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Abstract 

 
FPGA based video processing systems are effective but 
have a complex programming model. The synthesis tool 
presented here reduces the design complexity and still 
produces effective implementations. 
 
1. Introduction 
 
This project deals with optimizing FPGA embedded 
memory required for data buffering in the pre-processing 
stage of real-time video processing systems (RTVPS). The 
pre-processing stages are usually neighbourhood oriented. 
Examples of such 2-D operations are convolution, 
histogram, spatial and gray-level transforms, erosion, 
dilation and component labelling [1].  
 Current approaches to C/C++ based system synthesis or 
any other synthesis environment do not efficiently make use 
of the FPGA architecture especially the memory sub-
systems for real-time video processing systems. This is due 
to the manner in which memories are currently being 
instantiated in FPGAs. In this project, we are developing a 
system synthesis tool for implementing RTVPS with 
multiple neighbourhood oriented filters targeting FPGAs. 
The tool takes advantage of our already developed memory 
modelling tool IMEM [2], memory allocation [3], boundary 
conditions management tool [4] and behavioural simulation 
platform. Within memory modelling, processes such as 
memory estimation and optimization are carried out. The 
synthesis process explicitly separates the modelling and 
implementation of memory requirements and behaviour of 
the filter functions. In this manner, the memory 
requirements of the RTVPS will be implemented by the 
tools developed in this project whereas tools like Agility 
Compiler can be used to implement the behaviour of the 
RTVPS filters. The approach supports functional 
verification through simulation of both the C/C++ and 
VHDL modules of the filters.  
 
2. Conceptual model – IMEM 
 
The methodology used is to capture video system using a 
coarse grained synchronous dataflow graph called IMEM, 
(Fig. 1A). IMEM stands for Interface and MEmory Model 
and is build on top of the SystemC modelling library [2]. 
Each node in the IMEM dataflow graph captures both the 
abstract video interface and the memory model as shown in 

Fig. 1B whereas each edge in the graph represents the data 
width of each pixel in the video frame. The model is stated 
to be conceptual since it explicitly captures the data 
dependencies. The memory model is a description of the 
neighbourhood of pixels that the task operates on. 
Additionally, each node consists of a description of the 
task’s functional behaviour. The task does not include any 
data dependency or timing related to the dataflow, just an 
un-timed C++ description of the relation between input and 
output pixels. 
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Figure 1: IMEM model of a video processing system. 

 
 The architecture in Fig. 2 handles data storage and 
boundary conditions for the spatial pixel neighbourhood. In 
Fig. 2, the task is connected to the memory architecture 
through the port interfaces for all the required pixels data 
and its output pixel corresponding to the centre pixel in the 
input neighbourhood. The sliding window controller SLWC 
monitors the centre pixel in a spatial neighbourhood and 
using the position information provides valid data for all the 
pixels in the spatial neighbourhood through the Line 
buffers, Window ctrl and Pixel Switch. The Line buffers are 
required to buffer image data in order to create the spatial 
neighbourhood. They are implemented in hardware through 
the memory architecture described in [3]. The architecture 
groups all the line buffers required by a task to form a 
global memory object (GMO) for that task. Where the 
width of the GMO is the number of line buffers required by 
the task multiplied by the bit width representing a pixel. 
The length of the GMO is equal to those of the line buffers 
that formed it [3]. Allocation of the GMOs has been 
formalised through integer linear programming (ILP) and 
implemented heuristics in order to achieve optimal results. 
 Window control (Window ctrl) provides control signals 
used by the Pixel switch to build a spatial neighbourhood 
around the current pixel. Window ctrl is implemented in 
hardware such that only one copy is instantiated and used to 
control all Pixel Switch modules instantiated for all the 



spatial neighbourhoods in a VIP algorithm involving more 
than one frames. The Pixel switch replaces all pixels in a 
spatial neighbourhood affected by boundary condition using 
predefined default values if the centre pixel is at the image 
boundary. The output sync is optional and is required to 
realign the pixels with other video signals where time 
synchronized data and control signal outputs are expected. 
This is because the neighbourhood’s output pixel usually 
has a latency with respect to the input video control signals 
by an amount depending of the neighbourhood size and the 
number of pipeline stages. 
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Figure 2: Boundary conditions implementation 

architecture. 
 
3. System synthesis 
 
The IMEM synthesis workflow depicted in Fig. 3 
demonstrates how our research on modelling and high level 
synthesis fits into an implementation trajectory. This 
workflow is defined at six different levels along the left-
hand axis. The video-processing algorithm is developed and 
simulated using IMEM at level 1. This executable model 
can then be verified through functional simulation. Data 
dependency information, frame sizes, composition of the 3-
dimensional neighbourhoods and colour space models are 
exported into an interface and memory model at level 2. 
Hence at it is at this level that the memory requirements of 
a RTVPS are separated from the behavioural C++ 
description of the RTVPS filters (as shown in Fig. 2B). The 
interface between the memory and filters of each operator is 
also defined at this level. The model exported in level 2 is 
the input to the memory synthesis process at level 3. This is 
where memory estimation, memory hierarchy optimization 
[5], memory allocation [3] and address generation is 
performed. All these processes have been implemented 
using ILP and heuristics to achieve optimal results. We 
have also explored the impact of pixel bit-width through 
buffer re-timing and placement between tasks on the overall 
memory usage. 
 At level 3, the SystemC functional description together 
with the interface template generated from the memory 
model are synthesized using a SystemC based commercial 
high-level synthesis tool, in this paper Agility from 
Celoxica. The VHDL code from both the functional part 
and the optimized interface and memory model is integrated 
at level 4 and synthesized at level 5. Hence the components 
separated at level 2 are integrated at level 5. Hardware 
simulation and compilation are also carried out. 
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Figure 3: System synthesis workflow 
 
4. Conclusion 
 
In this project, we have developed a design tool based on 
the IMEM model. The tool manages memory requirements 
of video processing systems, thus reliving designers of the 
complexities associated with memory sub-systems. The tool 
provides designers with a user-friendly FPGA programming 
model while generating efficient hardware implementations 
of the memory sub-systems.  
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