
RESUME’s wavelet-based scalable video decoder

Hendrik Eeckhaut Mark Christiaens Harald Devos Philippe Faes
Dirk Stroobandt

Hendrik.Eeckhaut@elis.UGent.be
Parallel information systems - ELIS - Ghent University - Belgium

http://www.elis.ugent.be/resume

Abstract

In the RESUME project we developed a real-time FPGA
prototype of a fully scalable, wavelet based video decoder
which overcomes the complexity and bandwidth issues as-
sociated with scalable video.

1 Introduction

The RESUME-project (Reconfigurable Embedded Sys-
tems for Use in Scalable Multimedia Environments) ex-
plored the benefits of using reconfigurable hardware for
the implementation of scalable multimedia applications by
building an FPGA implementation of a real-time, scalable,
wavelet-based video decoder. The term scalable video
refers to a coding scheme that can easily accommodate
changes in quality of service (QoS) without the need for
transcoding. A scalable video stream can be decoded at
varying frame rates, resolutions and image qualities by sim-
ply skipping dispensable parts in the video stream, only
decoding those parts that will contribute to the displayed
video. The algorithmic structure of the RESUME scalable
video coder and decoder (codec) is shown in Figure 1 and
is described in [2].

Such a scalable video codec has advantages for both the
server (the provider of the content) and the clients. On
the one hand the server scales well since it has to produce
only one encoded video stream that can be broadcasted to
all clients, irrespective of their QoS requirements. On the
other hand the client (or the network) can easily adapt the
decoding parameters to its needs. This way it is possible to
optimize the use of the network, display, the required pro-
cessing power, the required memory, ...

Scalability has a lot of advantages but comes at a cost.
The decoding algorithm is computationally complex and re-
ally stresses the system bandwidth as it replaces the block-
based DCT-approach with frame-based wavelets. This has
a tremendous impact on the hardware architecture.

Motion 
Estimation

Wavelet 
Transform

Entropy 
Coding

Motion 
Compensation

Inverse 
Wavelet 

Transform
Entropy 

Decoding

Pack

Unpack

Adapt bit
stream to QoS

Original
frames

Decoded
frames

Temporal 
Scalability

Resolution
Scalability

Resolution &
Quality

Scalability

Figure 1. High-level overview of the codec.

2 Hardware implementation

We implemented the complete decoding pipeline of our
custom wavelet-based scalable video codec on a PCI de-
velopment board equipped with a Stratix FPGA S60 and
256 MiB of DDR SDRAM memory. The FPGA board is
plugged into a standard PC with two monitors, one dedi-
cated to displaying the decoded video, the other to interact
with the system (Figure 2). The design goals were real-time,
lossless decoding of CIF-sequences (352×288 pixels) at 25
frames per second.

Implementing a complete video codec is a complex un-
dertaking that requires careful planning. We applied the fol-
lowing methodology. First the entire software code base
was cleaned-up and we made sure that the algorithms used
were properly understood. We chose to use a HW/SW-
codesign approach leaving as much of the algorithm as pos-
sible in SW running on a CPU while implementing the
time-critical parts in reconfigurable HW. The hardware de-
sign was implemented using Altera’s SOPC (System-On-
a-Programmable-Chip) Builder for component-based sys-
tem integration. For each of the steps in the decoding
pipeline we developed custom components to deliver the
required hardware acceleration (Figure 3). Many compo-



Figure 2. Photograph of our wavelet-based
scalable video decoder in action.

Entropy
Decoder

VGA

DDR

PCICPU Inverse
Wavelet

Motion
Comp.

Direct (master) transfer DMA (slave) transfer

Figure 3. Simplified hardware overview.

nents have substantially different maximum clock frequen-
cies. To accommodate this, the design is subdivided into
multiple clock domains. Using SOPC Builder this can be
achieved fairly easily by assigning different clocks to each
of the components.

Most components of the design were highly optimized to
achieve real-time decoding. The wavelet entropy decoder,
very similar to AVC’s CABAC, was exhaustively elaborated
until it produced one decoded symbol per clock cycle by
applying multilevel speculation and pipelining [2]. We also
developed an automatic inverse discrete wavelet transform
(IDWT) generator based on polyhedral techniques (loop
transformations) [1]. This resulted in a line-based IDWT
especially tailored to the specific access pattern of the exter-
nal on-board DDR-memory. For all development (hardware
and software) we applied a write-tests-first strategy and
used well founded engineering techniques as code reuse,
refactoring, regression testing and continuous integration to
continuously guard the quality of the entire design.

The major bottlenecks in the design were the limited
bandwidth of the PCI-bus and the DDR-memory. Trad-
ing in the conventional block-based DCT-transform for
the wavelet-transform results in calculations on larger data
blocks: wavelet sub bands instead of macro blocks. The
larger intermediate results no longer fit in the internal mem-
ories of the FPGA and force off-chip buffering. Of course,

this results in large bandwidth requirements between the ex-
ternal memory and the FPGA. To alleviate this problem,
much effort has been put in optimizing this communication
through the use of DMA transfers in efficient burst mode.

Now that we have a design capable of lossless decod-
ing, we can investigate the options of reconfiguration with
smaller or slower designs to adapt the hardware resource us-
age to lower quality requirements. This way we can effec-
tively link the video scalability to real hardware scalability.

3 Conclusions

To our knowledge, we present the first complete hard-
ware design of a real-time, fully scalable wavelet-based
video decoder. This result was only possible by us-
ing a cutting edge methodology. Firstly, the design was
performed using state-of-the-art tools such as Altera’s
SOPC Builder (for a component-based design), the WRaP-
IT/URUK tool-suite (for automatic loop transformations)
and CLooGVHDL (for automatically generating VHDL
from loop nests). Secondly, some components in the de-
sign, such as the inverse discrete wavelet transform and
the arithmetic decoder, are highly optimized. Compared
to a software implementation at 2 GHz (AMD64 3500+)
the FPGA-implementation at approximately 55 MHz is 3
times faster. Finally, the quality of the entire design was
carefully guarded using a regression framework based on
the best practices from the software world (using Apache
Maven and Continuum).

Acknowledgment

This research is supported by the I.W.T. Vlaanderen,
grant 020174, the F.W.O., grant G.0021.03, GOA project
12.51B.02 of Ghent University and the Altera university
program. P. Faes is supported by a PhD grant from the
I.W.T. Vlaanderen.

References

[1] H. Devos, K. Beyls, M. Christiaens, J. Van Campenhout, E. H.
D’Hollander, and D. Stroobandt. Finding and applying loop
transformations for generating optimized FPGA implementa-
tions. Transactions on High Performance Embedded Archi-
tectures and Compilers, LNCS 4050, 1(1):151–170, 2007.

[2] H. Eeckhaut, M. Christiaens, H. Devos, and D. Stroobandt.
Implementing a hardware-friendly wavelet entropy codec for
scalable video. In Proceedings of SPIE: Wavelet Applications
in Industrial Processing III, volume 6001, pages 169–179,
October 2005.

2


