
Improving Embedded System Design by means of HW-SW
Compilation on Reconfigurable Coprocessors �

José M. Moya y

josem@die.upm.es
Fernando Rincón z

Fernando.Rincon@uclm.es

Francisco Moya z

Francisco.Moya@uclm.es
Juan Carlos López z

JuanCarlos.Lopez@uclm.es

y Dept. Electronic Engineering
Technical University of Madrid

Madrid. Spain

z Dept. Computer Science
U. of Castilla-La Mancha

Ciudad Real. Spain

ABSTRACT
This article describes a new approach to HW-SW codesign for com-
plex embedded systems, using high-level programming languages.
Unlike in previous approaches, the designer does not need to ac-
quire new skills, because most of the design process is automated.
The hardware extensions are implemented as simple coprocessors
consisting of a reconfigurable datapath and a control memory. Our
approach is demonstrated with a simple image processing applica-
tion, obtaining a 100% performance improvement.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other architecture styles—Adapt-
able architectures; C.3 [Computer Systems Organization]: Special-
purpose and application-based systems—Real-time and embedded
systems; D.3.4 [Programming Languages]: Processors—Retar-
getable compilers

General Terms
Design, Performance

Keywords
Hardware-software codesign, Reconfigurable datapaths

1. INTRODUCTION
Nowadays, the embedded systems community tends to use stan-

dard general-purpose microprocessors with little or no specific hard-

�This work has been funded by the Spanish Ministry of Science
and Technology (TIC2000-0583) and the Regional Government of
Castilla-La Mancha (PBI-02-024)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’02, October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-576-9/02/0010 ...$5.00.

ware. This trend is consistent with the increased adoption of multi-
source component-based methodologies to reduce development time.

Many factors contribute to this situation: 1) a vast majority of the
embedded systems designers are not familiar with state-of-the-art
hardware design tools; 2) there are lots of tightly integrated, well
tested tool chains for embedded software development but almost
none of the EDA tools have been integrated into these tool chains
yet; 3) considerably less training is needed to effectively use soft-
ware development environments compared to their hardware coun-
terparts; and finally, 4) software development enjoys shorter iter-
ations during the development process. Nevertheless the current
approach, compared to a judicious combination of hardware and
software, leads to oversized microprocessors, lower performance
and potentially higher production costs.

The introduction of application-specific hardware during the de-
sign of an embedded system brings a lot of problems. First, method-
ologies and tools used for hardware and software development are
very different from each other. They use different specification lan-
guages and there are very few engineers with enough expertise in
both, hardware and software development. Second, partitioning the
functionality between hardware and software components must be
done very early in the design process, which usually leads to sub-
optimal results. Third, given there is not an unified methodology,
hardware development and software development are carried out
independently of each other. This precludes potential optimizations
and makes it harder to integrate both parts. Finally, current tech-
nologies for designing HW-SW systems do not scale well. When
we face large problems manual partition becomes impractical, and
automatic partitioning (based on the iterative evaluation of a signif-
icant amount of alternatives) becomes unacceptably slow because
the design space grows exponentially with the size of the problem.

In this paper we present a new reconfigurable architecture, and
a new methodology to hardware-software codesign specially de-
signed to overcome these limitations of current approaches to the
design of complex embedded systems. We describe a general-
purpose method to build customized hardware-software systems,
with minor user intervention.

2. OUR APPROACH
Reuse becomes most important as complexity grows. A complex

system, whose behavior needs more than a million lines of code to

255

be described, can not be designed from scratch, or the design cost
and the time to market would be unacceptable.

Thus, flexibility and reuse become the key design goals for mod-
ern design environments for complex HW-SW systems. In this
section we will describe our FLExible COSynthesis methodology
(FLECOS), which has been designed with these goals in mind.

Along this paper we use the term architecture to refer to the set
of available resources, the available functional units and the way
they are connected.

The synthesis tools make no distinction between the functional
units inside a microprocessor and other external functional units lo-
cated in an external reconfigurable device. They just have different
run-time characteristics.

The functional units are grouped into subsystems, which corre-
spond to physical independent entities, such as a microprocessor,
or a reconfigurable coprocessor. Complex communication mech-
anisms between two or more subsystems are also represented as
functional units.

Next, we describe in more detail the hardware platform, the de-
velopment tools, and the methodology we propose to bring HW-
SW codesign techniques to programmers of embedded systems.

2.1 The hardware
We propose a hardware architecture based on a standard mi-

croprocessor connected to one or more REconfigurable Datapaths
(RED devices), that work as coprocessors.

RED has been conceived with the following ideas in mind:

� Providing HW acceleration to critical operations but avoid-
ing the problem of HW/SW partitioning. This implies work-
ing at the level of operations or system calls, which is a lower
degree of granularity compared to classical HW/SW code-
sign approaches.

� Provide a flexible architecture that allows the implementation
of operations at a variable level of complexity.

� Achieving a high percentage of utilization of reconfigurable
hardware.

� Including a data cache to reduce the overhead produced when
accessing to data memory.

� Reducing the overhead caused by communication between
the main processor and the coprocessor, reducing the number
of orders, but without increasing instruction width.

Figure 1 shows the top level architecture of the proposed data-
path. Basically, the reconfigurable architecture is composed of a
pipeline that will perform the desired operations. The pipeline will
be fed with data from a local register bank. The data will then flow
through the different stages of the pipe1. The intermediate results
will be stored at the registers that isolate the stages, and when the
operation is completed, the final result will be stored back in the
register bank.

This simple architecture has two main advantages. Since the size
of the operands will be fixed, there is no need for more sequential
logic than the necessary to store intermediate data. Also the inter-
connection schema will be simpler compared with an FPGA.

The partitioning of an operation into datapath stages provides
certain flexibility in the number of cycles needed to complete one
operation, since all the stages can store their result directly into the
register bank.

1Note in figure 1 how operands can be fed into the pipeline at dif-
ferent stages.

PIR

PIR

PIR

config. memory

main memory

register
file

input
buffer

output
bufferpipeline

stage

configuration controller

Figure 1: RED Architecture

Another important characteristic of this architecture is the use
of dynamic reconfiguration. For every pipeline stage, the combi-
national logic has multiple configuration contexts [1], that can be
loaded at the beginning to provide the different operations required
to execute a task set. These operators are selected by the designer
at compile-time, and the synthesis tools generate the sequence of
active configuration contexts for every pipeline stage. The active
configuration context is selected by the pipeline instruction regis-
ters (PIR), shown in figure 1.

As a result, pipelining will make it possible to start a new opera-
tion at each cycle, and dynamic reconfiguration will allow this op-
eration to be different from the previous one, providing certain kind
of parallelism between operations inside the pipeline, and therefore
increasing the performance and the reuse of the dedicated hardware
resources.

The use of dynamic reconfiguration techniques leads to new op-
portunities for the design of highly adaptable and fault-tolerant sys-
tems, with user-selectable tradeoff between quality of service and
functionality.

2.2 The development tools
Any behavior specification may be implemented using different

architectures. Some applications may require a large, fast, pipelined
multiplier, but others can meet constraints with the minimum area
consumption. In both cases it is useful to manipulate the compact,
reusable behavior specification, while still being able to change
the resources that will implement that behavior. However, most
hardware-software codesign systems fail to adequately separate be-
havior from architecture. For example, SYSTEMC-based solutions
advocate for a refinement process that incrementally adds structural
information to an initial pure-behavioral specification, cluttering it
needlessly. In many cases, the architecture selection is reduced to
choose one microprocessor and one FPGA [6]. In most cases, there
is very little control on how the hardware part will be implemented.

Another weak point of current codesign systems is the specifi-
cation of constraints. Usually, the designer may only choose the
maximum execution time and the maximum area of the hardware

256

part, and in most cases, these constraints are checked only at the
end of the design process.

We try to overcome these limitations by decoupling behavior,
architecture, and design criteria. Consequently, a complete system
specification in FLECOS is composed of three parts:

1. Design criteria. Algorithm for design space exploration.
Dynamic strategies [7] may be used to improve the quality
and efficiency of the exploration.

2. Architecture description. Number and type of the avail-
able functional units, and the system programming interface
of this architecture (specifying the required instructions for
every operation).

3. Behavior specification. A description of the behavior of the
system using a general-purpose programming language, such
as C, C++, Ada, Java or Pascal.

Unlike in previous refinement methodologies, the three parts of the
specification are kept separate, simplifying reuse. As a result, the
design of an embedded system may be seen as a search in the 3-D
space. The mission of the synthesis tools is to map the behavior
into the architecture, applying the specified design criteria.

Design criteria change very little or not at all for different de-
signs. However, new transformations may be added to optimize
specific applications.

Our current implementation of the FLECOS methodology is based
on the industry standard GCC compiler suite. We have chosen
GCC because it is freely available, high-quality, easily retargetable,
portable, and widely used in the embedded systems community.

However, there are fundamental differences between the soft-
ware development process and the required process for hardware-
software codesign: 1) A software compiler has fixed design criteria,
only slightly parameterizable with some compiler options. 2) Al-
though GCC has been ported to many platforms, all the architecture-
dependent code is static. There is no way to change the architecture
without recompiling the whole compiler.

To overcome these limitations, we have moved all the design de-
pendent code (which is most of the sources) out of the compiler,
into shared objects, making the executable independent of the be-
havior, the architecture, and the design-criteria.

The architecture specification is implemented as a shared object
containing all the architecture-dependent code of the compiler, and
includes all the information of the hardware operators added by the
designer.

The design criteria are represented by the optimization script,
which defines the required sequence of transformations of the orig-
inal specification to map it onto the specified architecture. This
optimizer specification defines the goals of the synthesis process.

2.3 The methodology
The proposed methodology is similar to the typical profile-based

refinement in software development, with the following phases: 1)
design, code, and test a software-only solution; 2) get information
of the run-time behavior of the program, based on profiling tools
and simulators; and 3) optimize only what needs to be optimized.
We will describe these three phases in more detail below.

Although these steps are common in the design of embedded
software, to the best of our knowledge, it has never been applied
to combined hardware-software designs. As there are fundamen-
tal differences with software-only development, most of the tools
involved in the design process need to be redesigned to cope with
extra hardware units, but the user interface is kept mostly unmodi-
fied from current software development tools.

Specification. The behavior specification does not change with
respect to software, but we have to provide a suitable architecture
description and the design criteria. See [8] for more information
about the specification in the FLECOS environment.

The initial architecture description corresponds to the target mi-
croprocessor with no extra hardware. Later, based on the results,
the designer can manually add the new RED operations to the ar-
chitecture to maximize reuse opportunities. This architecture re-
finement process is guided by multiple profiling results and should
be fairly simple for the designer. Of course, this task is susceptible
to be automated, although not currently done.

The default optimizer should also be adequate as an initial spec-
ification of the design criteria.

Collecting run-time information. Depending of the specific
requirements, we can use several tools to obtain useful data to op-
timize the design:

� Function profiling, using standard software profilers, allows
a coarse-grain performance analysis, useful to discard most
of the code in large designs.

� Basic-block profiling, using coverage tools such as gcov,
allows the designer to decide the datapaths that should be
implemented in RED. We provide a visual tool to evaluate
different tradeoffs.

� The instruction-level simulator has been modified to gener-
ate a trace of memory accesses. This allows the designer to
change the memory layout to minimize cache misses, or to
maximize locality.

� As most of the power consumption in software systems is
spent in level-one data cache, we can use a cache simulator
(i. e. Dinero IV) to analyze the trace of memory accesses,
and use its output to estimate the power consumption in every
part of the specification.

The visual analysis tools give the designer hints on what should
be moved to a RED coprocessor.

HW-SW optimization. Finally, to optimize the design we should
only consider the bottlenecks shown by the analysis tools. The de-
signer decides which basic blocks should be moved to a RED co-
processor, and automatically, the internal datapath is synthesized
into a RED configuration.

When a basic block is moved to hardware, the resulting RED
operators are added to the architecture description of the HW-SW
compiler, and the datapath is replaced by a suitable mixture of core
and RED operations.

3. AN EXAMPLE: A SOBEL FILTER
As an example of the proposed method, we will design a hardware-

software version of an horizontal Sobel filter, that is frequently used
for edge detection.

We will implement this filter in a prototyping board containing
an ARM7TDMI processor and an Altera FPGA. The main goal
to guide our decision will be performance. The results shown are
based on simulation.

3.1 Specification
As previously stated, the first step should be the design and im-

plementation of the filter as a software program. Figure 2 shows
the main loop of our C implementation.

We use a modified version of the backend of GCC[2] as the HW-
SW compiler, and thus, we can use all the specification languages

257

for (r=1; r<ROWS-1; r++)
for (c=1; c<COLS-1; c++) {

/* Apply Sobel operator. */
pixel = image_in[r-1][c+1]

- image_in[r-1][c-1]
+ 2*image_in[r][c+1]
- 2*image_in[r][c-1]
+ image_in[r+1][c+1]
- image_in[r+1][c-1];

/* Normalize and take absolute value */
pixel = abs(pixel/4);

/* Store in output array */
image_out[r][c] = (unsigned char) pixel;

}

Figure 2: Sobel filter specification

Figure 3: Interactive tool to analyze run-time properties (CFG
view of the Sobel function).

supported by GCC (C, C++, Objective-C, Java, Ada, Fortran, Pas-
cal, etc).

As we use standard programming languages, we can use stan-
dard tools to test and debug our specification in the development
computer.

3.2 Collecting run-time information
Once we have a working program, we can obtain a working prod-

uct by just cross-compiling the application for the target micropro-
cessor, but it will not be optimized for our special needs. We can
improve significantly our design (performance, cost, power con-
sumption, etc.) adding a specialized RED coprocessor.

First, to make a fast hardware-software tradeoff, we need to dis-
cover the weak points of our design based on the design criteria.
As the target microprocessor does not need to be the same as the
development machine, we need to run the application in a simula-
tor. We use the instruction-level simulator built into gdb, which is
generated automatically from a description of the architecture, and
it is easy to extend to include the new coprocessors.

The example presented here is a very simple program with only
4 basic blocks, and it is fairly obvious that the inner basic block is
where the processor spends most of the execution time. However,
with very complex designs it is not so easy and an automated tool
is required. This tool shows the control flow graph and suggests
the basic blocks that should be moved to hardware, but it is the de-
signer’s decision if they are actually moved or not. Figure 3 shows
the control flow graph of our Sobel function, where the basic block
BB2 is marked red to indicate that it is the one that determines the
execution time of the whole function.

Thus, BB2 is the basic block that we should implement in a
RED coprocessor. The assembler code of this block is shown in
figure 4. It is interesting to note that most instructions are dedi-
cated to the calculation of the addresses of the operands, and not
the Sobel calculation itself. Thus, an application-specific address
generation unit would certainly improve the performance by a huge
factor. This is the main source of speedup in our example.

.L10:
@ basic block 2
ldr r1, .L17+16
add r0, r6, r1
add r2, r0, r4
mvn r3, #320
ldrb r0, [r2, r3]
ldrb ip, [r2, r9]
ldrb r1, [r2, #1]
rsb r3, r0, ip
ldrb ip, [r2, #-1]
add r3, r3, r1, asl #1
ldrb r0, [r2, r8]
ldrb r1, [r2, sl]
sub r3, r3, ip, asl #1
add r2, r3, r0
rsb ip, r1, r2
mov r2, ip, asr #31
add r1, ip, r2, lsr #30
mov r2, r1, asr #2
cmp r2, #0
rsblt r2, r2, #0
str r2, [r7, #0]
ldrb ip, [r7, #0]
strb ip, [r5, r4]
add r4, r4, #1
cmp r4, lr
ble .L10

Figure 4: Assembler output for ARM7TDMI of the inner
block.

3.3 HW-SW optimization
For this example we have used the original optimization sequence

defined by GCC, which is specially tuned for performance. We
have only changed the architecture description to make use of exter-
nal RED operators. It is important to remark that all the functional
units (internal and external) are taken into account by the different
transformations, not requiring an initial hardware-software parti-
tion.

Our goal is maximum performance, and we have seen that it is
mainly determined by the basic block shown in figure 4. Thus, we
should concentrate on moving this whole basic block to a hardware
coprocessor, reducing the total execution time. Figure 5 shows the
GCC scheduling for this block, which is 35 instruction cycles long.

As it is best seen in figure 2, every iteration requires 6 read ac-
cesses to memory and 1 write access. If we do not alter the buses
and memory hierarchy, taking into account that the ARM requires 2

258

clock core
===== ========================
0 r1=‘image_in’
1 r1=‘image_in’
2 r0=r6+r1
3 r2=r0+r4
4 r3=0xfffffebf
5 r0=zxn([r2+r3])
6 r0=zxn([r2+r3])
7 ip=zxn([r2+r9])
8 ip=zxn([r2+r9])
9 r1=zxn([r2+1])
10 r1=zxn([r2+1])
11 r3=ip-r0
12 ip=zxn([r2-1])
13 ip=zxn([r2-1])
14 r3=r1*2+r3
15 r0=zxn([r2+r8])
16 r0=zxn([r2+r8])
17 r1=zxn([r2+sl])
18 r1=zxn([r2+sl])
19 r3=r3-ip*2
20 r2=r3+r0
21 ip=r2-r1
22 r2=ip>>31
23 r1=r2 0>>30+ip
24 r2=r1>>2
25 {r2=abs(r2);clobber cc;}
26 [r7]=r2

.
28 ip=[r7]

.
30 [r5+r4]=ip
31 [r5+r4]=ip
32 r4=r4+1
33 cc=cmp(r4,lr)
34 pc={(cc<=0)?L317:pc}

Figure 5: GCC scheduling for the inner block.

instruction cycles for every memory access, every iteration would
require at least 14 instruction cycles to complete (plus two more
cycles to get the base address of the input image).

Moving everything to a RED coprocessor, we can reduce the to-
tal latency of this block to only 17 cycles (see figure 6). Once the
designer selects the functionality of the operators that should be
moved to a RED unit, the synthesis of the datapath is done automat-
ically, using standard high-level synthesis tools. The only required
user intervention is to select the basic blocks that should be moved
to the coprocessor.

The copro-core unit, shown in figure 6, refers to the coprocessor
datapath, while the copro-mem unit deals with external memory.
The register bank has two separated data buses to allow simultane-
ous accesses from both units. The only restriction is that the same
register can’t be written from both units at the same time.

The resulting schedule can be interpreted as follows. From cycle
0 to 6 the copro-core unit computes the six memory addresses for
the six operands of the Sobel operator, and the address to store the
result. At the same time, as soon as the first memory address is
ready, copro-mem starts accessing external memory. Since mem-
ory accesses take 2 cycles it’s clear that at least 12 cycles are needed
for obtaining all operands. However, since both units (copro-core
and copro-mem) perform in parallel, it is possible to compute So-
bel operator as long as new operands are extracted. When the last
computation is finished the result is stored in the output image.

Meanwhile, the ARM unit increments the register where the cur-
rent x coordinate is stored, checks if it has reached the limit, and

jumps accordingly at the end of the basic block. Note also how the
value in r4 is passed to RED, so the new column value is ready for
the next iteration.

For the implementation of the described functionality only two
new operations must be defined for RED. The first one (op1) per-
forms address computations. Since addresses are generated adding
a constant offset to the current (x,y) position being filtered, op1 will
be equivalent to one adder plus some additional logic to select the
right offset (just one state in the datapath).

The second operation needs three stages. The first one computes
the first subtraction, the second subtracts two new operands and
append its result to the accumulated from the previous stage. The
third and last, appends again a new subtraction, shifts right the re-
sult and takes the absolute value.

The result is roughly a 100% improvement in performance with
minimum design effort.

4. RELATED WORK
During the last decade, the research community has shown a

strong interest in the unification of hardware and software speci-
fications to simplify the design of complex hardware-software sys-
tems. High-level programming languages are common in large-
scale system design and debugging, and they are now being con-
sidered for the whole design process.

There are also some commercial products that support C or C++
as specification languages for hardware design. But their main ob-
jective is to integrate the support of C/C++ models into existing de-
sign flows based on Verilog or VHDL. The specification language
is extended to support the underlying model of computation of the
HDL, and some constructs are restricted to avoid difficult analysis
and transformations. Some notable examples of this approach are
The Open SYSTEMC Initiative [10], and OCAPI from IMEC [9].
Our approach is the opposite, we integrate some hardware synthesis
tools into the existing software design flows.

The Synopsys Nimble Compiler [6] has similar goals but takes
a different approach. First, it implements a classical hardware-
software codesign process, where the first step is the hardware-
software partitioning, and then hardware and software are opti-
mized separately. In contrast, we optimize hardware and software
simultaneously, increasing opportunities to share resources. Sec-
ond, the Nimble Compiler hides the architecture and the design
criteria into the compiler, which we think is less flexible.

The Tensilica Xtensa Processor Generator [11] is also aimed at
synthesizing hardware and software from a C specification, but the
hardware is just an instance of a parameterized general-purpose
processor, and the tools make no effort to include external special-
ized hardware.

Regarding the RED architecture, there are other related propos-
als still under research. One is GARP, from University of California
at Berkeley [5], and is based on a MIPS core plus a reconfigurable
array organized in a set of contexts. Another one is Chimaera [4],
from Northwestern University. Chimaera is a reconfigurable func-
tional unit that is able to provide a set of simultaneous hardware
operators, that can be replaced dynamically, during the execution
of the application. The third one is Piperench [3], from Carnegie
Mellon University. PipeRench is a dynamically reconfigurable dat-
apath that allows the implementation of pipelined operations that
are not constrained by the physical number of stages in the datap-
ath.

RED shares some features from all of them. Since it will work at
the level of operations, the internal architecture does not have to be
as general as typical FPGAs. It is a datapath much like PipeRench,
although the granularity of the stages, the use of local memory and

259

clock core copro-core copro-mem
===== ============ ============================== =========
0 (op1) R0=&image_in[r][c+1]
1 (op1) R1=&image_in[r-1][c-1] R7=[R0]
2 (op1) R2=&image_in[r][c+1] R7=[R0]
3 (op1) R3=&image_in[r][c-1] R8=[R1]
4 (op1) R4=&image_in[r+1][c+1] R8=[R1]
5 (op1) R5=&image_in[r+1][c-1] R9=[R2]
6 (op1) R6=&image_out[r][c] R9=[R2]
7 r4=r4+0x1 (op2-1) S1 = R7 - R8 R10=[R3]
8 wait R10=[R3]
9 (op2-2) S2 = S1 + 2*(R9-R10) R11=[R4]
10 wait R11=[R4]
11 wait R12=[R5]
12 wait R12=[R5]
13 R14=r4 (op2-3) R0 = abs((S2+R11-R12)/4) R14=r4
15 cc=cmp(r4,lr) [R6]=R0
16 cond. jump [R6]=R0

Figure 6: RED scheduling for the inner block.

the reconfiguration schema is rather different. Reconfiguration is
based, as in Garp, in the use of several switchable contexts. With
respect to Chimaera, RED also provides simultaneous execution of
instructions, but it is achieved through the use of a pipeline whose
stages can change their functionality at each clock cycle.

5. CONCLUSIONS AND FUTURE WORK
The proposed architecture and methodology make it possible for

unexperienced designers to develop hardware-software systems in
an easy, and flexible manner, leading to greatly improved designs.

We have shown with a simple example how performance can be
significantly improved with minor human intervention.

This seams to be the natural extension of the methodologies and
tools currently used in the design of microprocessor-based embed-
ded systems, and so it should be easy to adopt in current design
flows.

The RED architecture has proved to be a very effective solution
for hardware-software codesign, because of its special characteris-
tics:

� It is more flexible and general-purpose than a traditional co-
processor. It allows the implementation of all type of oper-
ators, that can even handle more than two operands simulta-
neously.

� Its internal architecture is pipeline-oriented. For that reason
the complexity of the programmable cells that compose it, as
well as the routing resources, are expected to be much lower
compared to traditional FPGAs. This would make RED more
suitable to be integrated into a SoC (together with a micro-
processor core).

� The fact of having several contexts almost eliminates recon-
figuration latency, although at the cost of more configuration
memory.

� It is very easy to integrate into a traditional compiling pro-
cess, giving very good results with a minimum effort.

Our method and tools make no distinction between hardware and
software resources. This leads to true codesign, in contrast to other
methodologies which develop hardware and software separately.

Thanks to its flexible architecture, it also constitutes a good frame-
work to experiment with new strategies for design space explo-
ration, and new design methodologies. Currently, we are working

on the integration of a module for automatic design space explo-
ration. Also, we are implementing a lightweight operating system
kernel that will support commonly used abstractions in subsys-
tems with very different dynamic behavior (microprocessors, FP-
GAs and ASICs).

6. REFERENCES
[1] A. DeHon. Reconfigurable Architectures for General Purpose

Computing. PhD thesis, MIT, 545 Technology Sq., Cambridge
MA 02139, September 1996.

[2] GNU Compiler Collection. [on-line]. Available from WWW:
http://gcc.gnu.org/.

[3] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi,
R. R. Taylor, and R. Laufer. Piperench: a coprocessor for
streaming multimedia acceleration. ISCA, 1999.

[4] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao. The
Chimaera reconfigurable functional unit. IEEE Symposium on
FPGAs for Custom Computing Machines, pages 87–96, 1997.

[5] R. Hauser and J. Wawrzynek. Garp: A MIPS processor with a
reconfigurable coprocessor. Proceedings of the IEEE
Symposium on Field-Programmable Custom Computing
Machines (FCCM), April 1997.

[6] Yanbing Li, Tim Callahan, Ervan Darnell, Randolf Harr, Uday
Kurkure, and Jon Stockwood. Hardware-Software Co-Design
of Embedded Reconfigurable Architectures. In Design
Automation Conference, 2000.

[7] F. Moya, J. M. Moya, and J. C. López. Global design space
exploration strategy for system synthesis. In Proc. of the 6th
European Concurrent Engineering Conference, April 1999.

[8] J. Moya, F. Moya, S. Dominguez, and J. Lopez.
Multi-language specification of heterogeneous systems.
Forum on Design Languages (FDL’2000), September 2000.

[9] P. Schaumont, S. Vernalde, L. Rijnders, M. Engels, and
I. Bolsen. A programming environment for the design of
complex high speed ASICs. In Design Automation
Conference, 1998.

[10] Open SystemC Initiative. [on-line]. Available from WWW:
http://www.systemc.org/.

[11] Tensilica Xtensa Processor Generator. [on-line]. Available
from WWW: http://www.tensilica.com/.

260

	Main
	ISSS02
	Front Matter
	Table of Contents
	Author Index

