
IMEM: A C++ High-Level Synthesis Tool for
FPGA based Real-Time Video Processing Systems

Najeem Lawal, Benny Thörnberg, Mattias O’Nils

mattias.onils@miun.se

ITM - Mid Sweden University – Sundsvall, Sweden

http://www.miun.se/itm

Abstract

FPGA based video processing systems are effective but
have a complex programming model. The synthesis tool
presented here reduces the design complexity and still
produces effective implementations.

1. Introduction

This project deals with optimizing FPGA embedded
memory required for data buffering in the pre-processing
stage of real-time video processing systems (RTVPS). The
pre-processing stages are usually neighbourhood oriented.
Examples of such 2-D operations are convolution,
histogram, spatial and gray-level transforms, erosion,
dilation and component labelling [1].
 Current approaches to C/C++ based system synthesis or
any other synthesis environment do not efficiently make use
of the FPGA architecture especially the memory sub-
systems for real-time video processing systems. This is due
to the manner in which memories are currently being
instantiated in FPGAs. In this project, we are developing a
system synthesis tool for implementing RTVPS with
multiple neighbourhood oriented filters targeting FPGAs.
The tool takes advantage of our already developed memory
modelling tool IMEM [2], memory allocation [3], boundary
conditions management tool [4] and behavioural simulation
platform. Within memory modelling, processes such as
memory estimation and optimization are carried out. The
synthesis process explicitly separates the modelling and
implementation of memory requirements and behaviour of
the filter functions. In this manner, the memory
requirements of the RTVPS will be implemented by the
tools developed in this project whereas tools like Agility
Compiler can be used to implement the behaviour of the
RTVPS filters. The approach supports functional
verification through simulation of both the C/C++ and
VHDL modules of the filters.

2. Conceptual model – IMEM

The methodology used is to capture video system using a
coarse grained synchronous dataflow graph called IMEM,
(Fig. 1A). IMEM stands for Interface and MEmory Model
and is build on top of the SystemC modelling library [2].
Each node in the IMEM dataflow graph captures both the
abstract video interface and the memory model as shown in

Fig. 1B whereas each edge in the graph represents the data
width of each pixel in the video frame. The model is stated
to be conceptual since it explicitly captures the data
dependencies. The memory model is a description of the
neighbourhood of pixels that the task operates on.
Additionally, each node consists of a description of the
task’s functional behaviour. The task does not include any
data dependency or timing related to the dataflow, just an
un-timed C++ description of the relation between input and
output pixels.

p1 p2 p3 p4

p5 p6 p7

in out

A)

B)

IMEM model

C++ function

Task

Figure 1: IMEM model of a video processing system.

 The architecture in Fig. 2 handles data storage and
boundary conditions for the spatial pixel neighbourhood. In
Fig. 2, the task is connected to the memory architecture
through the port interfaces for all the required pixels data
and its output pixel corresponding to the centre pixel in the
input neighbourhood. The sliding window controller SLWC
monitors the centre pixel in a spatial neighbourhood and
using the position information provides valid data for all the
pixels in the spatial neighbourhood through the Line
buffers, Window ctrl and Pixel Switch. The Line buffers are
required to buffer image data in order to create the spatial
neighbourhood. They are implemented in hardware through
the memory architecture described in [3]. The architecture
groups all the line buffers required by a task to form a
global memory object (GMO) for that task. Where the
width of the GMO is the number of line buffers required by
the task multiplied by the bit width representing a pixel.
The length of the GMO is equal to those of the line buffers
that formed it [3]. Allocation of the GMOs has been
formalised through integer linear programming (ILP) and
implemented heuristics in order to achieve optimal results.
 Window control (Window ctrl) provides control signals
used by the Pixel switch to build a spatial neighbourhood
around the current pixel. Window ctrl is implemented in
hardware such that only one copy is instantiated and used to
control all Pixel Switch modules instantiated for all the

spatial neighbourhoods in a VIP algorithm involving more
than one frames. The Pixel switch replaces all pixels in a
spatial neighbourhood affected by boundary condition using
predefined default values if the centre pixel is at the image
boundary. The output sync is optional and is required to
realign the pixels with other video signals where time
synchronized data and control signal outputs are expected.
This is because the neighbourhood’s output pixel usually
has a latency with respect to the input video control signals
by an amount depending of the neighbourhood size and the
number of pipeline stages.

Linebuffers

Window
ctrl

Pixel
switch

SLWC

...

Task

Sync.

a11 a12 a13
a21 a22 a23
a31 a32 a33

In
data

Neighbourhood
data

Neighbourhood
output

Out
data

a)

b)

Figure 2: Boundary conditions implementation

architecture.

3. System synthesis

The IMEM synthesis workflow depicted in Fig. 3
demonstrates how our research on modelling and high level
synthesis fits into an implementation trajectory. This
workflow is defined at six different levels along the left-
hand axis. The video-processing algorithm is developed and
simulated using IMEM at level 1. This executable model
can then be verified through functional simulation. Data
dependency information, frame sizes, composition of the 3-
dimensional neighbourhoods and colour space models are
exported into an interface and memory model at level 2.
Hence at it is at this level that the memory requirements of
a RTVPS are separated from the behavioural C++
description of the RTVPS filters (as shown in Fig. 2B). The
interface between the memory and filters of each operator is
also defined at this level. The model exported in level 2 is
the input to the memory synthesis process at level 3. This is
where memory estimation, memory hierarchy optimization
[5], memory allocation [3] and address generation is
performed. All these processes have been implemented
using ILP and heuristics to achieve optimal results. We
have also explored the impact of pixel bit-width through
buffer re-timing and placement between tasks on the overall
memory usage.
 At level 3, the SystemC functional description together
with the interface template generated from the memory
model are synthesized using a SystemC based commercial
high-level synthesis tool, in this paper Agility from
Celoxica. The VHDL code from both the functional part
and the optimized interface and memory model is integrated
at level 4 and synthesized at level 5. Hence the components
separated at level 2 are integrated at level 5. Hardware
simulation and compilation are also carried out.

Interface and
Memory Model

Simulation Input
Stimuli

Functional Simulation
Data Output

1

2

3

4

5

6

Memory Hierarchy
Optimization

IMEM
Conceptual Modelling

IMEM Projector High-level Synthesis
Memory

Allocation
Address

Generation

Interface generation

VHDL code for
FPGA

C++ High level
synthesis (Celoxia)

Functional mapping
of algorithm

VHDL code for
FPGA

FPGA logic compiler

FPGA based
execution platform

Memory
Storage

Estimation

Figure 3: System synthesis workflow

4. Conclusion

In this project, we have developed a design tool based on
the IMEM model. The tool manages memory requirements
of video processing systems, thus reliving designers of the
complexities associated with memory sub-systems. The tool
provides designers with a user-friendly FPGA programming
model while generating efficient hardware implementations
of the memory sub-systems.

5. References

[1] Gonzales, R. C. and Woods, R. E., Digital Image
Processing. Addison Wesley (1993).
[2] B. Thörnberg, H. Norell and Mattias O’Nils, “IMEM: an
object-oriented memory- and interface modelling approach
for real-time video processing systems”, Proc. of the Forum
on Specification & Design Languages, Sept. 2002.
[3] N. Lawal, Thörnberg, B., O’Nils, M. and Norell, H.,
“Global Block RAM Allocation Algorithm For FPGA
Implementation Of Real-Time Video Processing Systems”,
Journal on Circuits Systems & Comp., Vol. 15, No. 5, 2006.
[4] H. Norell, N. Lawal and M. O’Nils, “Automatic
Generation of Spatial and Temporal Memory Architectures
for Embedded Video Processing Systems”, European
Association for Signal and Image Processing (EURASIP)
Journal on Embedded Systems, 2006.
[5] B. Thörnberg, et al, “Bit-Width Constrained Memory
Hierarchy Optimization for Real-Time Video Systems”,
IEEE Trans. on CAD of Integrated Circuits And Systems.

Acknowledgement

The authors would like to thank the Mid Sweden University
and the Swedish Knowledge Foundation for their financial
supports.

