
UPaK: Abstract Unified Pattern Based Synthesis Kernel
for Hardware and Software Systems

Christophe Wolinski
wolinski@irisa.fr

Rennes University I / IRISA
France

http://www.irisa.fr

Krzysztof Kuchcinski
krzysztof.kuchcinski@cs.lth.se

Lund University
Sweden

http://www.cs.lth.se

Adam Postula
adam@itee.uq.edu.au

University of Queensland
Australia

http://www.elec.uq.edu.au

Abstract

The UPaK system is designed to be a kernel of an auto-
matic hardware synthesis as well as code and configuration
generation for architectures including ASIP processors and
reconfigurable systems.

1. Introduction

The developed prototype of UPaK system is designed
to be a kernel of an automatic hardware synthesis as well
as code and configuration generator for several architecture
models. These models include processors with extended
data-paths corresponding to extended instruction sets, pro-
cessors with coarse grain reconfigurable systems tightly
connected to data-paths, heterogeneous run-time coarse
grain reconfigurable systems, and existing coarse grain re-
configurable systems.

UPaK is implemented using advanced software tech-
nologies that include graph matching and flexible schedul-
ing techniques recently developed by the authors [4, 5]. It
is written in the Java language and therefore is a multi-
platform tool.

2. UPaK system

The system provides a systematic method for identifi-
cation of frequent computational patterns or other patterns
of interest. This method is based on graph isomorphism
constraint and constraints programming; that makes it very
flexible and provides the basis to integrate in one formal en-
vironment the graph isomorphism constraints, other design
constraints, and the heuristic search for patterns. It takes
into account the graph structure and frequency of occur-
rence of patterns in the application graphs, it also includes

finding maximal coverage of the application graph with the
patterns of interest.

The input to the UPaK system (figure 1) is the abstract
Hierarchical Conditional Dependency Graph (HCDG), the
architecture model, the technological parameters and the
synthesis constraints. The HCDG defines behavior of the
application and is generated from the Polychrony environ-
ment [2]. It was successfully used in high level synthesis
and reconfigurable system synthesis before [3]. The syn-
thesis constraints can include such parameters as execution
time, area, and power consumption (currently implemented
version supports only time constraints).

Figure 1. UPaK design flow.

The system visualizes the automatically generated pat-
terns, the input HCDG graph covered by the selected pat-
terns, and the abstract application execution scenario on the
selected architecture model (figures 2, 3 and 4).

The UPaK hierarchical pattern-based design methodol-
ogy has a number of features that make it superior in the
context of HW/SW compilation for heterogeneous (recon-
figurable) systems and create an opportunity to develop
competitive commercial synthesis tools. These features are

following:
• computation patterns represent instructions in soft-

ware, while in hardware they define components; this
makes the basis for a unified representation for hard-
ware/software compilation,

• computation patterns represent different configura-
tions that can be mapped onto the same reconfigurable
architecture,

• computation patterns are sub-graphs in HCDG and
graph matching can be used for their identification as
well as for mapping the HCDG graph onto hardware
and/or software implementation,

• patterns in our approach form a hierarchy that helps
to handle complexity of designs.

fun LOD_1 0

+ ADD_11 3

+ ADD_15 5

in + ADD_7 1

fun LOD_8 2

in

+ ADD_23 8

fun LOD_12 4

in

+ ADD_126 46

* MUL_121 43

+ ADD_19 6

fun LOD_20 7

in

>> ASR_128 47

+ ADD_123 45

fun LOD_26 9

+ ADD_36 12

+ ADD_40 14

in + ADD_32 10

fun LOD_33 11

in

+ ADD_48 17

fun LOD_37 13

in

+ ADD_56 20

+ ADD_44 15

fun LOD_45 16

in

+ ADD_64 23

+ ADD_52 18

fun LOD_53 19

in

+ ADD_72 26

+ ADD_60 21

fun LOD_61 22

in

+ ADD_80 29

+ ADD_68 24

fun LOD_69 25

in

* MUL_122 44

+ ADD_118 42

+ ADD_83 30

+ ADD_76 27

fun LOD_77 28

in+ ADD_89 31

fun LOD_90 32

+ ADD_100 35

in

+ ADD_108 38

+ ADD_96 33

fun LOD_97 34

in

+ ADD_116 41

+ ADD_104 36

fun LOD_105 37

in

+ ADD_112 39

fun LOD_113 40

in

fun STR_130 48

out

+ ADD_132 49

out

in

+ ADD_137 50

out

in

Figure 2. Covered HCDG.

+ t0 0

out

fun t1 1

+ t2 2

in

+ t3 3

in + t4 4

in fun t5 5

+ t6 6

in

+ t0 7

+ t3 10

out

fun t1 8

+ t2 9

in

fun t4 11

+ t5 12

in

+ t6 13

in

+ t0 14

out

fun t1 15

+ t2 16

in

+ t3 17

+ t4 18

in fun t5 19

in

fun t6 20

in

+ t0 21

+ t3 24

out

in fun t1 22

+ t2 23

in

fun t4 25

+ t5 26

in

+ t0 27

+ t3 30

out

in fun t1 28

+ t2 29

in

in + t0 31

out

in fun t1 32

+ t2 33

in

+ t0 34

fun t1 35

out

in

Figure 3. Patterns

Table 2 shows the quality of patterns generated by the
UPak system obtained for the DSP applications from the
MediaBench test suite [1]. It includes a number of patterns
identified by the UPaK system for the original graph (step
1) as well as for graphs derived from this graph after remov-
ing all found matches of patterns (step 2). It also presents a
number of patterns that are used for maximum coverage of
the graph as well as the graph coverage for step 1 and the
total coverage. The table shows that high coverage for ap-
plication graphs with a small number of patterns in a short
amount of time could be obtained. All experiments have

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

fun M_6 0

Temp_10 M_18 0

Temp_16 M_20 0

Temp_10 M_16 0

Temp_16 M_21 0 Temp_16 M_22 0

+ M_10 0

Temp_16 M_23 0

Temp_10 M_17 0

fun M_5 0

fun M_8 0

Temp_14 M_19 0

+ M_12 0

Temp_16 M_24 0

+ M_9 0

fun M_7 0

+ M_1 0

out + M_0 0

out

+ M_11 0

* M_14 0

* M_13 0

+ M_2 0

+ M_3 0

>> M_15 0

fun M_4 0

out

in in

in in

in in

in in

in in

in in in in in in

in in in in

in in in in

in in

in in in in in in in in

in in

Figure 4. Abstract execution scenario.

been run on 2GHz Intel Core Duo under Mac OS X operat-
ing system.

Application |V | time step 1 step 2 total
(s) id. sel. cov. id. sel. cov.

JPEG Write BMP Header 106 4.99 6 4 90% 3 2 96%
JPEG Smooth Downsample 51 3.36 8 4 74% 3 1 88%
JPEG IDCT 134 20.90 7 5 69% 3 2 81%
MPEG IDCT 114 5.30 3 2 54% 6 3 71%
MPEG Motion Vector 32 0.9 8 3 93% 1 1 100%
EPIC Collapse 56 2.09 7 4 69% 3 3 85%
MESA Smooth Triangle 197 120.00 7 3 73% 2 1 87%
MESA Horner Bezier 18 0.36 9 3 83% 1 1 94%
MESA Interpolate Aux 108 22.8 3 2 85% 3 1 100%
MESA Matrix Multiplication 109 28.4 7 4 56% 4 2 86%
MESA Feedback Points 53 1.70 4 2 80% 3 3 94%
FIR 44 12.5 7 4 72% 2 2 90%
Elliptic Wave Filter 34 2.20 9 4 67% 2 2 94%
Auto Regression Filter 28 3.30 4 3 96% - - -
Cosine 66 7.05 8 3 50% 7 3 74%

Table 1. Results for MediaBench test.

3. Conclusions

The UpaK system implements radically new approach
to generation of computation patterns that is based on
subgraph isomorphism constraints and constraint program-
ming. The method can be used for identification of applica-
tion specific instructions as well as hardware components.
The main feature of our method is that it can identify both
the most frequently occurring patterns as well as patterns of
the largest size.

References

[1] Media benchmarks. http://express.ece.ucsb.edu/benchmark/.
[2] Polychrony. http://www.irisa.fr/espresso/Polychrony/.
[3] A. Kountouris and C. Wolinski. Efficient scheduling of conditional

behaviors for high level synthesis. In ACM Transactions on Design
Automation of Electronic Systems (TODAES), page 7(3):380412, July
2002.

[4] K. Kuchcinski. Constraints-driven scheduling and resource assign-
ment. In ACM Transactions on Design Automation of Electronic Sys-
tems (TODAES), pages 8(3):355–383, July 2003.

[5] C. Wolinski and K. Kuchcinski. Computation patterns identification
for instruction set extensions implemented as reconfigurable hard-
ware. In submitted for publication, 2007.

