
in Section 2.3. For integration of looping code, we use loop jam-
ming without any pretransformation to avoid complexity. Gen-
eral transformation techniques are performed; some further opti-
mizations discussed in Section 2.5 are performed for simple loops
with fixed iterations. For simulation, test inputs are generated, and
variable-iteration loops are adjusted to execute at least 64 times.
The profile used for static profitability estimation is assumed to be
consistent with the actual run in order for the fair comparison of
profitability measures from static estimation and simulation.

4. RESULTS AND ANALYSIS
Figure 5 shows the SCDGs of original procedure pairs used for

experiments annotated with basic schedule and profile information.
The profile information annotated on edges represents execution
count or execution fraction. Below a code node, the schedule in-

18

Table 1: Summary of procedure pairs used for experiments
Case Proc.A Name Proc.B Name Program Benchmark suite
(a) XF sha transform BR byte reverse sha Mibench/security
(b) DB DSP bexp IH IMG histogram N/A TI DSP/Image Lib.
(c) BCE BF cfb64 encrypt BSK BF set key blowfish Mibench/security
(d) AC Autocorrelation CLTP Calculation of the LTP parameters gsm Mibench/telecomm.

Table 2: SCDG characteristics of procedure pairs and STI results
Procedure Proc.A Proc.B Integration Space Total # of Best

Pairs L P RA L P RB RA ×RB CAB LAB Compilations Speedup
(a) XF + BR 5 0 5 1 0 1 5 5 5 1 9.82%
(b) DB + IH 2 0 2 2 0 2 4 4 5 2 6.55%

(c) BCE + BSK 2 3 4 3 0 3 12 4 4 1 15.48%
(d) AC + CLTP 4 3 7 5 2 5 35 7 11 4 11.00%
L: Loop nodes, P: Predicate nodes

formation is annotated with instruction and cycle count (i/c) and
predicate and general registers used (p-g). The letter ‘S’ in a loop
node indicates that it is software pipelined and ‘call’ appears in the
annotation if there is a subroutine call inside a code node. Only
code nodes under loop nodes are annotated because only combina-
tions of those are considered for integration.

Table 2 summarizes the characteristics of original procedures, in-
tegration space and result of the iterative algorithm runs. The L, P
and RA (RB) columns represent number of loop nodes, predicate
nodes and code nodes located under loop nodes. The CAB and
LAB columns show the number of combinations and alignments
for integration. The actual combination set used for integration is a
subset of the whole combination set (i.e. CAB ⊂ RA × RB) be-
cause some combinations such as SWP/Non-SWP pairs, ones with
heavy register pressure are discarded by the estimation process.
The last two columns show the number of compilations performed
by the iterative algorithm and the speedup of the integrated proce-
dure finally selected. While only 1 compilation is needed for case
(a) and (c), 2 and 4 compilations are performed for case (b) and (d).
Compared with the total number of all possible alignments (LAB

column), there are significant compilation savings by our method.
Figure 6 shows different profitability measures discussed in Sec-

tion 2.6 obtained after generating and compiling all possible inte-
grated procedures. For convenience, the AP is measured by sim-
ulation instead of static execution time measurement described in
Section 2.2 because they are basically the same when the profile
is consistent with the actual run. Though the EP is updated after
every compilation cycle, this figure depicts the initial EP computed
by the static estimation with no feedback. Alignments (i.e. inte-
grated procedures) are numbered by the descending order of their
initial EPs from the left. The alignment finally selected by the it-
erative algorithm (alignment 1, 2, 1 and 8 for each case) is marked
with its % speedup.

The most important observation from this figure is that the pro-
cedure selected by our method is the actual best one for every case.
The marked procedure shows the highest AP after actual compi-
lation and simulation. In case (a) and (c), the alignment with the
largest initial EP (i.e. alignment 1) is chosen as the best after com-
pilation of itself. Recall that the algorithm decides whether it con-
tinues or not based on a comparison of EP and XP. In both cases, the
iteration stops after the first compilation because XP1 > EP2. In
case (b), one more compilation cycle is performed because XP1 <
EP2 but XP2 > EP3. Regarding relationship between EP and XP,
they show similar trends, meaning that static estimation works well
for case (a), (b) and (c). The inequality EPi ≥ XPi, the founda-

0

1

2

3

4

5

6

7

<-2 -2 -1 0 1 >1

Figure 7: Histogram for schedule cycle count errors between
pseudo-scheduling and real scheduling results

tion of decision mechanism, holds for all alignments in these three
cases.

The case (d) is interesting because EP and XP show a signif-
icant difference for the first 5 alignments. This is due to unex-
pected errors from static estimation. Two combinations of SWP
loops, which were estimated to be highly beneficial, turn out non-
beneficial after actual compilation because SWP fails after integra-
tion due to high register pressure. For these loop combinations, the
estimated number of used registers is slightly less than the num-
ber of physical registers. In such cases, SWP either succeeds or
fails depending on the real schedule. A large estimation error is un-
avoidable when SWP fails because pseudo-scheduling works under
the assumption that SWP still succeeds after integration.

When a large error occurs, the feedback mechanism plays a key
role of removing non-beneficial combinations then re-ranking the
alignments. When we see the details of compilation cycles for case
(d), alignments 1 through 5 which have negative XP are removed
after compilation of 1 and 3. The alignments 6 and 8 are then com-
piled based on updated EPs and 8 is chosen as the best after 4 total
compilation cycles. This is clear advantage over 11 compilation
cycles considering 11 possible alignments.

Figure 7 shows the histogram for schedule cycle count errors be-
tween pseudo-scheduling and real scheduling results of all 20 code
combinations included in 4 cases. Most errors are negative indicat-
ing that pseudo-scheduling is more optimistic than real schedule.
The errors are within 2 cycles for 12 combinations including 6 ex-

19

a1

a2

S

XF

64

b1

b2

S

BR

(64)

a3

a4

S

20

a5

S

20

a6

S

20

a7

S

20

a8

14/7

0-9

39/8

1-37

31/8

0-27

38/8

0-29

31/8

0-29

11/4

0-5

(a) XF + BR

a1

a2

S

DB

(256)

b2

S

IH

64

a3

S

(8)

a4

b1

S

(256)

6/2

1-6

6/2

1-4

26/15

1-10

30/9

1-15

(b) DB + IH

a1

a3

(0)

BCE

b4

BSK

9

a5

a6

(1)

b2

S

18

10/8

1-9
9/7

1-9

24/12

1-9

12/13

1-9

1call

(1/8)

a2

45/25

0-22

1call

(1/8)

a4

46/25

0-24

1call

b1 b5b3

b6

512

13/13

1-10

1call

(512) (512)

(c) BCE + BSK

a1

AC

b7

S

CLTP

40

b5

S

40

32-4

2-17

b4 b8

b6

b11

S

a2
(0)

S S S S

(0)(0)(1)
a3

a4 a5 a6 a7

160 160 160 160

a8

(1)

S

152

a9

160

S

160

b1
b2 b3

S

40

b9 b10

19/4

5-12

7/2

1-6

7/2

1-6

7/2

1-6

7/2

1-6

133/27

1-52

5/1

1-6

19/4

5-12

5/11

1-6

S

81

64/17

2-49

11/14

1-8

1call

(d) AC + CLTP

Figure 5: SCDGs of original procedure pairs with basic annotations

-50

0

50

100

150

200

250

1 2 3 4 5

EP

XP

AP(Sim)

Speedup = 9.82%

(a) XF + BR

-200

-100

0

100

200

300

400

500

600

1 2 3 4 5

EP

XP

AP(Sim)

Speedup = 6.55%

(b) DB + IH

-6000

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

1 2 3 4

EP

XP

AP(Sim)
Speedup = 15.48%

(c) BCE + BSK

-800

-600

-400

-200

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10 11

EP

XP

AP(Sim)

Speedup = 11.00%

(d) AC + CLTP

Figure 6: Different profitability measures of all alignments for each integration case

20

actly accurate ones. Among 6 combinations in which errors are less
than -2, two correspond to the SWP loop combinations in case (d)
where SWP fails after integration as discussed above. The other
4 combinations come from the case (c) where the integrated code
includes subroutine calls. The errors are relatively large because
pseudo-scheduling does not treat a call instruction specially while
the real compiler does. However, the errors occur in all combina-
tions so they do not affect the EP and XP relationship.

Experimental results demonstrate that the static profitability esti-
mation via pseudo-scheduling works well despite some exceptions.
The iterative compilation algorithm compensates for possible esti-
mation inaccuracy and finds the best integration scenario with rea-
sonable efficiency. When estimation works well, the algorithm ef-
fectively filters out the integrated procedures for which compilation
is unnecessary by comparing realized profitability (XP) with poten-
tial profitability (EP). For the cases where estimation is not good
enough, the feedback mechanism in the algorithm enables conver-
gence of estimated profitability (EP) with the real profitability (XP)
by applying previous compilation results to the future alignments.

5. RELATED WORK

5.1 Software Pipelining
Software Pipelining (SWP) [12, 25, 26] is a scheduling method

to run different iterations of the same loop in parallel. However,
software pipelining can suffer or fail when confronted with com-
plex control flow, excessive register pressure, or tight loop-carried
dependences. Much work has been performed to make software
pipelining perform better on code with multiple control-flow paths.

Hierarchical reduction [21] merges conditional constructs into
pseudo-operations and list schedules both conditional paths. If-
conversion [3] converts control dependences into data dependences.
Enhanced modulo scheduling [30, 31] begins with if-conversion to
enable modulo scheduling then renames overlapping register life-
times and finally performs reverse if-conversion.

STI improves the performance of SWP for control-intensive loops
[28]. It increases the number of independent instructions visible
to the compiler while effectively reducing loop overhead (through
loop jamming). This enables the compiler to use existing SWP
methods to create more efficient schedules.

5.2 Global Acyclic Scheduling
Compilers try to extract more ILP by forming bigger scheduling

regions for acyclic code through merging multiple basic blocks. In
trace scheduling [14], compilation proceeds by selecting a likely
path of execution, called a trace. Superblock scheduling [11, 20]
forms superblocks, regions with a single entrance and (possibly)
multiple exits. A hyperblock [22] is a set of predicated basic blocks,
in which control may only enter from the top, but may exit from
one or more locations. Treegion scheduling [18] forms a treegion,
single-entry/multiple-exit global scheduling region which consists
of basic blocks with control flow forming a tree.

In region scheduling [15, 5], a program is divided into regions
containing statements requiring the same control conditions via the
Program Dependence Graph (PDG). Guided by the estimates of
the parallelism present in the program regions, the region scheduler
repeatedly transform the PDG, uncovering potential parallelism in
regions.

STI assists the compilers to exploit parallelism across different
procedures by merging them [28]. STI also allows arbitrary align-
ment of instructions or code by control flow transformations and
code motion so that compilers use independent instructions effi-
ciently.

5.3 Loop Transformations
Loop Jamming (or fusion) and unrolling are well-known opti-

mizations for reducing loop overhead. Unroll-and-jam [2, 1, 7, 6]
can increase the parallelism of an innermost loop in a loop nest.
This is especially useful for software pipelining as it exposes more
independent instructions, allowing creation of a more efficient sched-
ule [9]. Unrolling factors have been determined analytically [8].

Loop fusion, unrolling, and unroll-and-jam have been used to
distribute independent instructions across clusters in a VLIW ar-
chitecture to minimize the impact of the inter-cluster communica-
tion delays [23, 24]. The technique called Deep Jam also uses loop
jamming to increase ILP [10]. It recursively applies combinations
of loop jamming and code duplication for inner loops and condi-
tionals. However, transformation is limited to threads (threadlets)
with the identical control flow while STI works both identical and
heterogeneous control structures.

STI is different from these loop-oriented transformations in two
ways. First, STI merges separate procedures, increasing the num-
ber of independent instructions within the compiler’s scope. Sec-
ond, STI distributes instructions or code regions to locations with
idle resources, not just within loops. It does this with code motion
as well as loop transformations (peeling, unrolling, splitting, and
fusing).

5.4 Procedure Inlining
Procedure inlining (inline expansion) is a widely researched and

accepted means to enable whole program optimization. It improves
compiler analysis and enables other optimizations as well as in-
struction scheduling [4, 19, 13]. Way [33, 32] extends region-based
compilation [17] to perform inlining and cloning based on demand
and run-time profile information.

STI differs with procedure inlining techniques in two ways. First,
overlap of the code of independent procedures by STI is not lim-
ited to the callees of the same procedure. Second, STI does not
only merge two procedures but also transforms control structures
so that the compiler generate an efficient schedule.

5.5 Software Thread Integration with Soft-
ware Pipelining

A method for using STI to improve the performance of looping
code on a VLIW DSP was proposed [28]. Efficient code trans-
formation techniques using loop unrolling and loop jamming were
defined depending on software pipelining (SWP) characteristics –
SWP-Good, SWP-Poor and SWP-Fail – of loops to be integrated. It
was shown that STI complements SWP by improving loops which
benefit little from SWP.

Although the potential benefit of STI was shown, no method of
high-level integration selection and guidance was provided, leaving
unanswered the question of how to integrate two arbitrary proce-
dures. This paper focuses on methods to find the best integration
scenario from arbitrary code.

6. CONCLUSIONS
In this paper we propose an efficient method for finding the best

integration scenario given two independent procedures with arbi-
trary control flow and utilization. Static profitability estimation re-
lying on resource modeling, pseudo-scheduling and register pres-
sure estimation allows various integration scenarios to be compared
and ranked, identifying more beneficial ones. The iterative compi-
lation algorithm compensates for possible estimation inaccuracy by
decision and feedback mechanism, enabling quick selection of the
best scenario with the least compilations. By experimental runs on

21

TI C64x DSP with code examples from TI DSP/Image library and
MiBench, we demonstrate that our estimation shows reasonable ac-
curacy for most cases with a few exceptions and the iterative algo-
rithm finds the best integrated procedure with limited compilations
despite difficulty of accurate estimation.

Future work includes incorporating dataflow analysis which im-
proves estimation accuracy and identifies more legal alignments,
and extending the method to more complicated cases where the
code includes arbitrary number of procedures with multiple call hi-
erarchies.

7. REFERENCES
[1] A. Aiken and A. Nicolau. Loop quantization: an analysis and

algorithm. Technical report, Cornell University, Ithaca, NY,
USA, 1987.

[2] F. Allen and J. Cocke. A catalogue of optimizing
transformations. In Design and Optimization of Compilers,
pages 1–30. Prentice-Hall, 1972.

[3] J. Allen, K. Kennedy, C. Porterfield, and J. Warren.
Conversion of control dependence to data dependence. In
Proceedings of the 10th ACM Symposium on Principles of
Programming Languages, pages 177–189, 1983.

[4] R. Allen and S. Johnson. Compiling c for vectorization,
parallelization, and inline expansion. In Proceedings of the
ACM SIGPLAN 1988 conference on Programming Language
design and Implementation (PLDI ’88), pages 241–249, New
York, NY, USA, 1988. ACM Press.

[5] V. H. Allen, J. Janardhan, R. M. Lee, and M. Srinivas.
Enhanced region scheduling on a program dependence graph.
In Proceedings of the 25th annual international symposium
on Microarchitecture (MICRO 25), pages 72–80, Los
Alamitos, CA, USA, 1992. IEEE Computer Society Press.

[6] D. Callahan, S. Carr, and K. Kennedy. Improving register
allocation for subscripted variables. In Proceedings of the
ACM SIGPLAN 1990 conference on Programming language
design and implementation (PLDI ’90), pages 53–65, New
York, NY, USA, 1990. ACM Press.

[7] D. Callahan, J. Cocke, and K. Kennedy. Estimating interlock
and improving balance for pipelined architectures. Journal of
Parallel and Distributed Computing, 5(4):334–358, 1988.

[8] S. Carr, C. Ding, and P. Sweany. Improving software
pipelining with unroll-and-jam. In Proceedings of 29th
Hawaii International Conference on System Sciences, Jan.
1996.

[9] S. Carr and Y. Guan. Unroll-and-jam using uniformly
generated sets. In Proceedings of the 30th annual ACM/IEEE
international symposium on Microarchitecture, pages
349–357. IEEE Computer Society, 1997.

[10] P. Carribault, A. Cohen, and W. Jalby. Deep jam: Conversion
of coarse-grain parallelism to instruction-level and vector
parallelism for irregular applications. In Proceedings of 14th
International Conference on Parallel Architectures and
Compilation Techniques (PACT 2005), pages 291 – 302,
Sept. 2005.

[11] P. P. Chang, N. J. Warter, S. Mahlke, W. Y. Chen, and W. W.
Hwu. Three superblock scheduling models for superscalar
and superpipelined processors. Technical report, University
of Illinois, Urbana, IL, Dec. 1991.

[12] A. Charlesworth. An approach to scientific array processing:
The architectural design of the AP-120B/FPS-164 family.
IEEE Computer, 14(3):18–27, 1981.

[13] J. W. Davidson and A. M. Holler. Subprogram inlining: A
study of its effects on program execution time. IEEE
Transactions on Software Engineering, 18(2):89–102, 1992.

[14] J. A. Fisher. Trace scheduling: A technique for global
microcode compaction. IEEE Transactions on Computers,
30(7):278–490, 1981.

[15] R. Gupta and M. L. Soffa. Region scheduling: An approach
for detecting and redistributing parallelism. IEEE
Transactions on Software Engineering, 16(4):421–431, 1990.

[16] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. Mibench: A free, commercially
representative embedded benchmark suite. In Proceedings of
IEEE 4th Annual Workshop on Workload Characterization,
Dec. 2001.

[17] R. E. Hank, W. W. Hwu, and B. R. Rau. Region-based
compilation: an introduction and motivation. In Proceedings
of the 28th annual international symposium on
Microarchitecture (MICRO 28), pages 158–168. IEEE
Computer Society Press, 1995.

[18] W. Havanki, S. Banerjia, and T. Conte. Treegion scheduling
for wide issue processors. In Proceedings of the The Fourth
International Symposium on High-Performance Computer
Architecture (HPCA ’98), page 266, Washington, DC, USA,
1998. IEEE Computer Society.

[19] W. W. Hwu and P. P. Chang. Inline function expansion for
compiling c programs. In Proceedings of the ACM SIGPLAN
1989 Conference on Programming language design and
implementation (PLDI ’89), pages 246–257, New York, NY,
USA, 1989. ACM Press.

[20] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J.
Warter, R. A. Bringmann, R. G. Ouellette, R. E. Hank,
T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery. The
superblock: an effective technique for VLIW and superscalar
compilation. Journal of Supercomputing, 7(1-2):229–248,
1993.

[21] M. Lam. Software pipelining: an effective scheduling
technique for VLIW machines. In Proceedings of the ACM
SIGPLAN 1988 conference on Programming Language
design and Implementation (PLDI ’88), pages 318–328.
ACM Press, 1988.

[22] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann. Effective compiler support for predicated
execution using the hyperblock. SIGMICRO Newsletter,
23(1-2):45–54, 1992.

[23] Y. Qian, S. Carr, and P. Sweany. Loop fusion for clustered
VLIW architectures. In Proceedings of the joint conference
on Languages, compilers and tools for embedded systems
(LCTES/SCOPES ’02), pages 112–119. ACM Press, 2002.

[24] Y. Qian, S. Carr, and P. H. Sweany. Optimizing loop
performance for clustered VLIW architectures. In
Proceedings of the 2002 International Conference on
Parallel Architectures and Compilation Techniques, pages
271–280. IEEE Computer Society, 2002.

[25] B. R. Rau and C. D. Glaeser. Some scheduling techniques
and an easily schedulable horizontal architecture for high
performance scientific computing. In Proceedings of the 14th
annual workshop on Microprogramming (MICRO 14), pages
183–198, Piscataway, NJ, USA, 1981. IEEE Press.

[26] B. R. Rau, C. D. Glaeser, and R. L. Picard. Efficient code
generation for horizontal architectures: Compiler techniques
and architectural support. In Proceedings of the 9th annual
symposium on Computer Architecture (ISCA ’82), pages

22

131–139, Los Alamitos, CA, USA, 1982. IEEE Computer
Society Press.

[27] W. So and A. G. Dean. Procedure cloning and integration for
converting parallelism from coarse to fine grain. In
Proceedings of Seventh Workshop on Interaction between
Compilers and Computer Architecture (INTERACT-7), pages
27–36. IEEE Computer Society, Feb. 2003.

[28] W. So and A. G. Dean. Complementing software pipelining
with software thread integration. In Proceedings of the 2005
ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES ’05).
ACM Press, 2005.

[29] Texas Instruments. TMS320C64x DSP Library
Programmer’s Reference, Apr. 2002.

[30] N. J. Warter, J. W. Bockhaus, G. E. Haab, and
K. Subramanian. Enhanced modulo scheduling for loops
with conditional branches. In Proceedings of the 25th Annual

International Symposium on Microarchitecture, Portland,
Oregon, 1992. ACM and IEEE.

[31] N. J. Warter, S. A. Mahlke, W. W. Hwu, and B. R. Rau.
Reverse if-conversion. In Proceedings of the ACM SIGPLAN
1993 conference on Programming language design and
implementation (PLDI ’93), pages 290–299, New York, NY,
USA, 1993. ACM Press.

[32] T. Way, B. Breech, and L. Pollock. Demand-driven inlining
heuristics in a region-based optimizing compiler for ILP
architectures. In Proceedings of the 2001 IASTED
International Conference on Parallel and Distributed
Computing and systems (PDCS ’01), pages 90–95, Anaheim,
CA, USA, Aug. 2001.

[33] T. Way and L. Pollock. Using path spectra to direct function
cloning. In Workshop on Profile and Feedback-Directed
Compilation, pages 40–47, Oct. 1998.

23

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

