
The Demonstration of Low-Power High-Performance H.264 Decoder

with Rapid SoC Prototyping Platform

Sangkwon Na, Woong Hwangbo, Jaemoon Kim, Sheunghan Lee and Chong-Min Kyung

{skna, woonghb, jmkim, shlee04}@vslab.kaist.ac.kr, kyung@ee.kaist.ac.kr

VLSI Systems Lab. - KAIST - South Korea

http://vswww.kaist.ac.kr

Abstract

We introduce 4x4 sub-macroblock pipelined H.264 decoder,

and data-reuse mechanism to reduce memory access and

power consumption. The proposed H.264 decoder can

support CIF 30fps videos at 8MHz with 25,426 LUTs and

4KB SRAM in Xilinx Virtext4.

1. Introduction
Nowadays hand-held devices have provided multimedia

service, such as streaming and/or playback. Among many

applications the multimedia CODEC, such as H.264,

requires lots of computing power. Especially, H.264

adapted redundancy reduction algorithms to minimize the

bit-rate of coded sequence and support high quality video.

Because of these complex algorithms, the need has arisen

for hardware implementation.

Our project aims at the development of low-power and high

performance H.264 decoder for mobile terminals. After

H.264 standard publication, many design/implementation

results have been reported. [1] explains how to implement

H.264 decoder based on a SoC platform design

methodology. Because intra/inter prediction is executed on

ARM processor, its performance does not exceed 20.15 fps

at most. [2] proposes hybrid task pipelining architecture.

Because the sequence parameter set (SPS), picture

parameter set (PPS), and slice header are parsed by RISC

processor, it distorts the pipeline advance. In other words,

the hybrid part can be bottleneck among decoding processes.

In this paper, we report low-power and high-performance

H.264 decoder. The most important design point is 4x4 sub-

macroblock pipeline architecture. We implemented each

algorithm element which can process samples as 4x4 sub-

macroblock unit. Hence, our design guarantees high

throughput maintaining low power dissipation. In addition,

we applied data reuse mechanism to MC and DF, and

reduce the memory access and power consumption.

This paper is organized as follows. Section 2 will present

the proposed 4x4 sub-macroblock pipeline architecture. In

section 3, we will describe how we implement and verify

the design. Section 4 will show the experimental results and

the decoder performance. In section 5, we will conclude our

work.

2. 4x4 Sub-Macroblock Pipeline

Architecture

H.264/AVC Decoder

System Bus (AMBA AHB)

CAVLD IQ

+SRAM

SRAM

Deblocking

Filter

H.264

Stream Parser

Motion

Compensation

Intra

Prediction

IT

4x4

Content

SRAM #0

Content

SRAM #1

Stream

Buffer

Frame

Buffer

LCD

Contoller

Adjacent

Buffer

Figure 1: H.264 Decoder System Diagram

Our H.264 decoder has 4x4 sub-macroblock pipeline

architecture. The processing unit of this pipeline

architecture is a 4x4 sub-macroblock, and each functional

block transfers sample data through private channel. It is

described in figure 1.

“H.264 Stream Parser (SP)” reads coded data from stream

buffer, and parses them to get header information, sample

types, and sample data. After parsing, SP transfers data to

and controls other functional blocks. Actually, SP works as

a central controller. Because one macroblock is predicted as

inter-frame type or intra-frame type, the results of “Motion

Compensation (MC)” and “Intra Prediction (IP)” pass

through the multiplexer, and one of them is added up to the

residual sample. The residual sample is made by “Inverse

Transform (IT)” and “Inverse Quantization (IQ).” Final

decoded samples are transferred to “Deblocking Filter

(DF),” and it executes filtering process and stores the

results at the frame buffer.

For the performance improvement, we devised and applied

some design techniques. With formula transformation we

reduced the processing element for IQ/IT, so we obtained

results of IQ/IT within one cycle while consuming low

power. Furthermore, we decomposed and re-assembled

CAVLD and IQ. As a result, just one IQ unit was used to

produce inverse-quantized samples.

We adopted a hybrid filtering sequence for DF. It satisfies

the required filtering condition defined in the H.264

standard. Finally, DF needs 208 clock cycles to filter one

macroblock.

3. Data Reuse Mechanism
We apply data reuse mechanism to MC and DF, and reduce

the memory access. Off-chip memory access consumes

large amount of power, so proposed method can reduce

power consumption effectively.

http://vswww.kaist.ac.kr/

Stored into right_buf
(9x5)

Stored into bottom_buf
(5x21)

fetched from bottom_buf

fetched from right_buf

fetched from
Bus Interface

(a) (b)

16x16 marcoblock

Figure 2: Reusable pixels for MC

Our MC refers to other macroblocks which are directed by

motion vectors, and uses buffers for reusable pixels. As a

result, it reduces memory access by up to 65-80%. If

previously-used pixels are reusable for other sub-

macroblock reference, they are stored in the pixel cache

buffer. It is described in figure 2.

Adjacent mem

(2W+32) x 32 bits, single-port SRAM

Reconstructed mem

96 x 32 bits, single-port SRAM

frame width : W

current

MB

fram
e h

eig
h

t : H

16 x 16 marcoblock

Luminance Chrominance

Figure 3: Memory architecture for DF

Our DF uses pixel buffers which have ready-filtered pixels,

and it is called „adjacent memory.‟ Adjacent pixels which

are out of boundaries of current macroblock should be

accessed from the frame buffer; however, the access to

external memory decreases the performance and consumes

a large amount of power. Hence we use adjacent memory

for buffering ready-filtered pixels. Figure 3 presents

memory architecture for DF, and a dark grey rectangular

denotes adjacent memory.

4. Experimental Results
After the design is finished, we integrated all designs and

tested them with generic sequences. There are six generic

sequences named as „akiyo‟, „carphone‟, „foreman‟,

„football‟, „news‟, and „stefan‟. We used RTL simulator,

VCS MX 7.2, and our design is described in synthesizable

Verilog HDL. Our H.264 decoder is synthesized with

25,426 LUTs and 4KB SRAM in Xilinx Virtex4.

Coded bit-stream is loaded into the stream buffer, and

decoded images are recorded as file. After all sequences are

decoded, decoded results are verified with golden results

gathered from reference software, JM v10.2 [3].

About test sequences, we measured the performance of

proposed H.264 decoder. Table 1 shows the operating clock

frequencies needed for real-time decoding process.

Finally we made H.264 decoding system upon SoC

prototyping platform, iNTUITION [4]. Figure 4 shows

H.264 demonstration system displaying decoded image at

LCD display. This system has ARM1136 core-tile, ZBT

SRAM, FLASH and LCD controller.

Figure 4: H.264 Decoder Demo System

Table 1: Decoding performance results

Video

sequence
size

frequency

(MHz)

Akiyo QCIF/30fps 1.46

Carphone QCIF/30fps 1.83

Foreman QCIF/30fps 2.01

Football CIF/30fps 7.94

Foreman CIF/30fps 7.78

News CIF/30fps 6.01

Stefan CIF/30fps 7.99

iNTUITION provides high-density FPGA and built-in logic

analyzer, therefore fast logic verification is available.

Furthermore, verification can be performed under real chip

environment with the peripherals of iNTUITION. With

ARM1136 core, iNTUITION supports HW/SW co-

design/verification feature.

5. Conclusion
We developed 4x4 sub-macroblock pipelined H.264

decoder targeting low power and high performance. Data

reuse mechanism helps to reduce power consumption.

Proposed H.264 decoder needs 8MHz as operating

frequency for CIF/30fps decoding operation.

Our H.264 decoder is synthesized and mapped into Xilinx

Vertex4 FPGA. We demonstrate our design with rapid SoC

prototyping platform, iNTUITION.

6. References
[1] S. H. Lee, J. H. Park, S. W. Kim, S. J. Ko and S. Kim,

“Implementation of H.264/AVC Decoder for Mobile Video

Applications,” Proc. of ASPDAC, 2006.

[2] T. Chen, Y.-W. Huang, T.-C. Chen, Y.-H. Chen, C.-Y.

Tsai and L.-G. Chen, “Architecture Design of H.264/AVC

Decoder with Hybrid Task Pipelining of High Definition

Videos,” ISCAS’05, 2005.

[3] H.264/AVC Software Coordination, Heinrich-Hertz-

Institut, http://iphome.hhi.de/suehring/tml

[4] iNTUITION, http://www.dynalith.com/intuition.php

Acknowledgement
This research has been supported by grants from SoC

Initiative for Ubiquity and Mobility. Thanks are due to

Dynalith Systems Co. for assistance with the equipment and

implementation.

http://iphome.hhi.de/suehring/tml
http://www.dynalith.com/intuition.php

