
Performance Exploration with MLDesigner
using Standardized Communication Interfaces

Tommy Baumann, Alexander Pacholik, Horst Salzwedel

{Tommy.Baumann|Alexander.Pacholik|Horst.Salzwedel}@tu-ilmenau.de

TU Ilmenau, Faculty for Computer Science and Automation,

P.O.Box 100565, 98694 Ilmenau, Germany

http:/tu-ilmenau.de/sst

Abstract

We present a method to apply performance exploration by
mapping functional models on different architectural variants.
Validation of functionality and performance is applied by
simulation.

1. Introduction

The aim of performance exploration on electronic system level
is evaluating different realization variants, involving compu-
tation and communication resources. Both, communication and
computation is normally strongly connected with the functional
model to which the performance analysis applies. This is a
problem, because for different platforms different models are
necessary, while the functionality remains stable.
There are different approaches regarding performance
exploration on electronic system level. Statical formal methods
can be applied, if a pure mathematical model is available.
However, these models often lacks of functional aspects. For
this reason, dynamical aspects are disregard, pessimistic
approximated data must be used. Another problem to validate
the models, which is only barely possible for complex
mathematical models. It can be summarized, mathematical
models are well suited for worst case analysis, which can be
applied on implementation level, but not in a design exploration
stage.
Using simulation based methods, functional validation and
performance exploration is possible [1,2]. The goal is not to
find the absolute worst cases, but estimations for resource
related key data. There already exists some approaches, like
metropolis[3] and PeaCE [4]. In metropolis the user needs to
create a functional model, which includes special channel
objects. This is a bis cumbersome, because every information
flow between functional parts implies the usage of
communication resources. PeaCE incorporates the use of
synthesizeable models. For complex systems the availability of
such models can only assured in an advanced design stage.
Our performance exploration approach, does not only focus on
Chip or Board level, but also incorporates distributed systems
and complexer networks. To apply performance analysis for
complex systems in early design stages, we remain on a
modelling layer.
This paper deals with the definition of a framework for
performance exploration. In the second chapter we introduce
the used and adapted system design tool MLDesigner. In the
third and forth chapter we introduce a Framework for
Architecture Exploration and describe the concept of
Standardized Communication Interfaces in detail. Chapter 5 an
event based assertion monitoring environment is introduced

2. MLDesigner

The tool MLDesigner[5] is related to the earlier project Ptolemy
and allows the creation and simulation of models containing
different models of computation. MLDesigner provides many
extensions on the simulation environment, especially for
discrete event models. The discrete event domain is well suited
for performance and resource exploration on system level under
functional side conditions.
In the discrete event modelling paradigm events are used for
communication. This includes data transfer ans signalling.
Every arriving event potentially triggers the atomic execution of
a model element. Emitted events contain a future time stamp,
triggering future actions. This enables a more efficient
simulation of models with different time Scales compared with
cycle accurate models. To be noted, discrete event does not
imply discrete time[6].

3. Performance Exploration Framework

Performance estimation for Functional Models and
Architectural Models on System Level can only be achieved by
timed simulation (discrete event). To meet holistic predications
about both together, they have to be associated into the
common executable Behavioural Model. On the other side the
separation is necessary to enable iteration over different
architecture options. This implies a flexible mapping between
the models. The Mission Level System Design Flow
implements these requirements.

Figure 1: Mission Level Design Flow

Figure 1 shows in overview the proposed design flow from
mission level with informal descriptions of the systems tasks,
use- and test-cases and its environment to implementation in
hard- and software. The link between mission level and
implementation is the electronic system level (ESL). Function
and architecture is designed and validated at that level. The left
side of Figure 1 shows necessary steps for a systems design and

their connection to the particular abstraction levels.
The execution of the Behavioural Model delivers performance
values e.g. for channel throughput and memory usage rates. The
output is dynamic summarized by a GUI element (Performance
Monitor). To enable a flexible exchange of transfer protocols,
channels and execution components (partitions), standardized
interfaces are necessary. They are defined in a common
MLDesigner library, the Network Block Set. Furthermore a
special MLDesigner domain target, the ESLTarget, was
developed. It ensures the valid usage of Network Block Set
elements and outputs measured performance values.

4. Standardized Communication Interfaces

The modeling of different exchangeable protocols (based on
OSI reference model) and the communication between desires
standardized interfaces and data structures. Each interface
belongs to a partition and can be designed on a user specific
abstraction level. At this the most important is located between
physical and link layer because there is the connection point of
partition and channel. Channels represent the physical medium
and connect two or more partitions, depending the medium
characteristics and the network topology. All model elements
are part of the Network Block Set library, allowing a fast model
driven exploration of different architecture options.
Data transfer is accomplished by different protocol depending
data structures. Each protocol packs or unpacks the received
data, whereby the size increases or decreases and partition
ressources are occupied (e.g. memory). The data is send thru
channels and delayed considering the channel resources (e.g.
bus frequency). The granularity of data packets depends on the
used protocols and abstraction level. Each selected channel,
partition and interface reports it performance values dynamicly
to the common ESLTarget. This allows a detailled analysis of
the current Behavioural Model. The selection ist also used by
the following annotation based synthesis.

5. Event Based Assertions

Assertions are formal temporal properties, annotated to the
design. These properties are used to detect bugs very early, by
specifying the intended functional behaviour of the design
artefacts.Using assertions is common for RTL designs.
Different approached have been applied to integrate assertions
in abstracter design stages, such as SystemC. MLDesigner faces
even higher abstraction levels, thus we propose to use
communication assertions related to events occuring in the
system. To check communication assertions in discrete event
models, we need to define proper semantics.
Events within a discrete event models contain a distinct
ordering, even if they own the same time stamp. However, in
the later implementation we are not able to observe a relative
ordering between events taking place in the same time. The
ordering between events is only partly defined by the model.
The total ordering is determined randomly by simulation. Thus
it is more common to define temporal properties related to the
timing of events, than involving properties resulting from the
partial ordering of events.
Temporal properties are defined in Linear Time Temporal
Logic (LTL), Computation Tree Logic (CTL) and generalized
in CTL* [7]. To describe properties, observable during
simulation, we can restrict to LTL.[8] In real time systems most
properties must hold in finite time, therefore we can use
interval restricted temporal operators, similar to FLTL[8].

Let I the set of event identifiers then En= IBn is a state set,
containing the boolean evaluation, if an event occurs at
sequence time n . Given an event e , then En e=e n results
true, if event e is active at time n , and false otherwise. A
sequence trace is modelled as a function W=N B mapping
natural numbers to boolean values. An event sequence is a tuple
of an event identifier and a value sequence = IW .
Due to the observation of discrete events in continuous time, a
state vector is valid for a distinct time interval. This results in
alternating state vectors, valid for occurring events (time span
with length zero) and state vectors valid for the time between
occurring events (time span greater zero).
The mapping from value time to sequence numbers is defined
by S=RN . An assertion defined in continuous time can now
be evaluated in sequence time, by evaluating the sequence steps
relating to the continuous timing.
We realized the temporal operators X , F [m, n] , G[m, n] and
U [m, n] with three valued logic according to [7] with some

changes. The interval restrictions m and n are real valued times,
intead of naturals (clock related). The next operator X always
addresses the very next point in time. Assertions are integrated
by using an event handler inserted between scheduler and
model. This allows to integrate assertions by annotations on
model level, rather than on code level, which is common for
RTL designs.

6.Conclusions

We introduced a performance exploration framework, which
allows an easy evalutation of different achitectures. The
exchangeability of communication structures is ensured by
using standardized communication interfaces, according to OSI
protocol layers. We implemented this framework within the
tool MLDesigner and validated it using different reference
models.
To support functional validation of communication assertions,
an event based assertion checker was implemented and
validated.

7.References
[1] K.M. McNeir, M. Zens, H. Salzwedel. "System Level Partitioning
Using Mission-Level Design Tool for Electronic Valve Application".
SAE 2003World Congress, Detroit, Michigan.

[2] G. Schorcht, I. Troxel, et al: "System-level simulation modeling
with MLDesigner". Modeling, Analysis and Simulation of Computer
Telecommunications Systems 2003. MASCOTS 2003. 11th IEEE/ACM
International Symposium.

[3] F.Balarin, Y. Watanabe, et al: “Metropolis: An Integrated Electronic
System Design Environment”. In Computer, IEEE Press April 2003.

[4] S. Ha, C. Lee, et al: "Hardware/ Software Codesign of Multimedia
Embedded Systems: the PeaCE Approach”. Technical whitepaper
peace.snu.ac.kr/ research/ peace/ data/ whitepaper/PeaCE_whitepaper.pdf

[5] MLDesign Technologies Inc. Homepage. www.mldesigner.com

[6] E.A. Lee, A. Sangiovanni-Vincentelli “A Framework For
Comparing Models Of Computation". In IEEE Transactions on CAD,
Vol. 17, No. 12, December 1998

[7] T. Kropf “Introduction to Formal Hardware Verification”, Springer
1999, ISBN 3-540-65445-3

[8] J. Ruf, D.W. Hoffmann, et al: “Simulation Baased Validation of
FLTL Formulas in Executable System Descriptions”, IEEE Interna-
tional High-Level Validation and Test Workshop HLDTV'00, pp.161f

http://peace.snu.ac.kr/
http://www.mldesigner.com/
http://peace.snu.ac.kr/research/peace/data/whitepaper/PeaCE_whitepaper.pdf
http://peace.snu.ac.kr/research/peace/data/
http://peace.snu.ac.kr/research/peace/
http://peace.snu.ac.kr/research/

