
GRAPES System Explorer

Gianluca Palermo Matteo Monchiero Oreste Villa Cristina Silvano
Politecnico di Milano

Dipartimento di Elettronica e Informazione
Via Ponzio 34/5, 20133 Milano, Italy

{monchier, gpalermo, silvano, ovilla}@elet.polimi.it
http://savane.elet.polimi.it/grapes/

Abstract

GRAPES System Explorer (GRAPES-SE) is a de-
sign exploration framework providing at the same time
modeling and optimization capabilities at the system-
level

1 Introduction and motivation

The evolution of semiconductor industry makes it
possible for designers to implement Multiprocessor
Systems-on-Chip (MPSoCs), where multiple heteroge-
neous processor cores are integrated in the same chip.
Due to the increasing complexity of such systems, a de-
tailed software simulation is the easiest and cheapest
way to explore design options and it is almost essential
for evaluating new research ideas.

The use of C++ and SystemC [1] for hardware de-
scriptions combined with the use of multiple cycle-
based Instruction Set Simulators (ISSs) can be a vi-
able technique to cope with the development of such
complex simulators and design frameworks. This is
the approach used in most of the recent MPSoC sim-
ulators and development frameworks. Although the
clear progress in designing and simulating MPSoCs,
these systems are evolving at a tremendous rate. Each
new generation adds not only performance but also
new functionalities. The time required to build a new
complex simulation and design infrastructure can make
the simulated architecture easily obsolete. We believe
that further evolutions in the development of design
and modeling framework for MPSoCs requires flexibil-
ity, scalability and modularity as well as simulation
speed, accuracy and designer interaction. Although we
do not pretend to be the first attempt in this direction,
we strongly believe that the problem is far from being
solved and it needs further investigation.

PLUGPLUG--INSINS GRAPES KernelGRAPES Kernel

GRAPES KernelGRAPES Kernel

• Builds the system 

•Drives the simulation

• Synchronizes plugins

• Manages the 

communications

IPIP

SystemCSystemC//

C++C++

C++

Plugin

IPIP

SystemCSystemC//

C++C++

C++

PluginIPIP

SystemCSystemC//

C++C++

C++

Plugin

Link

Link

Configuration 

File (XML)

IMC

IMC

IMC

PLUGPLUG--INSINS GRAPES KernelGRAPES Kernel

GRAPES KernelGRAPES Kernel

• Builds the system 

•Drives the simulation

• Synchronizes plugins

• Manages the 

communications

IPIP

SystemCSystemC//

C++C++

C++

Plugin

IPIP

SystemCSystemC//

C++C++

C++

Plugin

IPIP

SystemCSystemC//

C++C++

C++

Plugin

IPIP

SystemCSystemC//

C++C++

C++

PluginIPIP

SystemCSystemC//

C++C++

C++

Plugin

IPIP

SystemCSystemC//

C++C++

C++

Plugin

Link

Link

Configuration 

File (XML)

IMC

IMC

IMC

Figure 1. GRAPESim Framework

Our proposed solution to cope these prob-
lems is GRAPES-SE a system-level framework to
model at cycle-level heterogeneous MPSoC platforms
(GRAPESim) and to optimize (STShell) the system
performances.

2 GRAPESim

GRAPESim is a structural modeling framework: the
design can be decomposed into several modules (Plug-
ins), each one corresponding to an hardware block. The
GRAPES framework is composed of the GRAPES ker-
nel and the Plug-ins (as shown in Figure 1).

A light and fast C++ kernel (GRAPES Ker-
nel) manages the different plug-ins – wrapped
C++/SystemC IPs – composing the target system.
The GRAPES kernel has been designed to be rela-
tively light-weight with respect to the SystemC ker-
nel, to manage only the set of functionalities related
to the plug-in interfaces and thus guaranteeing fast
simulations. The plug-in shell has been developed in
C++ and designed to wrap generic IP modules such as,
ISSs, memories buses and so on. When loaded and con-
nected together, the plug-ins create the simulated sys-
tem model. The different IP system modules, wrapped



by the plug-ins, can be developed by using C++ or Sys-
temC language and can coexist simultaneously within
the framework. Plug-ins provide a standard Interface
Method Calls (IMC) to support cycle-based simulation,
configuration/reconfiguration and the communication
with the kernel. The communication between plug-
ins is implemented by using a port-based communica-
tion. The port-based communication is based on the
principle that two modules communicate by exchang-
ing data or signals, instead of calling the methods on
the other modules. Each port is bidirectional, since
it can be useful to describe communication protocols
without using any other port description. The com-
munication protocol is not a characteristic of the de-
scribed module but only of its port. This means that
the behavior of the module is decoupled from the com-
munication description and so the redefinition of the
connection between the modules or the communication
protocols, requires only the redefinition of the commu-
nication part. The kernel loads and configures plug-ins
as dynamic libraries realizing the binding among them.
All the necessary information to perform these opera-
tions are provided by a configuration file that is parsed
during the simulation boot phases. During the simu-
lation, the kernel triggers the action for each plug-in
at every clock cycle and it exchanges data (which are
represented as metadata) between them using the IMC
interfaces. During the simulation, the kernel annotates
the execution statistics like performance of each inter-
nal module and of the overall described system.

One of the main characteristic of the approach is
that it is based on a structural modeling framework.
It is possible to understand how the modularity of the
approach increases the reusability of the parts of a sys-
tem model or an the other side to easily explore dif-
ferent architectural solutions only performing a plug-
ins substitution. We conclude this overview focusing
on an implicit aspect of this framework which is the
possibility to develop, to maintain, and to compile all
entities in the framework independently to each other
by supporting also an easy distribution and sharing of
plug-ins library, without necessarily releasing modules
source code.

3 STShell

For the automatic exploration of the design alter-
natives, the GRAPESim can be coupled with a de-
sign environment featuring multi-objective optimiza-
tion capabilities called System Tuning Shell, STShell.
It uses a variety of state-of-the-art optimization tech-
niques to explore the system configurations, ranging
from gradient-based methods to genetic algorithms.

Design Space 
Description

Design Space 
Explorer

(STShell)

Simulation 
Environment

(GRAPESim)

Architecture

Instance
(XML Description)

Power/Performance

Optimal 
Architecture

Figure 2. GRAPES-SE

As shown in Figure 2, STShell interacts externally
with GRAPESim on defining the architecture instance
to model and receiving the performance results. This
enables the automatic exploration and optimization of
the architecture design space given as input to STShell.

4 Conclusions

This short overview presents GRAPES-SE, our pro-
posed solution to cope with modeling, simulation and
exploration challenges for MPSoC systems. The frame-
work is based on modular interfaces and a dynamic
library-based approach to increase flexibility and scal-
ability from the modeling point of view and an auto-
matic system explorer for the optimization step.

The GRAPES-SE has been recently used to model
and optimize complex MPSoCs based on Network
on-Chip and shared memories [3, 2]. GRAPES
kernel source code as well as some examples of
plug-ins can be free downloaded on the web at
http://savane.elet.polimi.it/grapes.

References

[1] SystemC 2.0 User’s Guide. 2002.
[2] M. Monchiero, G. Palermo, C. Silvano, and O. Villa. Ef-

ficient synchronization for embedded on-chip multipro-
cessors. IEEE Transactions on VLSI Systems, 14(10),
2006.

[3] M. Monchiero, G. Palermo, C. Silvano, and O. Villa.
Exploration of distributed shared memory architectures
for noc-based multiprocessors. Journal of System Ar-

chitectures, 24(3), 2007.

2


