
Passive Mid-Stream Monitoring of Real-Time Properties

Lalita Jategaonkar Jagadeesan
Bell Laboratories Research, Lucent Technologies

2701 Lucent Lane
Lisle, IL 60532, USA

lalita@lucent.com

Ramesh Viswanathan
Bell Laboratories Research, Lucent Technologies

101 Crawfords Corner Rd.
Holmdel, NJ 07733, USA

rv@lucent.com

ABSTRACT
Passive monitoring or testing of complex systems and net-
works running in the field can provide valuable insights into
their behavior in actual environments of use. In certain
contexts, such as network management and intrusion detec-
tion for security, passive monitoring is the most applicable
methodology for assuring correctness of the system’s behav-
ior. More generally, it can serve to complement and extend
functional testing and fault detection efforts that take place
during the software/product development lifecycle. Two dis-
tinguishing aspects of passive monitoring are that: (a) the
fault detection process cannot influence the execution of the
system by providing particular inputs to the system, and
(b) observations are obtained mid-stream, from an unknown
state in the middle of the execution of the system. In this
paper, we present results on passively testing for real-time
behavioral properties that can be applied to a large class
of systems including those that can be modeled as timed
automata. Our results provide a natural extension of the
passive testing study conducted in [17] for untimed proper-
ties. We have implemented our approach using the real-time
model checker UPPAAL, and we report on its application
to passively test fault tolerance software in a telecommuni-
cations switch developed at Lucent Technologies.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; F.3.1 [Logics and Meanings of Programs]: Spec-
ifying and Verifying and Reasoning about Programs

General Terms
Verification

Keywords
passive testing, run-time verification, monitoring, timed au-
tomata

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05, September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

1. INTRODUCTION
As today’s networks become increasingly complex and

are comprised of equipment from multiple vendors, exhaus-
tively testing all possible behaviors of the network – even
under specified deployment environments – becomes infea-
sible. The analysis of real-time behavior additionally and
significantly increases this complexity. Consequently, pas-
sive monitoring or testing of network equipment running
in the field can provide valuable insights into their behav-
ior in actual environments of use. For certain applications,
such as network management [20] and intrusion detection
for security [18], passive monitoring is, in fact, the only
available methodology for validating the system’s behavior.
More generally, it can be used to complement and augment
functional testing and fault detection efforts that take place
during the product/software development lifecycle. Since
passive monitoring observes network equipment while it is
running in the field, a key challenge is that observations
of the system are necessarily obtained mid-stream, from an
unknown state during the middle of the execution of the
system. Hence, passive monitoring techniques cannot make
assumptions about the previous (unobserved) history of the
system during its execution. Furthermore, they cannot in-
fluence the execution of the system by providing particular
inputs to the system.
In this paper, we present an approach for passive moni-

toring of real-time properties, by observing the mid-stream
behavior of systems during their execution in arbitrary en-
vironments. More precisely, we identify a class of system
models that we call expressively sufficient with the imple-
mentation being tested assumed to be some instance of an
expressively sufficient model. The conditions that we require
of an expressively sufficient model are fairly simple and non-
restrictive; popular formalisms such as timed automata [2]
and timed transition systems [11] are expressively sufficient.
For any correctness property P of an expressively sufficient
model, we define a language (set) PT (P) that consists of
traces (including timing information) that can be exhibited
by a correct implementation from some point mid-stream in
its execution; passively testing for a property P can then be
formulated as the problem of determining membership of the
mid-stream observation in the language PT (P). We present
such passive testing algorithms for two general classes of
properties: (a) conformance to a specification model, and
(b) trace-containment in a specification language of correct
traces. These algorithms are PSPACE in the size of the spec-
ification model or an automaton used to specify the language
of correct traces.

343

In general, the mid-stream nature of passive testing places
a limitation on the extent to which a property can be tested.
For an arbitrary correctness property, while any rejected
implementation is definitively faulty, all faulty implemen-
tations may not necessarily be detectable on the basis of
their mid-stream observations. We therefore consider those
properties for which complete fault coverage can be achieved
through passive testing, and term such a property as being
passively testable. For passively testable properties, an im-
plementation is correct if and only if it is never rejected on
the basis of its passively monitored mid-stream observations.
We provide an exact characterization (necessary and suffi-
cient conditions) of passively testable properties. Serendip-
itiously, this characterization enables the development of
more efficient testing algorithms for passively testable prop-
erties. For example, when a specification machine is such
that conformance to it is a passively testable property, the
resulting passive testing algorithm is in NP when the speci-
fication machine is a timed automaton and polynomial time
when the specification machine is an event-clock automa-
ton [3]. Our characterization of passively testable properties
therefore provides a systematic basis for identifying a sub-
class that can be passively tested completely and efficiently.
We have implemented our passive testing algorithms us-

ing the real-time model checker UPPAAL [7]. As a case
study, we consider the application of our approach to pas-
sively monitor a fault tolerance software that is an important
component of a telecommunications switch developed at Lu-
cent Technologies. Our study reveals that most correctness
properties of interest in this setting meet our characteriza-
tion of being passively testable and can therefore be effi-
ciently and completely tested through passive mid-stream
monitoring.
An important technical aspect of our work is the man-

ner in which timing information is represented in observed
traces. Most previous work consider timed traces which are
sequences of the form 〈a1, t1〉 . . . 〈an, tn〉 denoting the se-
quential occurrence of events a1, . . . , an tagged with their
respective occurrence times t1, . . . , tn. Here, we introduce
an alternative notion of trace that we call interval-timed
traces which are sequences of the form t1a1t2a2 . . . tnantn+1

denoting that after an elapse of time t1, the first event a1

occurs, followed by an elapse of time interval t2 after which
a2 occurs and so forth until the last event an after which
a time interval tn+1 elapses during which no other event
occurs. Besides the fact that timing information is repre-
sented in the form of time-intervals between successive oc-
currences of events, the other significant aspect in which
interval-timed traces differ from timed traces is the inclu-
sion of the last interval tn+1 which is not associated with
the occurrence of any event. This permits a more direct
and natural representation of the intuitions in the setting of
passive testing. In particular, when monitoring a timed im-
plementation from mid-stream in its execution, one cannot
infer the absolute time occurrences of any observed events
but one can observe the time intervals that are specified in
an interval-timed trace. Furthermore, the time-interval ob-
served to have elapsed after the occurrence of the last event
during which no further events are observed is important to
detecting violations of certain properties such as bounded
liveness, e.g., that a response must occur within 5 seconds
of a request.
Our adoption of interval-timed traces facilitates a tech-

nically appealing development of our results in that they
form a natural extension of those for the untimed setting
described in [17]. Over interval-timed traces, we can de-
fine the notions of timed concatenation, timed prefix, and
timed suffix; the passive testing results in this paper then
generalize those in the untimed setting [17] by replacing
the roles of concatenation, prefix and suffix (applicable to
untimed traces) by their timed counterparts (over interval-
timed traces).

1.1 Related work
While we have implemented our passive monitoring al-

gorithms using the real-time model checker UPPAAL, our
approach differs significantly from real-time model check-
ing techniques [1]. In particular, real-time model check-
ing assumes that a specification of the system is given as
a (concurrent set of) timed automata; model checking tools
then exhaustively analyze this specification against desired
properties expressed in real-time variants of temporal logic.
While model checking has been successful in identifying er-
rors in critical portions of systems, it suffers from two chal-
lenges: it does not scale to large-scale systems because the
size of the state space becomes intractable, and it identifies
errors in the specification of the system rather than in the
actual system implementation. These challenges are further
exacerbated for analysis of real-time systems. In contrast,
our passive monitoring approach analyzes executions of the
actual implementation of real-time systems. However, it is
not intended to perform exhaustive analysis.
Our approach also differs from conformance testing, and

is intended to complement and augment conformance test-
ing activities that take place during the product/software
development cycle. In conformance testing, the system im-
plementation under test is given as a black box, in which
the interface to the black box is known, inputs can be sent
to the black box, and the outputs of the black box are ob-
servable. A modelling formalism is chosen such that the
implementation can be assumed to be an (unknown) model
in this formalism, and the specification of the system can
be described as a model in this formalism. Conformance
testing then generates a comprehensive suite of test cases to
validate that the implementation satisfies the specification;
in particular, the test cases correspond to sequences of in-
puts sent to the implementation, and the resulting outputs
are compared to those expected by the specification as per a
formally specified conformance relation. The test case gener-
ation can be done prior to testing (off-line), or during testing
(online/on-the-fly). Conformance testing for timed systems
has been described in [14, 8, 16, 9], in which the modelling
formalism corresponds to timed automata. Implicit in all of
these approaches is that each test case executes the system
from its initial state. Our approach differs from this work
in two ways. First, it does not assume that all observations
start from the initial state of the system, but rather that ob-
servations can be mid-stream. Second, it does not assume
that the testing infrastructure can control the inputs to the
system, but rather that the operational environment con-
trols all inputs to the system: in this aspect, it is passively
monitoring the system as opposed to actively testing it.
Our approach is closely related to run-time verification [6,

13, 19], in that it observes the behavior of systems during
run-time, and analyzes the observed behavior against spec-
ifications of the intended real-time behavior of the system.

344

However, prior work in run-time verification of timed sys-
tems [6, 13, 19] implicitly assumes that all observed traces
are generated from the initial state of the system, and hence
that the system is typically reset to its initial state between
observations. In practice, this is infeasible for large networks
or systems, in which re-initializing the system can take a pro-
hibitive amount of time. Our work, in contrast, supports the
analysis of mid-stream observations, taken while the system
is in the middle of its execution. Interestingly, our char-
acterization of passively testable real-time properties shows
it would be sound to check them directly against passively
monitored traces as if they were observed from the initial
state, oblivious of their mid-stream nature. A surprising
consequence of our work is therefore the identification of a
class of real-time properties for which the run-time verifica-
tion tools of [6, 13, 8] and the timed observer infrastructure
of [8, 16], all suitably extended to interval-timed traces, can
be used for passive mid-stream monitoring as well.
The remainder of the paper is organized as follows. Sec-

tion 2 presents the formal underpinnings of our approach.
An overview of the fault tolerance software in a Lucent
telecommunications switch on which we applied our approach
is presented in Section 3. In Section 4, we describe the ap-
plication of our approach to this fault tolerance software.
Section 5 presents conclusions and future work.

2. FORMAL FOUNDATIONS

2.1 Preliminaries: Timed Automata
Timed Automata, introduced in [2], provide a simple yet

powerful mechanism for formally specifying the behavior
of systems that are governed by timing constraints, and is
probably the most widely accepted (cf.[5]) and studied ab-
straction of real-time systems with finite control. Our pre-
sentation of passive testing for real-time systems builds upon
the existing theory of timed automata in two ways. First,
we use timed automata as a concrete example of a highly ex-
pressive formalism for modeling the system implementations
(being passively tested) to which our results are applicable.
Second, our passive testing algorithms are based on existing
solutions to decision problems on languages of traces (that
include timing information) expressible by timed automata.
These two uses require slight differences in the details of
the definition of timed automata. In specifying languages
of traces, it is useful to include acceptance conditions that
identify a subset of the generated traces as belonging to the
language; these acceptance conditions do not however have
any natural role when modeling system implementations.
To distinguish between the two, we use the term timed state
machines to refer to the formalism used for modeling system
implementations and timed automata for expressing trace
languages. We present a trace-semantics of timed transi-
tion systems consisting of interval-timed traces as described
in Section 1, as opposed to classical timed traces. The move
to interval-timed traces also allows us to introduce a slight
enrichment in the definition of timed automata without in-
creasing the algorithmic complexity of the decision problems
of interest.
Timed State Machines are finite state machines augmented

with a finite set of real-valued clock variables. The states in
a timed state machine are called locations. Time can elapse
in a location while transitions are instantaneous. Any of the
clock variables can be reset to zero simultaneously with any

transition. At any instant, the reading of a clock variable
equals the time elapsed since the last time it was reset. Each
transition includes a clock constraint that must be satisfied
by the current values of the clock variables for the transition
to be taken. Each location is associated with a clock con-
straint called its invariant; time can elapse in a location only
as long as the values of the clock variables continue to satisfy
its invariant. The clock constraints used in transitions and
as invariants are as follows. Let X be a finite set of clocks.
The set of clock constraints over X, denoted Φ(X), includes
formulas defined by the grammar φ : : = x ∼ c | φ1 ∧ φ2

where x ∈ X, c is a constant in Q, the set of non-negative
rationals, and ∼ is in {≤,≥, <,>}. The precise definition
of timed state machines now follows.

Definition 2.1 (Timed State Machines). A timed
state machine M is a tuple 〈L,Lo,Σ, X, γ,E〉, where L is a
finite set of locations, Lo ⊆ L is the set of initial locations, Σ
is a finite set of labels, X is a finite set of clocks, γ:L→Φ(X)
is a mapping with γ(l) giving the invariant associated with
location l, and E ⊆ L×Σ×2X ×Φ(X)×L is a set of edges.
An edge 〈s, a, λ, φ, s′〉 ∈ E represents an a-labeled transition
from location s to location s′, φ is a clock constraint that
specifies when the transition is enabled, and λ is the set of
clocks that are reset to zero on this transition.

A clock valuation ν over a set of clocks X is a mapping from
X to Q. For t ∈ Q, the clock valuation ν + t is defined by
(ν + t)(x) = ν(x) + t for every x ∈ X. For λ ⊆ X, the
clock valuation ν[λ: = 0] is defined as mapping any x ∈ λ
to 0 and any x �∈ λ to ν(x). Definition 2.2 below defines
the semantics of a timed state machine with alphabet Σ as
a subset of (QΣ)∗Q, i.e., a set of sequences of the form
t1a1 . . . tnantn+1, where n ≥ 0, ai ∈ Σ for 1 ≤ i ≤ n and
ti ∈ Q for 1 ≤ i ≤ n+ 1.1

Definition 2.2 (Interval-Timed Trace Semantics).
A run of a timed state machine M = 〈L,Lo,Σ, X, γ,E〉
is an edge-labelled finite sequence of the form 〈s0, ν0〉 t1→
〈s0, ν

′
0〉 a1→ 〈s1, ν1〉 · · · 〈si, νi〉 ti+1→ 〈si, ν

′
i〉

ai+1→ 〈si+1, νi+1〉 · · ·
〈sn, νn〉 tn+1→ 〈sn, ν

′
n〉, where n ≥ 0 and si ∈ L, νi, ν

′
i are

clock valuations over X for 0 ≤ i ≤ n, ai ∈ Σ for 1 ≤ i ≤ n,
and ti ∈ Q for 1 ≤ i ≤ n+ 1 such that

• s0 ∈ Lo and ν0(x) = 0 for all x ∈ X

• For all t′ ∈ Q such that 0 ≤ t′ ≤ ti+1, νi + t′ satisfies
γ(si) and ν′

i = νi + ti+1, for 0 ≤ i ≤ n

• There is some transition 〈si, ai+1, λ, φ, si+1〉 ∈ E such
that ν′

i satisfies φ and νi+1 = ν′
i[λ: = 0], for 0 ≤ i < n

The trace of a run 〈s0, ν0〉 t1→ 〈s0, ν
′
0〉 a1→ 〈s1, ν1〉 · · · 〈si, νi〉 ti+1→

〈si, ν
′
i〉

ai+1→ 〈si+1, νi+1〉 · · · 〈sn, νn〉 tn+1→ 〈sn, ν
′
n〉 is the se-

quence of its edge labels t1a1 . . . tnantn+1. The trace seman-
tics of the timed state machine, [[M]] is defined to be the set
of traces of all runs of the machine M .

A timed automaton is a timed state machine augmented
with accepting locations and acceptance invariants associ-
ated with each accepting location. An accepting run is one

1We use rationals rather than reals because they correspond
better to practically measurable intervals; however, the the-
oretical development is independent of this choice.

345

in which the last location is an accepting location and any
time elapsed in the last location meets its acceptance invari-
ant. The set of traces of accepting runs is the language (of
interval-timed traces) accepted by a timed automaton.

Definition 2.3 (Timed Automata). A timed automa-
ton A is a tuple 〈L,Lo,Σ,X, γ,E, LF , γF 〉, where L, Lo, Σ,
X, γ, E are as in Definition 2.1, LF ⊆ L is a set of accepting
locations, and γF :LF→Φ(X) gives the accepting invariant
associated with each accepting location. An accepting run

of A is a run 〈s0, ν0〉 t1→ 〈s0, ν
′
0〉 a1→ 〈s1, ν1〉 · · · 〈si, νi〉 ti+1→

〈si, ν
′
i〉

ai+1→ 〈si+1, νi+1〉 · · · 〈sn, νn〉 tn+1→ 〈sn, ν
′
n〉 of the timed

state machine 〈L,Lo,Σ,X, γ,E〉 such that sn ∈ LF and ν′
n

satisfies γF (sn). The language accepted by the timed au-
tomaton, L(A) is the set of traces of all accepting runs of
A.

Timed automata, as previously studied, do not include the
accepting invariant γF and their languages are defined to be
sets of timed traces that are of the form 〈a1, t1〉, . . . , 〈an, tn〉
where n ≥ 0; for clarity of distinction, we use LT (A) to
denote the language of timed traces of a timed automaton
without the invariant γF . The decision problems of interest
to us that have been previously studied are the membership
problem of whether a timed trace σ belongs to the timed lan-
guage LT (A) of a timed automaton which is in NP [4], and
the emptiness problem of whether the timed language LT (A)
of a timed automaton is empty which is in PSPACE [2, 5].
We now show that the corresponding decision problems for
the interval-timed language given in Definition 2.3 fall into
the same complexity classes. For any alphabet Σ, define
the alphabet ΣT = Σ ∪ {√} where

√ �∈ Σ; intuitively,
the extra label

√
is used to represent the end of a trace.

For any interval-timed trace σ = t1a1 . . . tnantn+1 over the
alphabet Σ, define the timed trace σT over the alphabet
ΣT as the sequence 〈a1, t1〉, . . . , 〈ai, t1 + · · · + ti〉, 〈an, t1 +
· · ·+ tn〉, 〈√, t1 + · · · + tn+1〉. For any timed automaton A
of Definition 2.3, we can obtain a corresponding timed au-
tomaton without acceptance invariants AT by adding a new
location that is the single accepting location and adding
transitions from all accepting locations l of A on the spe-
cial symbol

√
that are required to meet the clock invariant

γF (l). That is, for A = 〈L,Lo,Σ, X, γ,E, LF , γF 〉, we define
the timed automaton (without acceptance invariants) AT as
〈L∪{f}, Lo,ΣT ,X, γ,E′, {f}〉 where f is a location not in L,
and E′ = E ∪ {〈l,√, ∅, γF (l), f〉 | l ∈ LF }. It can be easily
verified that for any interval-timed trace σ over the alphabet
Σ, we have that σ ∈ L(A) iff σT ∈ LT (AT). Since the con-
struction of σT and AT are linear in σ and A respectively,
it follows that the membership problem for interval-timed
traces is also in NP. Additionally, one can verify that any
timed trace σ′ ∈ LT (AT) must be of the form σT for some
interval-timed trace σ. It therefore follows that L(A) = ∅
iff LT (AT) = ∅ which yields a PSPACE algorithm for the
emptiness problem for interval-timed traces.
A timed state machine can be viewed as a timed au-

tomaton in which all locations are accepting locations and
accepting invariants are the same as location invariants.
That is, for a timed state machine M = 〈L,Lo,Σ, X, γ,E〉,
we define its corresponding timed automaton AM to be
〈L, Lo,Σ,X, γ,E, L, γ〉 which has the property that L(AM) =
[[M]]. We use A1‖A2 to denote the standard product con-
struction on timed automata A1 and A2 (with acceptance

invariants on the pairs of final locations being the conjunc-
tion of the acceptance invariant of each component loca-
tion), noting that with respect to their interval-timed trace
languages given by Definition 2.3, we have that L(A1‖A2) =
L(A1) ∩ L(A2).

2.2 A General Framework for Passive Testing
In this section, we formally define the passive testing prob-

lem for real-time systems. While timed state machines serve
as our example model of the system implementations un-
der test, our results are largely independent of the details
of their definition. Therefore, rather than developing our
results specifically for timed state machines, we develop a
general axiomatization of implementation models for which
our results hold. This axiomatization can be seen as a dis-
tillation of the key characteristics of timed state machines
that enable our results and allows them to be applicable any
other choice of real-time system model as long as it satisfies
this axiomatization.
Recall that an interval-timed trace over a set Σ is an ele-

ment of (QΣ)∗Q, i.e., a sequence of the form t1a1 . . . tnantn+1

where n ≥ 0, ai ∈ Σ for 1 ≤ i ≤ n, and ti ∈ Q for
1 ≤ i ≤ n+1. Interval-timed traces permit a natural defini-
tion of a timed concatenation operation that corresponds to
the consecutive occurrence of two traces. For interval-timed
traces σ = t1a1 . . . tnantn+1 and σ′ = t′1a

′
1 . . . t

′
ma′mt′m+1,

the timed concatenation σ⊕σ′ is defined to be the interval-
timed trace t1a1 . . . tnan(tn+1 + t′1)a

′
1 . . . t

′
ma′mt′m+1. The

trace 0 acts as the identity of timed concatenation with
σ⊕0 = 0⊕σ = σ for any trace σ. We define the notion
of timed prefix with respect to timed-concatenation, i.e., we
say that a trace σ is a timed prefix of a trace σ1 if there
exists a trace σ′ such that σ⊕σ′ = σ1. Note that timed pre-
fixes are not the same as sequence prefixes, e.g., the traces
0.5 and 1a1 are timed prefixes of the trace 1a2.5b3 neither
of which are sequence prefixes.
Our assumptions on the formal model representing system

implementations being tested are captured in the following
definition of expressively sufficient models.

Definition 2.4 (Implementation Model). A formal-
ism for modeling implementations is expressively sufficient
if we can define functions O(·) and [[·]] on the class of all
formal models with O(I) a set, and [[I]] ⊆ (QO(I))∗Q, for
any model I. Further, the following two axioms must be
satisfied:

(Axiom I) For any σ, σ′ ∈ (QO(I))∗Q, if σ⊕σ′ ∈ [[I]] then
σ ∈ [[I]]

(Axiom II) For any set Σ and trace σ ∈ (QΣ)∗Q there is
a model Iσ with O(Iσ) = Σ such that [[Iσ]] = { σ′ ∈
(QΣ)∗Q | σ′⊕σ′′ = σ for some σ′′ ∈ (QΣ)∗Q }.

Intuitively, for an implementation model I , the set O(I)
corresponds to the atomic observations or events that I can
exhibit at any particular instant, such as a message being
sent, or an input operation, or an output operation per-
formed. These atomic observations are extended over time
with timing information to yield interval-timed traces with
[[I]] giving the set of all traces that can be observed from
I upto any time instant. (Axiom I) then captures the in-
tuitive requirement that if an implementation can exhibit
the observed sequence σ⊕σ′, then it can also exhibit the

346

timed prefix σ (namely, earlier in the same execution trace).
(Axiom II) requires that the class of formal models be ex-
pressive enough so that for any interval-timed trace σ, there
is an implementation Iσ that exhibits exactly σ and no other
observations subsequently. (Axiom II) serves as an impor-
tant technical requirement in the development of the results
of Section 2.4.
As our canonical example, timed state machines satisfy

the requirement of being expressively sufficient.

Example 2.5. For a timed state machine M given by
〈L, Lo,Σ,X, γ,E〉, we take O(M) to be Σ and [[M]] as given
by Definition 2.2 which can be seen to satisfy (Axiom I). For
(Axiom II), consider any sequence σ = t1a1 . . . tnantn+1,
where n ≥ 0, ai ∈ Σ for 1 ≤ i ≤ n for some set Σ, and
ti ∈ Q for 1 ≤ i ≤ n + 1. We define the implementa-
tion Iσ = 〈L,Lo,Σ, X, γ,E〉, where L = {si | 0 ≤ i ≤ n},
Lo = {s0}, X = {x}, γ(si) is the constraint x ≤ ti+1 for 0 ≤
i ≤ n, and E = {〈si, ai+1, {x}, x = ti+1, si+1〉 | 0 ≤ i < n}.
It is then easy to establish by induction that [[Iσ]] satisfies the
requirement of (Axiom II). Note that the machine Iσ is de-
terministic and therefore the smaller class of deterministic
timed state machines are expressively sufficient, as well.

In the rest of this section, unless otherwise mentioned,
we consider models with respect to any ambient modeling
formalism that is expressively sufficient, and refer to models
in this ambient formalism as implementations.
For an (unknown) implementation under test, we are in-

terested in determining through passively monitoring its be-
havior, whether it satisfies some desired correctness prop-
erty. For the purposes of our framework, it suffices to ab-
stractly view any correctness property as a collection of im-
plementations, namely those that satisfy the property.

Definition 2.6. A property, P, is a collection of imple-
mentations. An implementation I satisfies a property P,
denoted I |= P, if I ∈ P.

We now consider the question of how to passively test a
black-box implementation for some property P . In passive
testing, we do not have access to the implementation itself,
nor can we assume any knowledge of how long the implemen-
tation has already been running when we begin observing its
execution. Instead, we monitor its execution starting from
some time instant after which events/actions in the execu-
tion and their occurrence instants can be observed. The
information available to the monitor can therefore be natu-
rally represented as a sequence of the form t1a1 . . . tnantn+1

denoting an observation over a time-interval of length t1 +
· · ·+tn+1, with t1 marking the time-interval from the instant
monitoring is begun to the occurrence of the first observed
event a1, ti’s marking off the time-intervals between obser-
vation of the event ai−1 and the event ai for 2 ≤ i ≤ n,
and tn+1 marking the time-interval after the last event an

occurred. We assume that the monitor can measure time
intervals only upto finite granularity or precision but not to
arbitrary precision; to avoid assumptions on the precision of
the digital clocks used by the monitor, which could be ar-
bitrarily finite, we take the t1, . . . , tn+1 to be rationals. We
can therefore consider the passively monitored observation
to be an interval-timed trace σ. We now define when the
monitored implementation cannot be deemed faulty (i.e.,
violating the property P) on the basis of such an observed
trace, σ. Since the observation was begun mid-stream, we

have to assume that some unknown trace σ′ preceded the
observed sequence σ. Thus, the implementation cannot be
deemed faulty if σ′⊕σ is a possible trace of a correct im-
plementation, i.e., an implementation I satisfying P . We
consider such traces σ to be acceptable when passively test-
ing the property P , and formally define PT (P) to be the set
of all such acceptable traces.

Definition 2.7. For a property P, define the set PT (P)
of interval-timed traces accepted by passive testing as σ ∈
PT (P) if and only if there is some implementation I |= P
and trace σ′ with σ′⊕σ ∈ [[I]].

Conversely, if we observe an interval-timed trace σ �∈
PT (P) at any point midstream, then we can conclude that
the implementation under traces is definitely faulty; traces
not in PT (P) can therefore be considered fault-symptomatic.

Proposition 2.8 (Fault Symptomatic Traces). Let
P be a property. For any implementation I, if we have
σ′⊕σ ∈ [[I]] with σ �∈ PT (P) then I �|= P.

We therefore define a passive testing algorithm for some
property P as determining membership of a given trace in
PT (P).
2.3 Passive Testing Algorithms for General

Timed Properties
In this section, we present a passive testing algorithm for

properties expressed in the form of requiring conformance
to a specified timed state machine. In the untimed setting,
conformance to a finite state machine was the first passive
testing problem studied [15]. The proposed passive testing
algorithm was called the homing algorithm because it began
by assuming that the implementation could be in any state
and then progressively refined this knowledge by trying to
infer or “home” in to the current state of the specification
machine on the basis of the events observed. In the timed
setting, a similar presentation is more intricate because the
state space consisting of locations and clock valuations is
infinite. We therefore instead present the algorithm by a re-
duction to the emptiness problem for a suitably constructed
timed automaton — the algorithm for checking emptiness
then does the necessary “homing”.
Let ≺ be a conformance relation, with I ≺ M denoting

that an implementation I is conformant to the timed state
machine M . The property of implementations that are con-
formant (w.r.t.≺) to a (fixed) specification timed state ma-
chine M , denoted PM

≺ is then the set { I | I ≺ M}. The
following proposition characterizes the set of accepted pas-
sively monitored traces for the property PM

≺ for any confor-
mance relation ≺ that admits the specification M itself as a
conformant implementation and that is no weaker than trace
containment. Almost all typical conformance relations, such
as being timed simulable, timed bisimilarity, trace contain-
ment, and trace equivalence clearly meet these requirements.

Proposition 2.9. If a conformance relation ≺ is such
that M ≺ M and for any implementation I, we have that
I ≺ M ⊃ [[I]] ⊆ [[M]], then

PT (PM
≺) = {σ | ∃σ′. σ′⊕σ ∈ [[M]]}

For an interval-timed trace σ over an alphabet Σ, we
now construct a timed automaton Aσ that accepts exactly

347

traces of the form σ′⊕σ for any σ′ ∈ (QΣ)∗Q. For σ =
t1a1 . . . tnantn+1 with n ≥ 0, the automaton Aσ is defined
to be 〈L, Lo,Σ,X, γ,E, LF , γF 〉, where L = {si | 0 ≤ i ≤ n},
Lo = {s0}, X = {x}, γ(si) is the vacuous constraint x ≥ 0
for all 0 ≤ i ≤ n, E = {〈s0, a, {x}, x ≥ 0, s0〉 | a ∈ Σ} ∪
{〈s0, a1, {x}, x ≥ t1, s1〉}∪{〈si, ai+1, {x}, x = ti+1, si+1〉 | 1 ≤
i < n}, LF = {sn}, and γF (sn) is the constraint that
x = tn+1. The automaton Aσ contains a single clock x that
is reset to 0 with every transition. The transitions in Aσ

are of three kinds. The self-loops on the initial state s0 for
every a ∈ Σ together with the clock constraint (x ≥ t1) on
the a1-labelled transition from s0 to s1 ensure that all pos-
sible prefixes are time-concatenated with t1a1 to reach s1,
and the transitions from s1 onwards ensure that the only ac-
cepting trace from s1 is t2a2 . . . tnantn+1. It is worth noting
the use of the accepting invariant γF in ensuring that the
last time-interval elapsed is exactly tn+1, which motivates
our introduction of accepting invariants in timed-automata
(Definition 2.3). We can therefore establish that the au-
tomaton Aσ accepts all timed prefix extensions of σ.

Proposition 2.10. For any trace σ ∈ (QΣ)∗Q, the timed
automaton Aσ has the property that

L(Aσ) = {σ′⊕σ | σ′ ∈ (QΣ)∗Q}
Recalling from Section 2.1 the properties of the timed

automaton AM (for a timed state machine M) and prod-
uct construction, it therefore follows from Proposition 2.10
that L(Aσ‖AM) = {σ′⊕σ ∈ [[M]] | σ′ ∈ (QΣ)∗Q}. This
combined with Proposition 2.9 therefore yields the follow-
ing corollary.

Corollary 2.11. For any timed state machine M and
any conformance relation ≺ satisfying the conditions of Propo-
sition 2.9, we have that

σ ∈ PT (PM
≺) iff L(Aσ‖AM) �= ∅

Corollary 2.11 gives a passive testing algorithm for the con-
formance problem based on an algorithm for the language
emptiness problem for timed automata. The size of Aσ is
linear in the size of Σ and the length of σ. The size of the
product automaton is O(nm) where n is the maximum of
length of σ and cardinality of Σ and m is the size of M . The
emptiness problem for timed automata expressing interval-
timed traces was established to be in PSPACE in Section 2.1
and therefore this passive testing algorithm is PSPACE (in
the size of σ and M).

2.4 Passively Testable Timed Properties
In passively testing an implementation for some property

P , we deem the correctness of the implementation (i.e.,
whether it satisfies P) on the basis of membership of its
passively observed traces in PT (P). By Proposition 2.8, if
the implementation is rejected, i.e., it exhibits a passively
observed trace that is not in PT (P), then the implementa-
tion is definitely faulty. However, as the following example
shows, the converse does not hold in general, i.e., an ac-
cepted implementation is not necessarily correct.

Example 2.12. Let Σ be some alphabet, δ some constant
in Q, and define the language L of interval-timed traces over
Σ as L = {t1a1 . . . antn+1 | t1 ≤ δ}, and consider the prop-
erty P = {I | [[I]] ⊆ L}. Intuitively, P is the property of im-
plementations whose first action occurs within δ time units.

We show that any interval-timed trace σ ∈ PT (P). Let σ′ be
the trace 0a0 for some a ∈ Σ. Then for the implementation
I = Iσ′⊕σ given by Axiom (II) (of Definition 2.4), we have
that I |= P and σ′⊕σ ∈ [[I]]. Therefore, by Definition 2.7,
σ ∈ PT (P). Let τ be some trace of the form t1a1 . . . antn+1

where t1 > δ and consider the implementation Iτ given by
Axiom (II) of Definition 2.4. Clearly, τ �∈ L and hence
Iτ �|= P. However, because PT (P) = (QΣ)∗Q, we trivially
have that for any σ′, σ with σ′⊕σ ∈ [[Iτ]] σ ∈ PT (P). Thus,
the implementation Iτ would never be rejected when being
passively tested for property P even though Iτ �|= P.

In this section, we therefore explore the class of proper-
ties for which, in addition to guaranteeing the faultiness of
rejected implementations, passive testing can be used to es-
tablish the correctness of accepted ones as well, i.e., if every
passively monitored trace of an implementation is accepted
then the implementation is assured to satisfy the property.
We define such properties as being passively testable.

Definition 2.13 (Passive Testability). A property P
is passively testable if and only if it has the following closure
property: Suppose that I is an implementation such that for
all traces σ′, σ with σ′⊕σ ∈ [[I]], we have that σ ∈ PT (P).
Then I |= P.

Definition 2.13 can be read, contrapositively, as stating that
a passively testable property is one for which any faulty im-
plementation I �|= P manifests a fault-symptomatic trace
and would therefore be rejected through passive testing.
Passively testable properties therefore admit a complete fault
coverage through passive testing.
We are interested in characterizing the class of properties

that are passively testable. For a property P , define the
language LP of interval-timed traces as LP =

S
I |= P [[I]].

We begin by deriving an immediate consequence of Defini-
tion 2.13 (its proof appears in the appendix).

Lemma 2.14. Suppose that P is a passively testable prop-
erty. Then I |= P iff [[I]] ⊆ LP .

Lemma 2.14 yields a necessary condition for a property to
be passively testable, which can be restated in terms of the
classical notion of safety. Define a language L of interval-
timed traces to be timed prefix-closed if and only if for any
σ, σ′, if σ′⊕σ ∈ L then σ′ ∈ L. We call a property P to be
a timed safety property if there exists a timed prefix-closed
language L such that I |= P iff [[I]] ⊆ L. Using (Axiom I)
of Definition 2.4, it is easy to see that the language LP is
timed prefix-closed for any property P . We therefore obtain
the following corollary of Lemma 2.14.

Corollary 2.15. Suppose that P is a passively testable
property. Then P is a timed safety property.

Corollary 2.15 shows that the only passively testable prop-
erties are timed safety properties. However, not all timed
safety properties are passively testable. The language L of
Example 2.12 is timed prefix-closed and the property P con-
sidered in Example 2.12 is therefore a timed safety property
that is not passively testable. Timed safety is therefore a
necessary but not sufficient condition for passive testability.
We next identify the set of necessary and sufficient condi-
tions under which a property is passively testable. For a
language L of interval-timed traces, we call L timed suffix-
closed if and only if for any σ, σ′, if σ′⊕σ ∈ L then σ ∈ L.

348

Theorem 2.16 below provides an exact characterization of
passively testable properties and its proof (appearing in the
appendix) makes pivotal use of the requirement of (Axiom
II) of Definition 2.4.

Theorem 2.16. A property P is passively testable if and
only if the following two conditions hold:

1. I |= P iff [[I]] ⊆ LP

2. LP is timed suffix-closed.

Using Theorem 2.16, we can characterize passively testable
properties as a natural special subclass of timed safety prop-
erties.

Corollary 2.17. A property P is a passively testable
property if and only if there is a timed prefix-closed and
timed suffix-closed language L of interval-timed traces such
that I |= P iff [[I]] ⊆ L.

While passively testable properties are a subclass of timed
safety-properties, it should be noted that in the setting of
interval-timed traces these include properties such as bounded
liveness. For example, the property that every a should be
followed by a b within a time-interval δ can be expressed
as the language L = {t1a1 . . . antn+1 | ∀i.ai = a ⇒ (∀j >
i.ti+1 + · · · + tj > δ ⇒ ∃i < k ≤ j.aj = b)} which can be
seen to be timed prefix- and timed suffix-closed.
The characterization of passively testable properties given

by Theorem 2.16 leads to the following characterization of
PT (P) for passively testable properties P (proof in Appen-
dix).

Theorem 2.18. Suppose that P is a passively testable
property. Then PT(P) = LP .

The significant import of Theorem 2.18 is that it yields
more efficient passive testing algorithms for passively testable
properties. For example, applying Theorems 2.16 and 2.18
to trace-containment, we obtain the following corollary.

Corollary 2.19. Consider any modeling formalism that
is expressively sufficient and let M be a model in this for-
malism. Then the property PM

� = {I | [[I]] ⊆ [[M]]}, of
being trace-contained in M , is passively testable if and only
if [[M]] is timed suffix-closed. If [[M]] is timed suffix-closed
then PT (PM

�) = [[M]].

If the specification machine M is a timed state machine,
then Corollary 2.19 yields a passive testing algorithm that
consists of checking for membership in L(AM) which can
be done in NP, in contrast to the PSPACE algorithm pre-
sented in Section 2.3. If M is an event-clock automaton [3],
the complexity reduces even more significantly to polyno-
mial time. In general, the characterization of Theorem 2.18
allows checking the passively observed trace directly against
the property specification behaving as if the trace was ob-
served from the beginning without having to account for its
mid-stream nature.
Finally, we present an alternative characterization of pas-

sive testability that is sometimes easier to establish for cer-
tain properties. This characterization is obtained by con-
sidering the complement of LP , the set of violating traces.
A property is passively testable if and only if the set of vi-
olating traces satisfies the closure condition that any trace
containing a violating subtrace must itself also be a violating
trace.

Corollary 2.20. A property P is passively testable iff
the set S = LP satisfies the following closure property: If
σ ∈ S then for any σ′, σ′′ we have that σ′⊕σ⊕σ′′ ∈ S.

In particular, Corollary 2.20 implies that if a faulty subtrace
is observed then no (unobserved) past behavior could pro-
vide mitigating circumstances to make the complete trace
correct. This provides an intuitive explanation of the key
characteristic of passively testable properties that makes
them completely testable even in the absence of informa-
tion about the initial unseen segment of the trace.

3. A TELECOMMUNICATIONS APPLICA-
TION: THE HEART-BEAT MONITOR

As a case study, we have applied our approach to the
“Heart-Beat Monitor” (HBM), a telephone switching appli-
cation developed at Lucent Technologies. The HBM of a
telephone switch determines the status of different elements
connected to the switch by measuring propagation delays of
messages transmitted via these elements. This information
plays an important role in the routing of data in the switch,
and can significantly impact switch performance.
In telephone switches, calls are typically routed through a

network of hardware devices, involving a distributed set of
processors. In order to ensure the reliability of calls, switches
can determine the status of their processors by measuring
propagation delays of messages transmitted between them.
Longer than expected delays may indicate potential prob-
lems; the switch may then temporarily cease to connect new
telephone calls over all hardware units connected to the of-
fending processor. This can significantly impact switch per-
formance if the switch normally relies on these units to carry
a substantial proportion of telephone calls.
Using our approach, we have passively tested the “Heart-

Beat Monitor” (HBM) of a Lucent switching system against
its intended real-time properties. The HBM software is
responsible for measuring the propagation delays of mes-
sages between two processors A and B. The HBM, run-
ning on processor A, periodically sends a “heart-beat” mes-
sage to processor B. Upon receipt of the heart-beat mes-
sage, processor B responds by sending an acknowledgment
back to processor A. The HBM monitors the delay between
the transmission and acknowledgment of messages. If such
delays become unacceptable, HBM temporarily ceases the
routing of all new telephone calls over processor B – this is
termed as resource suspension in this paper.
The only constraints that can be assumed about proces-

sor B is that heart-beat messages sent by processor A will
not be re-sent in a different order by processor B. However,
there can be arbitrary delays in the re-sending of messages,
and messages may be lost. Thus, every heart-beat mes-
sage sent by processor A contains some information that
uniquely identifies it, and the HBM software keeps track
of the time that it was sent. When a message is received
from processor B, the HBM software calculates the delay
between the send-time and the receive-time of the message.
Because of memory and performance limitations, the HBM
software bounds the number of outstanding heart-beat mes-
sages (sent but not yet received) being tracked by keeping a
small fixed-size array of messages sent to processor B. Each
heart-beat message is uniquely identified by its array index
and a timestamp corresponding to when it was sent; the re-
ceipt of the corresponding message is marked in the array

349

index. The HBM cycles through this fixed-size array when
sending heart-beat messages. Upon visiting a particular ar-
ray index, if the HBM software finds that the corresponding
message has not yet been received, it is considered to be
lost.
In order to avoid high sensitivity to delays/loss of indi-

vidual messages, the HBM software is structured in three
sequential, mutually exclusive, stages. The first stage indi-
cates that resource suspension has not been triggered in the
recent past, the second stage serves to dampen the sensitiv-
ity of the HBM to individual delays for a period of time,
and the third stage is intentionally sensitive to all delays.
After spending a fixed period of time in the third stage,
the software re-enters the first stage. We note that resource
suspension can be triggered only in the third stage. The
algorithm used by the HBM software to determine whether
resource suspension should be triggered is described in [10].
The decision to trigger resource suspension involves some

tradeoffs. Calls routed over processor B may not behave
reliably in the face of unacceptable propagation delays; on
the other hand, resource suspension may cause many new
calls to be blocked. Clearly, end-users may become irate in
either situation; furthermore, switch operators are required
by law to report every extended occurrence of call blocking
to the Federal Communications Commission. Hence, the
HBM software is carefully engineered to achieve a reasonable
balance between switch reliability and switch capacity.
In the past, the HBM software in this switch had come

under scrutiny because of discoveries in the field that re-
source suspension was occurring too frequently and resulting
in a significant decrease in network capacity. The develop-
ment team had obtained mid-stream timed trace observa-
tions of the system running in the field, and had attempted
to reverse-engineer the software to better understand the
underlying executions of these timed traces. As a research-
development collaboration, we had in earlier work [10] used
VeriSoft, a dynamic state-space exploration tool, to analyze
the behavior of the HBM software of this switch against its
intended properties, and our analysis had successfully re-
vealed flaws in the software that were subsequently corrected
by the development team. However, our analysis suffered
from three drawbacks: (a) it abstracted away from real-time
(b) it only performed analysis from the initial state of the
system, and did not support mid-stream analysis, and (c) it
required a significant investment in implementing a separate
environment for each of the properties, in order to perform
dynamic analysis of the system. These drawbacks form the
basis of our motivation to use the HBM of this switch as a
case study for timed automata-based passive testing.

4. PASSIVE TESTING OF THE HEART-BEAT
MONITOR

In order to apply the timed automata-based testing frame-
work described in Section 2 to the HBM software, we first
specified as timed automata the intended real-time proper-
ties of the HBM, and then used the real-time model checker
UPPAAL [7] to perform passive mid-stream monitoring of
the HBM software against these properties.

4.1 Intended Properties of the HBM Software
In order to describe the intended properties of the HBM

software, we use the following definitions and notation. We

cannot reveal the actual values of the constants dontime,
dstage2, dperiod, a1, a2, b below because of proprietary consid-
erations, but note that dstage2/dperiod! < 10, a2 < a1 < 20,
and b < 10. First, we define dperiod as the fixed period
between successive heart-beat messages sent by the HBM.
Second, we say that the propagation delay of a message that
is sent but never received by the HBM is ∞. Otherwise,
the propagation delay is t2 − t1, where t1 is the time the
message was sent by the HBM, and t2 is the time it was re-
ceived by the HBM. Third, we consider a message to be on
time iff its propagation delay is less than or equal to dontime,
where dontime is a non-zero integer constant strictly less than
dperiod. We consider a message to be slightly late iff its prop-
agation delay is strictly between dontime and dperiod. We
consider a message to be late/lost iff its propagation delay
is strictly greater than dontime.
The HBM software is intended to satisfy the following

properties.

1. If no heart-beat messages return to processor A from
the time that Stage 1 was last entered, then resource
suspension is not triggered within a1 × dperiod time
units since Stage 1 was last entered. Furthermore, re-
source suspension is triggered within (a1+2)×dperiod

time units from the time that Stage 1 was last entered.

2. If B resends every message slightly late from the time
that Stage 1 was last entered, then resource suspension
is triggered within (a2 + 2) × dperiod time units from
the time that Stage 1 was last entered.

3. Resource suspension is not triggered within a2×dperiod

time units since the last time Stage 1 was entered.

4. Resource suspension is not triggered before b messages
have been late/lost since the last time Stage 1 was
entered.

5. If messages strictly alternate between being slightly
late and on time from the last time that Stage 1 was
entered, resource suspension will never be triggered.

6. Stage 2 is never exited before dstage2 time units from
the time it is entered. Furthermore, it is exited within
dstage2 + (3× dperiod) time units.

4.2 Experimental Framework and Results
In our approach, we used the real-time model checker UP-

PAAL as an off-line engine for passive testing. UPPAAL
supports the description of networks (i.e., parallel composi-
tion) of timed automata, and automatically performs verifi-
cation of these timed automata specifications against prop-
erties specified in a real-time temporal logic.
In our application, we used UPPAAL to passively test

that the interval-timed traces of the actual HBM code, ob-
served mid-stream during the execution of the code, satisfy
its desired properties. We note that the language of these
properties are timed-prefix-closed, timed-suffix-closed sets
of interval-timed traces, and hence the properties are pas-
sively testable. Thus, as described in Section 2, passive test-
ing corresponds to checking of membership of the observed
interval-timed traces of the HBM in the language of these
properties.
Our application used the following steps:

350

1. We described the negation of each of the properties in
Section 4.1 as timed automata in the UPPAAL spec-
ification language; in particular, the language of each
timed automata is precisely the set of interval-timed
traces (over the alphabet of stage changes in the HBM
and the arrival of messages) that violates the corre-
sponding property.

2. We instrumented the HBM code to generate an event
when the HBM code transitions between its sequential
stages.

3. We implemented in C a model of processor B that
randomly either loses messages or sends messages back
to the HBM on-time, slightly late, or with delays of
random numbers of multiple intervals, while preserving
the order of messages received from the HBM (as per
the assumptions described in Section 3).

4. We ran the HBM code and the environment code con-
currently as Solaris processes. The execution gener-
ated traces (i.e. sequences) of events corresponding to
the sending and receiving of messages by the HBM,
together with stage changes in the HBM (as per step 2
above), as well as the real-time delay between succes-
sive events. Consistent with our motivation for pas-
sive testing, we started observing each interval-timed
trace from a random point mid-stream during its ex-
ecution.2 Each mid-stream interval-timed trace was
bounded by a specific, pre-determined length, or by
the HBM reaching a state where resource suspension
was triggered.

5. For each generated interval-timed trace, we automat-
ically checked that the trace satisfies all the intended
properties of the HBM described in Section 4.1. In
particular, we automatically constructed a UPPAAL
timed automaton whose language is exactly the sin-
gleton set consisting of the given interval-timed trace.
We then composed this timed automata in parallel
with each of the specified timed automata from step 1
above. We then used the model checking capabilities of
UPPAAL to check reachability of an accepting state of
this composed timed automata. The UPPAAL seman-
tics of parallel composition ensure that this is equiv-
alent to intersection of the languages of these timed
automata, and hence to checking whether the given
interval-timed trace is contained in the language of the
intended properties.

We generated 500 mid-stream interval-timed traces from
this switching code, and checked them using the above ap-
proach. Consistent with our previous analysis using VeriSoft,
we found that Property 6 is indeed violated by the code: that
is, our passive testing framework reported that some of the
observed mid-stream traces violated this property. Since the
environment choses randomly whether to lose messages, or
how much to delay them, most of the 500 traces likely did
not satisfy the preconditions of the properties, and did not
reveal any further property violations.
We thus constrained our environment so that it randomly

chose among patterns of message delays/losses that satisfy

2Since all of the properties are triggered by stage changes,
we made the optimization that the mid-stream observations
begin at a randomly chosen stage change.

the preconditions of the properties, such as all messages be-
ing lost, all messages being slightly delayed, all messages
being on-time, all messages alternating between being on-
time and being slightly late (for this last one, preceded by
specific short patterns of earlier behavior in some cases).
This constrained environment was constructed to increase
the chances of revealing other property violations, and to
strengthen our confidence in the satisfaction of properties
for which violations were not found. Running 100 tests using
this constrained environment, showed that both Property 5
and Property 6 were violated, while the remaining proper-
ties were not violated, consistent with our earlier analysis
using VeriSoft.

5. CONCLUSIONS AND FUTURE WORK
We have presented a formal framework for passive mid-

stream monitoring of real-time properties, together with an
implementation of this framework using the UPPAALmodel
checker for timed automata. To demonstrate the feasibility
of using this approach for actual systems, we have applied
our approach to the analysis of some fault tolerant soft-
ware in a telecommunications switch developed at Lucent
Technologies. Since specifications in logics can often be eas-
ier to understand for testing practitioners, we plan to iden-
tify fragments of real-time logics [12] that define passively
testable properties. We also plan to extend our implemen-
tation in several ways. First, we plan to implement on-line
mid-stream monitoring, using timed automata observers [8]
or on-line (timed) verification tools such as T-UPPAAL [16].
Second, we plan to explore the applicability of automated
instrumentation of system implementations such as that de-
scribed in [13] to facilitate run-time observation of timed
behavior; in our case study, we had done some of this in-
strumentation manually.

6. REFERENCES
[1] R. Alur, C. Courcoubetis, and D. L. Dill.

Model-checking for real-time systems. In Logic in
Computer Science, 1990.

[2] R. Alur and D. Dill. A theory of timed automata.
Theoretical Computer Science, 126:183–235, 1994.

[3] R. Alur, L. Fix, and T. Henzinger. Event-Clock
Automata: A Determinizable Class of Timed
Automata. Theoretical Computer Science,
211:253–273, 1999.

[4] R. Alur, R. Kurshan, and M. Viswanathan.
Membership problems for timed and hybrid automata.
In Proceedings of the 19th IEEE Real-Time Systems
Symposium, 1998.

[5] R. Alur and P. Madhusudan. Decision problems for
timed automata: A survey. In 4th Intl. School on
Formal Methods for Computer, Communication, and
Software Systems: Real Time, 2004.

[6] H. Barringer, A. Goldberg, K. Havelund, and K. Sen.
Rule-based runtime verification. In B. Steffen and
G. Levi, editors, VMCAI, volume 2937 of Lecture
Notes in Computer Science, pages 44–57. Springer,
2004.

[7] G. Behrmann, A. David, and K. G. Larsen. A tutorial
on uppaal. In M. Bernardo and F. Corradini, editors,
SFM, volume 3185 of Lecture Notes in Computer
Science, pages 200–236. Springer, 2004.

351

[8] S. Bensalem, M. Bozga, M. Krichen, and S. Tripakis.
Testing conformance of real-time applications with
automatic generation of observers. In Runtime
Verification, 2004.

[9] R. Cardell-Oliver. Conformance tests for real-time
systems with timed automata specifications. Formal
Asp. Comput., 12(5):350–371, 2000.

[10] P. Godefroid, R. S. Hanmer, and L. J. Jagadeesan.
Model checking without a model: An analysis of the
heart-beat monitor of a telephone switch using
verisoft. In ISSTA, pages 124–133, 1998.

[11] T. Henzinger, Z. Manna, and A. Pnueli. Temporal
proof methodologies for timed transition systems.
Information and Computation, 112:273–337, 1994.

[12] T. A. Henzinger. It’s about time: Real-time logics
reviewed. In D. Sangiorgi and R. de Simone, editors,
CONCUR, volume 1466 of Lecture Notes in Computer
Science, pages 439–454. Springer, 1998.

[13] M. Kim, M. Viswanathan, H. Ben-Abdallah,
S. Kannan, I. Lee, and O. Sokolsky. Formally specified
monitoring of temporal properties. In European
Conference on Real-Time Systems, 1999.

[14] M. Krichen and S. Tripakis. Black-box conformance
testing for real-time systems. In S. Graf and
L. Mounier, editors, SPIN, volume 2989 of Lecture
Notes in Computer Science, pages 109–126. Springer,
2004.

[15] D. Lee, A. Netravali, K. Sabnani, B. Sugla, and
A. John. Passive testing and applications to network
management. In Proceedings of the IEEE
International Conference on Network Protocols, pages
113–122, October 1997.

[16] M. Mikucionis, K. G. Larsen, and B. Nielsen.
T-uppaal: Online model-based testing of real-time
systems. In ASE, pages 396–397. IEEE Computer
Society, 2004.

[17] A. N. Netravali, K. K. Sabnani, and R. Viswanathan.
Correct Passive Testing Algorithms and Complete
Fault Coverage. In 23rd IFIP International
Conference on Formal Techniques for Networked and
Distributed Systems (FORTE), pages 303–318, 2003.

[18] V. Paxson. Bro: A system for detecting network
intruders in real-time. Computer Networks,
31(23-24):2435–2463, December 1999.

[19] D. K. Peters and D. L. Parnas. Requirements-based
monitors for real-time systems. IEEE Trans. Software
Eng., 28(2):146–158, 2002.

[20] M. Ranum, K. Landfield, M. Stolarchuk,
M. Sienkiewicz, A. Lambeth, and E. Wall.
Implementing a generalized tool for network
monitoring. In Proceedings of the Eleventh Systems
Administration Conference (LISA XI), pages 1–8,
1997.

APPENDIX

A. SOME PROOFS
Proof. (of Lemma 2.14).

The (⇒) direction trivially holds. For the (⇐) direction,
consider any σ′, σ with σ′⊕σ ∈ [[I]]. Then σ′⊕σ ∈ [[I ′]] for
some I ′ |= P . Hence σ ∈ PT (P). By the closure property
of being passively testable, we have that I |= P .

Proof. (of Theorem 2.16).

(⇒) Condition (1) follows from Lemma 2.14. To establish
Condition (2), consider any σ′, σ with σ′⊕σ ∈ LP ; we
need to show that σ ∈ LP . By (Axiom II) of De-
finition 2.4, we have an implementation Iσ with the
characteristic property that [[Iσ]] is the set of all timed
prefixes of σ. We will show that Iσ |= P and hence
σ ∈ LP . Consider any σ1, σ2 such that σ1⊕σ2 ∈ [[Iσ]].
By the characteristic property of Iσ this means that
σ1⊕σ2⊕σ3 = σ for some trace σ3. Since σ′⊕σ ∈ LP ,
we have an I |= P with σ′⊕σ ∈ [[I]]. For σ′′ = σ′⊕σ1,
we have that σ′′⊕σ2⊕σ3 ∈ [[I]]. By (Axiom I) of Defin-
ition 2.4, we have that σ′′⊕σ2 ∈ [[I]] and I |= P . From
Definition 2.7, we therefore have that σ2 ∈ PT (P). By
the closure condition of passive testability it then fol-
lows that Iσ |= P .

(⇐) We need to show that P admits complete coverage un-
der passive testing assuming Conditions (1) and (2).
Consider any I such that for all traces σ′, σ with σ′⊕σ ∈
[[I]] we have that σ ∈ PT (P). We will show that
[[I]] ⊆ LP , and from Condition (1), it follows that
I |= P thereby establishing the closure requirement
of passive testability. Consider any σ ∈ [[I]]. Since
0⊕σ ∈ [[I]], we have that σ ∈ PT (P). Therefore we
have an I ′ |= P and σ such that σ′⊕σ ∈ [[I ′]]. Since
I ′ |= P , we have that σ′⊕σ ∈ LP . From Condition (2),
we get that σ ∈ LP , thus establishing that [[I]] ⊆ LP .

Proof. (of Theorem 2.18).
Consider any σ ∈ PT (P). Then we have a σ′ and an I |= P
with σ′⊕σ ∈ [[I]]. Since I |= P , we have that σ′⊕σ ∈ LP .
Since P is passively testable, by Theorem 2.16, LP is timed
suffix-closed and hence σ ∈ LP . This shows that PT (P) ⊆
LP .
The other direction of inclusion is true for any property

P . Consider any σ ∈ LP . We therefore have an I |= P with
σ ∈ [[I]]. For σ′ = 0, we have that 0⊕σ ∈ [[I]] for I |= P.
Using Definition 2.7, it follows that σ ∈ PT (P).

352

