
OSSS+R: SIMULATION AND SYNTHESIS OF
SELF-ADAPTIVE SYSTEMS

Philipp A. Hartmann?, Andreas Schallenberg†, Frank Oppenheimer?, Wolfgang Nebel†
?OFFIS Institute – †Carl v. Ossietzky University – Oldenburg, Germany

philipp.hartmann@offis.de http://andres.offis.de

Abstract

We present the modelling of (self-)adaptive systems with the
OSSS+R library, which is based on SystemCTM. Additionally,
an FPGA-based reconfigurable demonstrator shows first syn-
thesis results.

1. Introduction

The inclusion of (self-)adaptivity into today’s system design
is gaining importance for the development of flexible and ef-
ficient systems. Due to the heterogeneous nature of these sys-
tems, adaptivity has to be considered in different domains:
digital hardware, analogue hardware and even software, each
of it coming with its own computational models, languages
and design tools. The main objective of the ANDRES project
(ANalysis and Design of run-time Reconfigurable heteroge-
neous Embedded Systems, [1]) is to develop an integrated
modelling approach that allows to seamlessly specify, simu-
late, synthesise, and verify such adaptive heterogeneous em-
bedded systems (AHES). A tool to translate adaptive models
into RTL descriptions is currently being developed, targeting
run-time reconfigurable architectures such as FPGAs.

This presentation focuses on the modelling, simulation, and
synthesis of adaptive digital hardware components. Since to-
day’s common system description languages do not support
the modelling of the specific aspects of reconfigurable sys-
tems, the ANDRES project uses and extends the OSSS+R li-
brary [5], initially developed during the POLYDYN project [4].
The OSSS+R approach (Oldenburg System Synthesis Subset
+ Reconfiguration) presented here extends OSSS with capa-
bilities to model, simulate and synthesise reconfigurable ar-
chitectures. OSSS [2] itself is a library for modelling, simu-
lation, and synthesis of object-oriented descriptions based on
SystemCTM [3].

2. OSSS+R library

The OSSS+R library provides high-level language constructs
to model (self-)reconfigurable systems. Therefore, the de-
signer can focus on the modelling of the application, with-
out having to cope with the low-level management of different
configurations.

Following the object-oriented paradigm of OSSS, the re-
configurable components are modelled as objects in OSSS+R.
The objects in OSSS+R largely resemble the concept of poly-
morphism mapped onto run-time reconfigurable hardware.
This is due to the fact that polymorphic objects in the mod-

Figure 1: Polymorphism and configurations

elling world and reconfigurable areas on an FPGA share im-
portant properties:

Using polymorphism means having a typed reference to an
object, whose type is not necessarily exactly known. The ob-
ject instance and object type may be exchanged during runtime
but the type of the reference does never change. The reference
is the interface to the object’s contents, just like the interface
of the reconfigured area, which provides access to the different
configurations.

On the other hand, reconfiguring a part of an FPGA dur-
ing runtime requires that the signal-level interface to the non-
changing part must be static. This common, or at least compat-
ible, interface allows the communication between those parts,
although the functional core of the reconfigured part has been
modified and provides new functionalities.

The above mentioned references are called Named Contexts
in OSSS+R. These contexts are bound to a Recon-Object –
a shared ressource that represents the reconfigurable area af-
ter synthesis. Access to contexts corresponds to access to the
Recon-Object, which handles the reconfiguration to provide
the requested functionality transparently, if needed. Conflict-
ing accesses to a Recon-Object are serialised and therefore
scheduled, if necessary (see Figure 3, and Section 4.). Ad-
ditional properties such as reconfiguration times can be spec-
ified, for details see [5]. The OSSS+R simulation library will
be publicly available just as the OSSS simulation environment
already is [2].

Implementing a dynamic design may require mechanisms
for the state-preservation of configurations, the detection of
necessary adaptations, and the resolution of conflicts due to
parallel requests to exclusive resources. Such infrastructures
are complex and their manual design is an error-prone and
time-consuming task. The OSSS+R modelling library relieves
this burden from the designer, leading to shorter development
times of adaptive systems.

philipp.hartmann@offis.de
http://andres.offis.de


3. Example application

At the booth we present both an OSSS+R model and an actual
hardware implementation of a cryptographic co-processor. In
the example application, the different encryption and decryp-
tion algorithms (Triple-DES, AES, AES−1) are used mutually
exclusive. Therefore, the corresponding objects are bound to
a Recon-Object. The model allows a cycle-accurate simula-
tion of the application including the influence of the dynamic
reconfiguration on the timing behaviour and demonstrates var-
ious language features of OSSS+R.

Figure 2: OSSS+R Design Flow

As a first step towards an automated synthesis, this example
has been manually translated to VHDL and implemented on a
Xilinx ML401 evaluation board, using standard backend tools.
The resulting architecture on the FPGA follows the synthesis
concepts of OSSS+R closely and exemplifies the feasibility of
our approach. The proposed design flow is shown in Figure 2.

4. Synthesis

One of the major goals of the ANDRES project concern-
ing digital hardware is the automated synthesis of Adap-
tive Objects. “Synthesis” covers the translation of a given
OSSS+R model to RT-level VHDL, which in turn serves as
input for third-party backend tools, e.g. Xilinx’ Early Access
Partial Reconfiguration Design Flow [6]. The synthesis tool
FOSSY (Functional Oldenburg System SYnthesizer) for OSSS
is currently being extended to support reconfigurable compo-
nents and their special properties.

Figure 3: OSSS+R architecture of crypto-application

The major transformation step towards a pure RTL design
from the OSSS+R model consists of the generation of vari-
ous management structures. Additional to the application and
annotations given by the designer, different arbitration mech-
anisms, structural information (e.g. FPGA types) etc. need to
be considered. The generated infrastructure consists of a set
of hierarchically organised controllers (see Figure 3). A set

of distributed controllers for each reconfigurable area handles
access requests by the static design parts. Requests are de-
layed when the access requires a reconfiguration or other ac-
cesses are currently processed. Each access controller uses a
central reconfiguration controller per device to accomplish re-
configurations. That unit resolves conflicts between different
distributed controllers and provides an interface to the FPGA’s
configuration port.

The required interfaces to the reconfigurable areas can be
determined during synthesis by analysing the interfaces of the
corresponding Named Contexts that are bound to the Recon-
Object. This even allows the synthesis of static signal-level
interfaces for unrelated interfaces bound to a single reconfig-
urable area on the application layer.

For each possible functional content of a Named Context,
resp. Recon-Object, a VHDL implementation of the behaviour
is generated separately. In the later steps of the synthesis flow
each of these functional blocks can be used for the generation
of the required partial bitstreams.

5. Conclusion

In this work we have presented the modelling, simulation,
and synthesis of self-adaptive digital hardware components
with OSSS+R. A simple demonstrator, which can dynamically
exchange different cryptographic algorithms during run-time,
has been developed as an OSSS+R model with accompany-
ing, cycle-accurate simulation and as a manually synthesised
FPGA prototype implementation.

The implementation of the demonstrator follows the syn-
thesis concepts (see [5]), that serve as the basis for the cur-
rently ongoing development of automated synthesis tools for
OSSS+R models.

References

[1] ANDRES project. http://andres.offis.de.
[2] ICODES project. http://icodes.offis.de.
[3] Open SystemC Initiative. SystemCTM.

http://www.systemc.org.
[4] POLYDYN project. http://ehs.informatik.

uni-oldenburg.de/en/research/projects/

polydyn.
[5] A. Schallenberg, F. Oppenheimer, and W. Nebel.

OSSS+R: Modelling and Simulating Self-Reconfigurable
Systems. In Proceedings - 2006 International Conference
on Field Programmable Logic and Applications, pages
177–182, Aug. 2006.

[6] Xilinx, Inc. Early Access Partial Reconfiguration User
Guide (UG208), Mar. 2006.

Acknowledgements

The ANDRES project is co-funded by the European Commis-
sion within the Sixth Framework Programme (IST-5-033511).
The POLYDYN project is funded by the DFG under grant No.
NE 629/7.

http://andres.offis.de
http://icodes.offis.de
http://www.systemc.org
http://ehs.informatik.uni-oldenburg.de /en/research/projects/polydyn
http://ehs.informatik.uni-oldenburg.de /en/research/projects/polydyn
http://ehs.informatik.uni-oldenburg.de /en/research/projects/polydyn

	Introduction
	OSSS+R library
	Example application
	Synthesis
	Conclusion

