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Abstract

This demonstration presents a tool flow, based on a specifi-
cation formalism and assisted by instruction-set synthesis, that
greatly simplifies the complex design of partially reconfigurable
processors.

1. Introduction

Over the past few years, embedded System-on-Chip (SoC)
designs have been relentlessly driven by the continually in-
creasing requirements of performance and flexibility of new and
complex applications. The emergence of Application Specific
Instruction-set Processors (ASIPs) as one of the key compo-
nents of such SoCs can be ascribed to their unique blend of
both of these qualities. Due their custom designed nature,
ASIPs can combine the programmability/flexibility of general
purpose processors with high-throughput and low power con-
sumption. However, the flexibility of an ASIP is only limited
to the soft changes, i.e. the hardware implementation can
not be altered after fabrication. Often this limitation prevents
ASIPs from being designed and deployed for a wide range of
applications. The kind of hard flexibility that can solve this
problem, is readily available in fully-reconfigurable architec-
tures [1]. Naturally, partially re-configurable processors, that
combine the merits of both of these architectural alternatives,
are gaining prominence in recent years [2, 3]. These architec-
tures contain an ASIP part and an reconfigurable (i.e. FPGA)
part. The added flexibility allows the re-configurable ASIPs
(rASIPs) to be adapted to a large variety of applications with-
out compromising the performance.
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Figure 1. General rASIP Architecture
As can be seen from Figure 1, an rASIP architecture can be

broadly divided into three partially overlapping components
namely, the base processor, the ASIP-FPGA coupling and the
FPGA architecture. Considering the numerous design alterna-
tives for each of these components, it is understandable that
the design of rASIP is a demanding task which calls for an
efficient design methodology. This demonstration presents a
tool flow that simplifies this complex design process by facili-
tating fast and comprehensive design space exploration in the
PRE-fabrication phase of an rASIP development, and opti-
mal mapping of various applications in the POST-fabrication
phase.

2. Design Flow

The design space exploration and implementation of
rASIPs can be naturally sub-divided into two phases, namely
PRE-fabrication and POST-fabrication phase - terms which
have already been mentioned in section 1. The focus of these
two phases are presented in the following.

• PRE-fabrication Design Flow: This phase of design
happens before the rASIP is fabricated. Here, the com-
plete design space is open. The decisions involving all
three design sub-spaces (i.e. base processor, processor-
FPGA coupling and FPGA architecture) are to be taken
in this phase. At the end of this phase, the design
is implemented partially on fixed and partially on re-
configurable hardware.

• POST-fabrication Design Flow: This phase of de-
sign happens after the rASIP is fabricated. In this phase,
the base processor and the interfacing hardware is fixed.
The architecture design space is limited to the possible
configurations of the re-configurable block only.

This demonstration presents a design flow that is applica-
ble to both PRE- and POST-fabrication phases of an rASIP
design. The design flow is centered around a specification
formalism that can encapsulate the description of all three ar-
chitectural components of an rASIP in a single, unified model.
This specification method extends the the LISA 2.0 Architec-
ture Description Language (ADL)[4], commonly used to de-
scribe ASIPs, by incorporating several new language elements
to facilitate description of rASIPs. The required set of soft-
ware tools (i.e. the compiler, assembler, linker and instruction
set simulator) and an RTL model can be automatically gen-
erated from such an unified rASIP description for simulation,
verification and implementation purposes. Currently, the lan-
guage extensions allow the designer to place new functional
units and resources (such as registers) in the reconfigurable
part, and the processor-FPGA interface is inferred from the
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(a) PRE-fabrication flow.
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(b) POST-fabrication flow. The fixed parts of rASIP
design are drawn in dark colour.

Figure 2. rASIP Design Flow

data and control signals needed by these units and resources.
The generated HDL for the reconfigurable part can be mapped
to any fine-grained, commercially available FPGA. In future,
specification and exploration of the reconfigurable architecture
– specially coarse-grained embedded FPGAs – is planned.

Another major component of the design flow is an
instruction-set synthesis tool [5] that can map the computa-
tionally intensive parts of an application onto a set of opti-
mal Instruction Set Extensions (ISEs). This tool has been
extended to generate LISA description of the identified ISEs
which can be easily integrated into an existing rASIP model.
Another tool named coding leakage explorer attempts to ex-
tract available coding spaces for such ISEs from the base pro-
cessor instruction encoding.

Figure 2.(a) presents the PRE-fabrication design flow. The
design space exploration may start with a rudimentary rASIP
model (in LISA) which is iteratively refined based on the re-
sults of simulation. The unified rASIP description greatly
simplifies the process of altering different architectural compo-
nents and the automatic tool generation process permits easy
evaluation of different alternative implementations. In each
refinement step, the automatic ISE generation tool is used to
synthesize and evaluate different special purpose instructions,
and the rASIP micro-architecture is modified to accommodate
the most promising ISEs. Such adjustments may include, but
are not limited to, the introduction of special purpose registers
and fast-memories in the re-configurable part, modification of
the base processor-FPGA coupling and decisions on the gran-
ularity and configuration of the FPGA architecture.

Figure 2.(b) presents the POST-fabrication design flow
which is very similar to the PRE-fabrication design flow in
many respects. However, unlike the PRE-fabrication flow, the
only changes in the rASIP description can be brought about by
mapping application specific ISEs to the re-configurable parts.
This is easily achieved by restricting the ISE synthesis tool to
generate special instructions under hard rASIP architectural
constraints.

3. Case Study

The design flow described so far has been applied to a
case-study of designing a generic rASIP for private key cryp-
tographic applications The base processor used in this case

study was LTRISC – a 32 bit RISC processor with sixteen
32-bit registers. Extensive design space exploration in the
PRE-fabrication phase using the DES [6] application resulted
in several modifications of the base processor and reconfig-
urable portions. For example, a fast SRAM based scratch-pad
was added to the reconfigurable part to give ISEs access to
the so called S-Boxes (constant tables ubiquitously present in
different block-cipher algorithms). These architectural modi-
fications were vindicated in the POST-fabrication phase when
experiments were carried out with two similar applications,
namely Blowfish and GOST [6]. Without the architectural
changes introduced in the PRE-fabrication phase, the speed-
up for these applications were found to be quite low (2.7×
and 1.02×, respectively, for Blowfish and GOST). However,
after the introduction of the scratch-pad and other related
alterations, the speed-up shot upto 3.8× and 1.8× for the re-
spective applications.

4. Conclusion and Future Work
Due to the high flexibility, partially re-configurable pro-

cessors are attracting significant research interest in to-
day’s processor design community. In this demonstration, a
specification-driven design framework for rASIPs is presented.
The proposed design flow integrates existing and new tools
for a seamless design space exploration in both PRE- and
POST-fabrication phases. In future, we will concentrate on
the design space exploration and implementation of the re-
configurable blocks in the rASIP. Furthermore, the modeling
and exploration for dynamically reconfigurable-rASIPs will be
targeted.
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